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ABSTRACT
In this paper, we develop an analytical framework to mea-
sure the vulnerability of superpeer networks against attack.
Two different kinds of attacks namely deterministic and de-
gree dependent attack have been introduced here. We for-
mally model the superpeer networks with the help of bi-
modal structure and different attacks with the help of graph
dynamics. Our analysis shows that fraction of superpeers
and their connectivity have profound impact upon the stabil-
ity of the network. The results obtained from the theoretical
analysis are validated through simulation. The agreement
between the simulation results and theoretical predictions is
almost perfect.

Categories and Subject Descriptors: C.2.0 [General]:
Security and protection

General Terms: Measurement, Security.

Keywords: Superpeer networks, attacks, complex
network theory.

1. INTRODUCTION
The growing popularity of peer-to-peer networks makes

them a very likely candidate for being a substrate for fu-
ture internet scale information systems. In peer to peer
networks, a huge number of peers are connected among
themselves by some logical links forming an overlay above
the physical network. Currently superpeer topologies have
emerged as the most influencing topology among various
overlay networks [12, 14]. Most of the commercial systems
like KaZaA [1] have also adopted superpeers in their design.
In this system, superpeer nodes with high bandwidth con-
nect to each other forming the upper level in the network
hierarchy. A large number of peers are connected with su-
perpeers to get service from them.

Understanding the effect of attacks upon the large scale
superpeer networks is becoming a major challenge for the
p2p network community. The most prominent attack that
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affects the stability of the network is Denial Of Service (DoS)
attack [11]. In the p2p networks, DoS drown important
peers in fastidious computation so that they fail to provide
any service requested by other peers. DoS attacks become
far more effective when the attack is launched in distributed
fashion, the feature more popularly termed as distributed
denial-of-service (DDoS) attack. The perpetrator in DDoS
remotely controls personal computers and directs attacks
on important peers in the network through them. Worm
propagation, file poisoning, sybil attack, eclipse attack are
some of the important attacks that also affect the stability
of the p2p networks [13].

A survey in the literature reveals that most of the com-
mercial superpeer networks can be represented as large scale
complex graphs. Attacks upon networks can also be mod-
eled as different kinds of dynamics that take place in these
complex graphs. Some analysis of graph dynamics have been
done mainly by physicists. The effect of random failures and
intentional attacks in various kinds of graphs are discussed
by Cohen in [3, 4]. In [9], Newman et al. introduced the
concept of generating function formalism. Using it, Call-
away [2] found the exact analytic solutions for percolation1

on random graphs with arbitrary degree distribution.
In this paper, we utilize many of the aforesaid results of

percolation theory to develop a generalized analytical frame-
work to measure the stability of superpeer networks against
various kinds of attacks. The attack is modeled in terms of
removal of important nodes from the network. We charac-
terize the importance of a node mainly by its connectivity
and bandwidth. Two different attack models are proposed.
In the naive model, nodes are removed in the sequence of
their degrees while in the second (sophisticated) model, ev-
ery node has a probability of removal with probability tilted
towards high degree nodes. The disintegration of giant com-
ponent [8] helps us to measure the stability of the attacked
network. We also perform simulation to validate the theo-
retical results.

The rest of the paper is organized as follows. In section 2,
we develop an analytical framework to measure the stability
of superpeer networks. Section 3 defines and models vari-
ous environmental parameters like superpeer topology and
attacks. Here we also explain the simulation environment
generated to mimic large superpeer networks and specify

1Percolation indicates the existence of a critical probability
pc such that below pc the network is composed of isolated
clusters but above pc, a giant cluster spans the entire net-
work (i.e. the network is almost fully connected).



how to measure the stability of the network. In section 4
we utilize the developed formalism to assess the stability of
superpeer networks against attacks and validate the theo-
retical results with the help of simulations. Finally section
5 concludes the paper.

2. DEVELOPING ANALYTICAL FRAME-
WORK USING GENERATING FUNCTION
FORMALISM

In this section, we derive an analytical framework for mea-
suring the stability of overlay structures undergoing any kind
of disturbances in the network. With the help of this frame-
work, we find the critical condition for break down of the
connectivity of the network. We assume that we have an in-
finite system, and so before any failure or attack the biggest
cluster size in the system is infinite. Theoretically the ques-
tion that we want to answer is how severe should be the
failure or attack to make the biggest cluster size in the sys-
tem finite.

