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Abstract. The paper reports a scalable evolutionary design for pat-
tern recognition using Multiple Attractor Cellular Automata (MACA).
MACA helps to impart non-linearity in the classifier using Hamming dis-
tance based attractors. Isomorphism in MACA was exploited to make
the method scalable to large classification problems involving non-linear
boundaries. Extensive experimentation was performed on datasets with
different topologies to establish the efficacy of the proposed method as
compared to existing popular approaches like support vector machines.
The classifier was applied to satellite image analysis problem. Exper-
iments on different types of data sets were performed to discover the
classifier’s feature selection capabilities.
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1 Introduction

The classification problem may be again viewed as partitioning the feature space
and mapping the corresponding regions to different classes. Machine learning
methods provide techniques to determine the boundaries of the partitions in the
features space and hence help in learning the classes. The most general techniques
are based on Euclidean metric nearest neighbor rule or linear discrimination
which are essentially linear classifiers and are not suitable for all problems. A
data dependent non-linear metric is more versatile as it helps in capturing and
imparting non-linearity to classifiers inherently.

Multiple attractor cellular automata (MACA), a special class of cellular
automata has the inherent property of generating a non-linear partitioning of
the feature space based on Hamming distance metrics [2].

In our present work, we show the results of a comprehensive set of experi-
ments on MACA based classifier. We demonstrate that identification of isomor-
phic MACA leads to low computational complexity as compared to the scheme
in [2, 3]. Lowering the complexity has helped us in making the classifier scalable.
We have studied the performance of our classification scheme on a number of
real life application problems. A number of interesting phenomena were observed
which provides insight for designing more efficient classifiers. The basic design
of the MACA is stated in the next section.



2 Multiple Attractor Cellular Automata (MACA)
Classifier

A MACA belongs to the class of Linear CA [1, 2]. In this section, we state
the basic features of the linear CA. The classifier and it’s realization through
evolutionary algorithms is stated next.

2.1 Characterization of a Linear CA

An n-cell one dimensional cellular automata (CA) is characterized by a linear
operator [T ]n×n matrix. T is referred to as the characteristic matrix of the cel-
lular automata. The ith row of T corresponds to the neighborhood relation of
the ith cell, where

Tij =
{

1, if next state of the ith cell depends on the present state of jth cell
0, otherwise.

Since the CA is restricted to three neighborhood dependency, T [i, j] can have
non-zero values for j = (i−1), i, (i+1). Thus, T becomes a tri-diagonal matrix.
The next state st+1 of a CA is given by

st+1 = T · st that is, st+p = T p · st
The complete characterization of the CA is reported in [1]. If all the states

in the state transition diagram of a CA lie in some cycles, it is a group CA,
otherwise it is a non-group CA. In this paper we concentrate on MACA which
is a special class of non-group CA.

2.2 Multiple Attractor Cellular Automata

The state transition graph of an MACA consists of a number of cyclic and
non-cyclic states. The set of non-cyclic states of an MACA forms inverted
trees rooted at the cyclic states. The cycles are referred to as attractors. Fig.1
depicts the state transition diagram of a 5-cell MACA with two attractors
{00000,00100} having self loop.

With reference to the state transition diagram of a CA, the depth d of the
CA is the number of edges between a non-reachable state and the attractor. The
depth d of the 5-cell MACA of Fig.1 is 2.

The detailed characterization of MACA is available in [1]. A few fundamen-
tal results for an n-cell MACA having k number of attractors is next outlined.

Result I: The characteristic polynomial of the MACA is xn−m(1 + x)m, where
m = log2(k).

Result II: The characteristic polynomial noted above can be also written in



Fig. 1. State transition diagram of a 5-cell MACA with Characteristic matrix T and
Rule Vector < 102, 60, 204, 102, 60 >

elementary divisor form as
(1 + x)(1 + x) · ·m times xd1xd2 · ·xdp where d1 ≥ d2 · · ≥ dp and d1 + d2 · · · ·+
dp = n−m.

Result III: The minimal polynomial of an MACA is xd1(1 + x), where depth
= d1.

Definition 1. [1] An m-bit field of an n-bit pattern set is said to be pseudo-
exhaustive if all possible 2m patterns appear in the set.

Theorem 1. [1] In an n cell MACA with k = 2m attractors, there exists
m-bit positions at which the attractors give pseudo-exhaustive 2m patterns.

Theorem 2. [1] The modulo-2 sum of two states is the non-zero predecessor of
0-state (pattern with all 0’s) if and only if the two states lie in the same MACA
basin.

Theorem 3. Given MACA T, and a state q, T d · q yields the attractor of the
basin which the state belongs to.

The example MACA of Fig.1 is used to illustrate the above results.

Example 1 – It is a 5-cell MACA having 2 number of attractors and the
depth of the MACA is 2.



– Result I: The characteristic polynomial is x4 · (1 +x). Therefore, m=1. This
is consistent with the result in the Fig.1 where attractor(k) is 2.

– Result II: The characteristic polynomial in elementary divisor form is x4 ·
(1 + x) · x2.

– Result III: The minimal polynomial is x2 · (1 + x).
– Result of Theorem 1: In Fig.1, only one significant bit positions constitute

the PEF .
– Result of Theorem 2