We start out by giving some definitions. Let pk be the
probability of finding a randomly chosen vertex with degree
k. Let qk be the probability that a node of degree k sur-
vives the failure or attack. Correspondingly fk = 1 − qk is
the probability that a node of degree k is removed. In our
framework, pk models the ensemble of overlay structures and
fk models the disruptive events that take place in the net-
work. We are going to establish the relationship between
stability and pk and qk i.e. (1 − fk) using the generating
function formalism.
Generating function has been widely used to model various
stochastic processes [9, 2]. A brief introduction of generat-
ing function follows.
Generating function: A generating function G(x) is for-
mally a power series of x which encodes some probability
distribution. Let us assume that G(x) generates the degree
distribution of the network given by pk, then the generating
function takes the form

G(x) =
∞

X

k=0

pkxk (1)

The connection between the generating function and the
probability distribution it generates is given by

pk = lim
x−→0

1

k!

dkG(x)

dxk
(2)

Another important property of generating functions is that
the average of the index of the probability, i.e., for G(x) the
average degree z of a vertex, can be expressed simply by

z = 〈k〉 =
∞

X

k=0

kpk = G′(1) (3)

Using this formalism we can formulate the generating func-
tion H0(x) which generates the distribution of the compo-
nent sizes to which a randomly selected node belongs to.
Subsequently the average size of the components can be cal-
culated from H ′

0(1). When this average component size be-
comes infinity, it indicates the emergence of giant component
and hence we can derive the critical condition for the stabil-
ity of the giant component. However to formulate H0(x), we
have to use a set of generating functions that are specified
below.

Some useful generating functions:
• H1(x) generates the distribution of the component sizes

that are reached by choosing a random edge and fol-
lowing it to one of its ends.

• F1(x) generates the probability distribution of the out-
going edges of the first neighbor of a randomly chosen
node after the process of removal of some portion of
nodes is completed.

• F0(x) is the generating function associated with the
probability of a node having degree k to be present in
the network after the disruptive event.

Derivation of F0(x)
The generating function F0(x) specifies the probability of
finding a node of degree k to be present in the network after
the failure or attack. Since pkqk is the probability of finding
a node of degree k to be present after the disruptive event,
applying the definition of generating function (Eq. 1), we
find that F0(x) takes the form

F0(x) =
∞

X

k=0

pkqkxk (4)

Derivation of F1(x)
To reach the first neighbor of a randomly chosen node, we
have to pick up one of its outgoing links randomly and fol-
low it until we reach the other end. Hence the probability
distribution generated by F1(x) is same as the probability
distribution of the outgoing edges of a node reached by fol-
lowing a random edge. Therefore we derive the generating
function F1(x), with the help of another generating function
A(x) which is based upon the probability of finding a ran-
domly chosen edge connected to a node of degree k.
Derivation of A(x):
If we think of an edge connecting two nodes i and j as ac-
tually two edges; one going from i to j, and another from j
to i, then total number of such edges in the system becomes
P∞

k=0
knk, where nk is the number of nodes with degree k

in the system, which can be expressed as nk = Npk (N be-
ing the total number of nodes in the system). The expected
number of edges connected to nodes of degree k which re-
mained present after the node removal event is knkqk. So,
the probability of finding a randomly chosen edge connected
to a node of degree k becomes

pon(k) =
knkqk

P∞
k=0

knk

=
kpkqk

P∞
k=0

kpk

=
kpkqk

z
(5)

In consequence the generating function associated to the
probability pon(k) is

A(x) =

∞
X

k=0

pon(k)xk =

∞
X

k=0

kpkqk

z
xk

Since
P∞

k=0
kpkqkxk can be expressed as xF ′

0(x) therefore
with the help of Eq. (3)

A(x) = xF ′
0(x)/G′(1) (6)

Derivation of F1(x):
The generating function F1(x) is based upon the probability
distribution signifying the outgoing degree of a node reached



(a) Calculation of s1 (b) Calculation of s2

Figure 1: Schematic diagram explains the calculation of s1 and s2. White node indicates the node reached
by following a random edge and black nodes indicate the removed nodes.

following a random edge. We know that a node having de-
gree k arrived following a random edge has only k − 1 out-
going links that leaves from that node. Hence probability of
finding an existing node (that survives after the disruptive
event) of k − 1 outgoing edges reached following a random

edge is pon(k) = kpkqk

z
as defined in Eq. (5). Therefore

probability distribution of the outgoing edges of the first
neighbor of a randomly chosen node can be generated by

F1(x) =

∞
X

k=1

ponxk−1 =

∞
X

k=1

kpkqk

z
xk−1 = F ′

0(x)/z (7)

Derivation of H1(x)
The function H1(x) generates the distribution of cluster
sizes reached by following an edge chosen uniformly at ran-
dom. Without loss of generality, we assume that following
an edge, we can reach either a non existent node (node re-
moved during deletion) or an existent node. The probability
of following the randomly chosen edge and finding an exist-
ing/present node of degree zero is zero, the probability of
finding an existing node of degree one is p1q1/z, the prob-
ability of finding an existing node of degree two is 2p2q2/z,
and so on. So the probability of finding a node following a
random edge is

P∞
k=0

kpkqk/z = F1(1). In consequence, the
probability of finding an edge that leads to a node which
has been removed is 1−F1(1). Clearly this is also the prob-
ability of following a randomly chosen edge that leads to a
zero size component. Therefore if s0 is the coefficient that
accompanies x0 in H1(x) then s0 = 1 − F1(1).
To find the full expression of H1(x) we have still to look for
the probabilities that accompany non-zero size components.
We find those probabilities next with the help of induction
method.
Calculation of s1, s2 etc: We calculate the probability s1 of
finding by following a randomly chosen edge a component of
size 1. This is nothing else than the sum of the probabilities
of following an edge and finding a node of degree k which
has its other k − 1 edges connected to zero size components
(all the nodes in these components are removed) (Fig. 1(a)).

This can be expressed as:

s1 =

∞
X

k=1

kpkqk

z
(1 − F1(1))

k−1

= F1(H1(0)) = lim
x−→0

1

1!

d(s0 + xF1(H1(x)))

dx

where pon(k) = kpkqk/z and (1−F1(1))
k−1 is the probability

of taking randomly k − 1 edges and finding that all of them
are attached to zero size components.

Knowing this we can easily calculate s2, the probability
of finding a component of size 2 by following a randomly
chosen edge. s2 is the sum of the probability of following a
randomly chosen edge that leads to a node of degree k which
is connected to k − 2 zero size components, and has also an
edge that leads to a component of size 1 (Fig. 1(b)). This
can be expressed as

s2 =

∞
X

k=2

(k − 1)kpkqk

z
(1 − F1(1))

k−2s1

= F ′
1(H1(0))H

′
1(0) = lim

x−→0

1

2!

d2(s0 + xF1(H1(x)))

dx2

where (1−F1(1))
k−2s1 is the probability of taking randomly

k−1 edges and find that k−2 edges are attached to zero size
components, and one to a size 1 component. The term k−1
in s2 indicates that there are k − 1 possible configurations
for these edges.
Similarly we can find the probability of finding a component
of size 3 by following a randomly chosen edge

s3 = lim
x−→0

1

3!

d3(s0 + xF1(H1(x)))

dx3

and so on. This suggests a self-consistence equation for
H1(x) that generates the distribution of component sizes
of nodes that are reached by randomly chosen edge after the
disruptive event

H1(x) = s0 + xF1(H1(x))

= 1 − F1(1) + xF1(H1(x)) (8)

It can be easily verified that Eq. (8) leads to the correct
expressions of s0, s1,..., sn by applying Eq. (2).



Derivation of H0(x)
Along similar lines we can obtain the generating function
H0(x) of the distribution of the component size to which a
randomly chosen node belongs to. The probability that a
randomly chosen node belongs to a component of size zero
after the disruptive event is 1−F0(1). Similarly the probabil-
ity of a randomly chosen node to belong to some nonzero size
component depends on the size of the components where all
its first neighbors belong to. Hence the expression for H0(x)
takes the form:

H0(x) = (1 − F0(1)) + xF0(H1(x)) (9)

Finally from Eq. (9) and recalling the definition of average
given by Eq. (3), we can obtain the average size of the
components:

H ′
0(1) = 〈s〉 = F0(1) +

F ′
0(1)F1(1)

1 − F ′
1(1)

(10)

As mentioned above, we are interested in knowing the thresh-
old at which the average cluster size becomes infinite. Clearly
Eq. (10) diverges when 1−F ′

1(1) = 0 ⇒ F ′
1(1) = 1, and this

critical condition sets the threshold between finite and infi-
nite cluster sizes2. Finally replacing F ′

1(1) by its definition
(Eq. (7)), we obtain a critical condition for giant component
formation

∞
X

k=0

kpk(kqk − qk − 1) = 0 (11)

The significance of the Eq. (11) lies in the fact that
it states the critical condition for the stability of gi-
ant component with respect to any type of graphs
(characterized by pk) undergoing any type of failure
or attack (characterized by qk). Formulating this gen-
eral formula is one of the primary contributions of the paper.
Using this formalism, we investigate the stability situation
of various superpeer networks.

3. ENVIRONMENT DEFINITION
In this section, we formally model the superpeer networks

and different kinds of attacks. The stability of the net-
work will be analytically derived based on the defined model.
In theory, the stability is presented in terms of percolation
threshold. To reproduce that effect in simulation, the sta-
bility metric is defined in detail.

3.1 Modeling superpeer networks
The different types of superpeer networks can be modeled

using the uniform framework of probability distribution pk,
where pk is the probability that a randomly chosen node has
degree k. In this paper, we consider a simple model of super-
peer networks - strict bimodal structure. We believe strict
bimodal structure is simple enough to understand; at the
same time it captures the essence of commercial superpeer

2We present an intuitive explanation for this critical con-
dition of giant component disruption. F ′

1(1) represents the
average outgoing links of the first neighbor of a randomly
chosen node. After the node removal process, if this average
number of outgoing links is more than one, then the network
should percolate, i.e. it is possible to find an infinite cluster
of connected nodes. But if it is less than one, then it is very
likely that by following a random edge, we land in a node
that has no outgoing link and thus no chance of reaching
another existing node.

networks. In strict bimodal structure, superpeer networks
can be modeled by bimodal degree distribution where a large
fraction (r) of peer nodes with small degree kl are connected
with superpeers and few superpeer nodes (1 − r) with high
degree km are connected to each other. Therefore only two
separate degrees are allowed in this kind of network. For-
mally

pk > 0 if k = kl, km; pk = 0 otherwise

kl & km are degrees of peers and superpeers respectively.
Therefore pkl

= r and pkm = (1 − r).

3.2 Different kinds of attack models
The attack is modeled in terms of removal of nodes from

the network. As defined in the previous section, let qk be
the probability that a vertex of degree k be present in the
network after the removal of a fraction of nodes. In our
framework qk is used to specify two kinds of attacks which
we consider in this paper namely deterministic attack and
degree dependent attack. In the deterministic attack, super-
peers are targeted before attacking any peer. The peers are
attacked only after removal of all the superpeers from the
network. In the degree dependent attack, both peers and
superpeers are attacked simultaneously, but the probability
of superpeers being attacked is much more than that of the
peers. Each of the attack is quantitatively defined next.

• In the deterministic attack, the nodes having high de-
grees are progressively removed. Formally

qk = 0 when k > kmax

0 ≤ qk < 1 when k = kmax

qk = 1 when k < kmax.

This removes all the nodes from the network with de-
gree greater than kmax and a fraction of nodes having
degree kmax.

• In the degree dependent attack, the nodes having higher
degrees are more likely to be removed. Therefore prob-
ability of removal of a node having degree k is propor-
tional to kγ where γ ≥ 0 is a real number. With proper
normalization fk = kγ

C
where C is a normalizing con-

stant. Hence the fraction of nodes having degree k
which survives after this kind of attack is qk = (1− kγ

C
).

3.3 Stability metric
The stability of superpeer networks are primarily mea-

sured in terms of a certain fraction of nodes (fc) called per-
colation threshold [8], removal of which disintegrates the
network into large number of small, disconnected compo-
nents. Below that threshold, there exists a connected com-
ponent which spans the entire network. This connected com-
ponent is also termed as the giant component. The value of
the percolation threshold fc theoretically signifies the sta-
bility of the network, higher values indicate greater stability
against attack.

We take cue from condensation theory used by physicists
to develop the metric to measure the percolation threshold
experimentally [5, 10]. During the experiment, we remove
a fraction of nodes ft from the network in step t and check
whether we reach the percolation point. If not then in the
next step t + 1 we remove ft+1 = ft + ε fraction of nodes
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(a) Initial component size
distribution (only single gi-
ant component of size 500).
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(c) Component size distri-
bution at percolation point

Figure 2: The above plots represent the change in the component size distribution during percolation process
and indicates the percolation point.

from the network and check again. This process is contin-
ued until we reach the percolation point. After each step,
we find out the status of the network in terms of the number
and size of the components formed. We collect the statistics
of s and ns where s denotes size of the components and ns,
number of components of size s and define the normalized
component size distribution CSt(s) = sns/

P

s
sns at step

t. We compute CSt(s) for all the steps starting from t = 1
and observe the behavior of CSt(s) after each step (Fig. 2).
Initially the CSt(s) shows unimodal character confirming a
single connected component (Fig. 2(a)) or bimodal charac-
ter (Fig. 2(b)) confirming a large component along with a
set of small components. As the fraction of nodes removed
from the network increases gradually, the network disinte-
grates into several components. This leads to the change
in the behavior of CSt(s) whereby at a particular step tn,
CStn(s) becomes monotonically decreasing function indicat-
ing tn as the percolation point (Fig. 2(c)). Therefore tn is
considered as the time step where percolation occurs and
the total fraction of nodes removed at that step ftn specifies
the percolation threshold.

3.4 Network Generation
In our simulation, the superpeer network is represented by

a simple undirected graph. In order to generate the topol-
ogy, every node is assigned a degree according to the bimodal
degree distribution. Thereafter the edges are generated us-
ing the “matching method” [7]. Some of the edges are then
rewired using “switching method” to generate sufficient ran-
domness in the graph [6]. In our experiment, we simulate the
superpeer networks by generating graphs with 5000 nodes.

4. STABILITY OF SUPERPEER NETWORKS
AGAINST ATTACK

In this section, we formally analyze the effect of attacks
on the superpeer networks. The theoretically derived results
are verified with the help of simulation. The two kinds of
attacks, namely deterministic attack and degree dependent
attack are discussed separately.

4.1 Stability analysis against deterministic at-
tack

Two cases may arise in the deterministic attack

Case 1 The removal of a fraction of superpeers is sufficient to
disintegrate the network.

Case 2 The removal of all the superpeers is not sufficient to
disintegrate the network. Therefore we need to remove
some of the peer nodes along with the superpeers.

We analyze these two cases separately with the help of our
analytical framework. From Eq. (11) the critical condition
for the stability of the superpeer networks can be rewritten
as

X

k=kl,km

k(k − 1)pkqk = 〈k〉

The equation can be further expanded as below to differen-
tiate between peers and superpeers

X

k=kl

k(k − 1)pkqk +
X

k=km

k(k − 1)pkqk = 〈k〉 (12)

Case 1: In this case, removal of a fraction of superpeers is
sufficient to disintegrate the network. If fsp is the critical
fraction of superpeer nodes, removal of which disintegrates
the giant component then qk = 1 for k = kl and qk = 1−fsp

for k = km. Hence according to Eq. (12),
X

k=kl

k(k − 1)pk +
X

k=km

k(k − 1)pk(1 − fsp) = 〈k〉

⇒ fsp = 1 −
〈k〉 − kl(kl − 1)pkl

km(km − 1)pkm

As the fraction of superpeer nodes in the network is (1− r),
then percolation threshold for case 1 becomes ftar = (1 −
r) × fsp

⇒ ftar = (1 − r)

„

1 −
〈k〉 − kl(kl − 1)r

km(km − 1)(1 − r)

«

(13)

Case 2: Here we have to remove fp fraction of peer nodes
along with all the superpeers to breakdown the network.
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of deterministic attack (Comparative study between
theoretical and simulation results).

Therefore qk = 1 − fp for k = kl and qk = 0 for k = km.
Hence according to Eq. (12),

X

k=kl

k(k − 1)pk(1 − fp) = 〈k〉

⇒ fp = 1 −
〈k〉

kl(kl − 1)pkl

Therefore the total fraction of nodes required to be removed
to disintegrate the network for case 2 becomes ftar = rfp +
(1 − r).

⇒ ftar = r

„

1 −
〈k〉

kl(kl − 1)r

«

+ (1 − r) (14)

Transition point: The transition from case 1 to case 2
can be easily marked by observing the value of the percola-
tion threshold ftar. While calculating using Eq. (13) (case
1), if the value of ftar exceeds the fraction of superpeers
in the network (1 − r), it indicates that removal of all the
superpeers is not sufficient to disrupt the network. Hence
subsequently we enter into case 2 and start using Eq. (14)
to find the percolation threshold.
During our simulation, initially only high degree superpeer
nodes in the network are removed gradually until the per-
colation point is reached. If the percolation point is not
reached even after removing of all the superpeers, we remove
a fraction of peers along with the superpeers to breakdown
the network. We perform each experiment for 500 times
and take the average of the percolation threshold obtained
in each of them. Superpeer networks with average degree
〈k〉 = 10 and superpeer degree km = 50 are considered for
case study. We increase the peer degree kl gradually (the
peer fraction changes accordingly) and observe the change
in the percolation threshold ftar (Fig. 3).
Observations:
a. In networks with peer degree kl = 1, 2 and 3, the re-
moval of only a fraction of superpeers causes breakdown of
the network. Moreover, the increase of peer degree from 1
to 2 and 3 further reduces the fraction of superpeers in the
network which results networks with kl = 2, 3 more vulner-
able. Normal wisdom would expect the attack vulnerability
of the network to decrease with the decrease of fraction of
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Figure 4: The plot represents the impact of peer
contribution PrC upon the stability of the network
against deterministic attack.

superpeers. But the opposite happens here. The reason is in
this zone (at kl = 2, 3), although peers have a larger share in
the network, yet it is not large enough to form effective con-
nections within themselves. Therefore the stability of the
network is still entirely dependent on the high degree super-
peers, hence now attacking even a smaller fraction breaks
down the network.
b. However as peer degree increases beyond 4, a fraction
of peers is required to be removed even after removal of all
the superpeers to dissolve the network. This is because the
high degree peers connect among themselves and they are
not entirely dependent on superpeers for connectivity. This
results in the steep increase of stability of the network with
peer degree kl ≥ 5.
Peer contribution: In addition to peer degree, we study
the stability of the network with respect to a new metric
namely ‘peer contribution’. The peer contribution controls
the total bandwidth contributed by the peers which deter-
mines the amount of influence superpeer nodes exerts on the
network. The peer contribution PrC is defined by two pa-
rameters - peer degree and fraction of peers in the network.
Hence PrC = rkl

〈k〉
where 〈k〉 = rkl + (1 − r)km. We gener-

ate three set of networks having peer degree kl = 1, 3 and
5 respectively for individual peer contribution PrC (0.1 ≤
PrC ≤ 0.9). In order to do that, we choose fraction of peers
r uniformly at random and adjust superpeer degree km ac-
cordingly to keep the peer contribution PrC and peer degree
kl constant. This procedure is followed to generate one hun-
dred networks for each set. We restrict superpeer degree
km ≥ 20 in order to generate realistic superpeer networks.
We theoretically compute the fraction of peers required to
be removed fp and percolation threshold ftar for individ-
ual network and calculate their average for individual kl.
This expected fraction of peers required to be removed fp

and percolation threshold ftar is plotted with respect to the
peer contribution PrC (Fig. 4).
Observations:
a. It can be observed from Fig. 4 that superpeer networks
having peer degree kl = 1 can be disintegrated without at-
tacking peers at all for any peer contribution PrC . This
kind of attack belongs to case 1 of the deterministic attack.
b. The peers of the superpeer networks having peer con-
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Figure 5: The above plots illustrate the impact of peer degree upon the stability of superpeer networks in
face of degree dependent attack. The fraction of peers r is adjusted with peer degree kl to keep the average
degree 〈k〉 fixed.

tribution PrC ≤ 0.2 does not have any impact upon the
stability of the network. This is true for low as well as high
degree peers.
c. The influence of high degree peers increases with the in-
crease of peer contribution. At PrC = 0.3, a fraction of
peers is required to be removed to disintegrate the networks
having peer degree kl = 5. The impact of high degree peers
upon the stability of the network becomes more eminent as
peer contribution PrC ≥ 0.5. In this region, a significant
fraction of peers is required to be removed for all the net-
works having peer degree kl = 3, 5. This kind of attack
belongs to case 2 of the deterministic attack.
d. Increase in peer contribution PrC ≥ 0.4 brings the per-
colation threshold ftar and fraction of peers needed to be
attacked fp close to each other which implies that stability
of these networks is primarily dependent upon the stability
of the peers.
e. It is interesting to observe that peer contribution PrC

has two opposite effects upon stability of the networks de-
pending on the peer degree kl. The percolation threshold
ftar increases with peer contribution PrC for kl = 3, 5, but
gradually reduces for kl = 1. The reason behind this is,
stability of the networks with peer degree kl = 1 is entirely
dependent upon superpeers. Since increase in peer contribu-
tion decreases superpeer contribution, it decreases stability
of these networks also. On the other hand, peers having de-
gree kl ≥ 3 are strongly connected among themselves, hence
stability of these networks is more dependent upon peer con-
tribution. Hence percolation threshold ftar increases with
peer contribution PrC .

4.2 Stability analysis against degree dependent
attack

In this kind of attack, probability of removal of a node of
degree k is directly proportional to kγ where γ ≥ 0 is a real
number. Hence with proper normalization, fk = kγ

C
where

C is the normalizing constant. Therefore probability of sur-
vival of a node having degree k after a degree dependent

attack is

qk = 1 −
kγ

C

As mentioned in bimodal degree distribution, let r be the
fraction of peers with degree kl and rest be superpeers of
degree km. If 〈k〉 is the average degree of the network then

pkl
= r =

km − 〈k〉

km − kl

pkm = (1 − r) =
〈k〉 − kl

km − kl

From Eq. (11) the critical condition for the stability of the
giant component can be rewritten as

X

k=kl,km

k(k − 1)pkqk = 〈k〉

⇒ 〈kγ+2〉 − 〈kγ+1〉 = C(〈k2〉 − 2〈k〉)

⇒ rkγ+1

l (kl − 1) + (1 − r)kγ+1
m (km − 1) =

C(〈k〉(km + kl) − km − 2〈k〉) (15)

where θth moment of the bimodal degree distribution can be
written as 〈kθ〉 = kθ

mpkm + kθ
l pkl

. The solution of the Eq.
(15) yields a particular value of γ, say γc (termed as critical
exponent) and the percolation threshold becomes

fc = r
kγc

l

C
+ (1 − r)

kγc
m

C
(16)

In order to evaluate the disintegration point, proper assign-
ment of the value of normalizing constant C is necessary.
Since fk should be ≤ 1 ∀k, hence the minimum value of
C = kγ

m. Assuming this condition, the Eq. (15) becomes

rkγ+1

l (kl − 1) + (1 − r)kγ+1
m (km − 1) ≥

kγ
m(〈k〉(km + kl) − km − 2〈k〉) (17)

The solution set of the above inequality (say Sγc ) can be
bounded (where 0 ≤ γc ≤ γbd

c ) or unbounded (where 0 ≤
γc ≤ +∞). Each critical exponent γc ∈ Sγc specifies the
fraction of peers and superpeers required to be removed to
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Figure 6: The above plots mainly illustrate case 1 of degree dependent attack. The superpeer degree km is
adjusted with the change of superpeer fraction to keep the average degree fixed.

breakdown the network. Assuming equality of Eq. (17) and
hence obtaining minimum value of C, each γc results in the
corresponding normalizing constant

Cγc =
rkγc+1

l (kl − 1) + (1 − r)kγc+1
m (km − 1)

〈k〉(km + kl) − km − 2〈k〉
(18)

Hence the fraction of peers and superpeers needed to be
attacked

fγc
p =

kγc

l

Cγc

fγc
sp =

kγc
m

Cγc

(19)

respectively and the total fraction of nodes removed fγc
c is

obtained from Eq. (16). The fγc
c depends upon the critical

exponent γc ∈ Sγc and normalizing constant Cγc . The na-
ture of the solution set Sγc has profound impact upon the
behavior of fγc

p , fγc
sp and as well as fγc

c . The breakdown of
the network can be due to one of the three situations noted
below

1. The removal of all the superpeers along with a fraction
of peers.

2. The removal of only a fraction of superpeers.

3. The removal of some fraction of both superpeers and
peers.

Each situation arises due to the following reasons
1: Networks having a bounded solution set Sγc where 0 ≤
γc ≤ γbd

c exhibit this kind of behavior at the maximum value
of the solution γc = γbd

c . Here the fraction of superpeers

removed becomes f
γbd

c
sp = 1 and fraction of peers removed

f
γbd

c
p =

k
γbd

c
l

C
γbd

c

.

2: Some networks have an open solution set Sγc where 0 ≤
γc ≤ +∞. At γc → ∞, fγc

p converges to 0 and fγc
sp converges

to some x where 0 < x < 1.
3: Intermediate critical exponents γc ∈ Sγc signifies the
fractional removal of both peers and superpeers.

One of the major contributions of this paper is to provide
an uniform attack framework, which is able to successfully
capture all the important features of the deterministic at-
tack3 as well as provide flexibility to attack the nodes in a
more suitable way. Next we perform a theoretical case study
that justifies our claim. We show the impact of peer degrees
upon the stability of the networks against the degree depen-
dent attack (Fig. 5). We consider superpeer networks with
two superpeer degrees km = 25, 50 and fixed average degree
〈k〉 = 10. The change in peer contribution PrC due to the
change of peer degree kl is shown in Fig. 5(a). In Fig 5(b),
we show the behavior of boundary critical exponent γbd

c with
the change of peer degree. The nonexistence of γbd

c implies
the unbounded solution set for that particular network. Fig.
5(c) describes the fraction of peers and superpeers required
to be removed (fp and fsp respectively) as well as percola-
tion threshold (fc) for various peer degrees.
Observations:
a. The peer contribution PrC increases with superpeer de-
gree km for a particular peer degree kl (Fig. 5(a)). In order
to keep the average degree and peer degree constant, the
network with higher superpeer degree results higher frac-
tion of peers which increases the peer contribution.
b. Fig. 5(b) shows that the solution set of inequality (17) re-
mains unbounded for the networks having peer degree kl ≤ 4
with superpeer degree km = 25 and peer degree kl ≤ 3 with
superpeer degree km = 50. This implies that removal of only
a fraction of superpeers disintegrate these networks (Fig.
5(c)). This kind of attack resembles case 1 of the determin-
istic attack. Apart from the mathematical conclusion, we
explain the phenomena from the point of relative contribu-
tion of peers and superpeers in the network. The low peer
degree results in low peer contribution (Fig. 5(a)) and high
superpeer contribution. Hence removal of only a fraction of
superpeers is sufficient to breakdown these networks.

3Case 1 and case 2 of the degree dependent attack resembles
qualitatively as well as quantitatively with the case 2 and
case 1 of the deterministic attack respectively.



c. The gradual increase in peer degree increases the peer
contribution and at kl = 5 (km = 25), the high peer con-
tribution ensures the necessity to remove a fraction of them
to breakdown the network (Fig. 5(c)). This kind of attack
resembles case 2 of the deterministic attack. The inequal-
ity (17) gets a bounded solution set for the network (Fig.
5(b)). Same thing happens for network with superpeer de-
gree km = 50 at peer degree kl = 4. Note that the peer
contributions get almost same values for these two networks
(Fig. 5(a)). This ensures that peer contribution has pro-
found impact upon the stability of the network specially
with the networks having high peer degree kl.
Next we illustrate the different categories of degree depen-
dent attack with the help of individual case study.
Case study 1: First we consider superpeer networks with
peer degrees kl = 3, 4 average degree 〈k〉 = 5 and theoreti-
cally study the stability of the networks due to the change
in the fraction of superpeers. The results of the case study
are noted in Fig. 6. It can be observed that the solution
set of these networks upto a threshold superpeer fraction
spth, (spth = 0.19 and 0.41 for kl = 3 and kl = 4 respec-
tively) remains bounded and the behavior of the boundary
critical exponent γbd

c due to the change of fraction of super-
peers is shown in Fig. 6(a). The fraction of superpeers and
peers needed to be attacked for these networks is presented
in Fig. 6(b). These networks exhibit the properties of case 1
of degree dependent attack hence the removal of all the su-
perpeers is necessary to disintegrate the network along with
a fraction of peers. Fig. 6(b) also represents some instances
of case 2 where only some fraction of superpeers are needed
to be removed.
Observations:
a. Impact upon the fraction of peers removed
The increase of superpeer fraction slowly increases γbd

c (Fig.
6(a)) which in turn gradually decreases the fraction of peers

removed f
γbd

c
p (Fig. 6(b)). The amount of removal of peers

also depends upon the peer degree kl. The high degree peers
strongly connect among themselves to enhance their influ-

ence upon the stability, hence f
γbd

c
p gets higher values for

these networks.
b. Impact upon percolation threshold
Let the percolation threshold for the networks having su-
perpeer fraction sp1(= 1 − r1) and sp2(= 1 − r2) (where

sp1 < sp2) be f
γbd

c
c1 and f

γbd
c

c2 respectively. Hence the perco-
lation threshold for these two networks are

f
γbd

c
c1(2)

= r1(2)
f

γbd
c

p1(2)
+ (1 − r1(2)

)

Therefore the change in the percolation threshold when the
superpeer fraction changes from sp1 to sp2 is

4f
γbd

c
c = r1f

γbd
c

p1 − r2f
γbd

c
p2 + ((1 − r1) − (1 − r2))

= 4
“

rf
γbd

c
p

”

+ 4(1 − r) (20)

The Eq. (20) shows that the change of percolation thresh-

old f
γbd

c
c becomes influenced by two opposite forces; in one

hand the increase of superpeer fraction in the network makes
4sp = 4(1 − r) < 0. On the other hand, the fraction of
peers in the network as well as fraction of them required to

be removed decreases (Fig. 6(b)) which makes 4
“

rf
γbd

c
p

”

>

0. Depending upon the weightage of influence, f
γbd

c
c either
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Figure 7: The above plot illustrates the case 2 of
degree dependent attack.

decreases (kl = 3) or increases (kl = 4) slowly when the
fraction of superpeers is less than spth.
Case study 2: We illustrate the degree dependent attack
where removal of only a fraction of superpeers is sufficient to
disintegrate the network. The case study is performed with
a network having superpeer degree km = 25, average degree
〈k〉 = 5 and peer degree kl = 2 and results are validated with
the help of simulation. The unbounded solution set Sγc of
the network signifies that it belongs to case 2 of the de-
gree dependent attack. We plot the theoretically calculated
(Eq. (18), (19)) fraction of peers and superpeers required
to be removed to breakdown the network for each critical
exponent γc (Fig. 7). In simulation, we initially remove
a fraction of superpeers fγc

sp (calculated theoretically) and
then start removing peers gradually to breakdown the net-
work. The minimum peer fraction, removal of which causes
the breakdown of the network produces simulated fγc

p . We
perform the simulation on graphs of 5000 nodes and repeat
each experiment for 500 times and take the average of the
removed peer fraction. We compare simulated result with
theoretically calculated fγc

p (Fig. 7).
Observations:
a. The fraction of peers removed gradually decreases with
the increase of critical exponent γc which in turn decreases
the value of fγc

c . As γc → ∞, the fγc
p → 0 with fγc

sp → x
(where 0 < x < 1) and eventually fγc

sp , fγc
c both reach some

steady value. It signifies that the removal of only a fraction
of superpeers is sufficient to breakdown the network (Fig.
7).
b. The nonexistence of the boundary critical exponent γbd

c

for the networks having more than the threshold superpeer
fraction spth, signifies that the solution set of these networks
is unbounded and that the percolation process belongs to
case 2 (Fig 6(a)). It can be observed that fraction of peers
required to be removed for these networks becomes zero (Fig.
6(b)) and removal of only a fraction of superpeers disinte-
grates the network.
c. It is important to note that removal of only a fraction
of superpeers is sufficient to disintegrate any network with
peer degree kl = 1, 2, irrespective of superpeer degree and
its fraction. Mathematically it can be explained as follows

1. The inequality (17) becomes independent of γ as kl =
1. Hence at kl = 1, the solution set Sγc becomes un-
bounded which implies that removal of only a fraction
of superpeers causes breakdown of the network.
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Figure 8: The above plot illustrates the case 3 of the
degree dependent attack.

2. For kl = 2, 2kl ≥ k2
l

⇒ 2rkl ≥ rk2
l

⇒ (1 − r)km + 2rkl − rk2
l ≥ 0

⇒ (1 − r)km(km − 1) ≥ 〈k〉(km + kl) − km − 2〈k〉

⇒ rkγ+1

l (kl − 1) + (1 − r)kγ+1
m (km − 1) ≥

kγ
m(〈k〉(km + kl) − km − 2〈k〉) (21)

Since the above inequality holds for any values of γ, it
indicates that any network with kl = 2 has unbounded
solution set.

Case study 3: Degree dependent attack also allows to dis-
integrate the network by removing a fraction of both peers
and superpeers (designated as case 3 of degree dependent
attack). We investigate the amount of peers and superpeers
needed to be removed to dissolve the network due to the
change in γc. We deduce the results for a network having
superpeer degree km = 25, average degree 〈k〉 = 5 and peer
degree kl = 3 and results are validated with the help of sim-
ulation (Fig. 8). The simulation set up is same as described
for case 2 of the degree dependent attack.
Observations:
a. Our analytical results show that this network has bounded
solution set Sγc of the inequality (17) and all the criti-
cal exponents γc less than the boundary critical exponent
γbd

c = 1.171 results in this kind of breakdown. It is evi-
dent from both theoretical and simulation results that the
removal of any combination of (fγc

p , fγc
sp ) (obtained from the

curves in Fig. 8) where 0 ≤ γc < γbd
c , results in the break-

down of the network.
b. Networks with unbounded solution set (Fig 7) has finite
values of γc (here γc < 1.5 (approx)) where the removal of
both fraction of peers and superpeers are necessary to dis-
integrate the network.

5. CONCLUSION
In this paper, we have developed an analytical framework

to measure the stability of the superpeer networks against
attack. The wide range of attacks have been modeled in two
different ways, deterministic as well as in a more general de-
gree dependent manner. We have applied those models in
our analytical framework to measure the stability of super-
peers networks. In the deterministic attack, networks having
peer degree kl ≤ 3 are very much vulnerable and removal of

only a fraction of superpeers causes the breakdown the net-
work. But as the peer degree increases, the stability of the
network increases as well. In the degree dependent attack
we have formulated a critical condition whose solution set
provides the critical exponent γc. The peers and superpeers
required to be removed is dependent upon this critical expo-
nent γc and normalizing constant Cγc . The degree depen-
dent attack model provides us with a more general scenario
where various situations can be obtained only by changing
the parameter γ. We believe that this can be further ex-
tended to understand the effect of churn in the network as
well as combined function of both churn and attack.
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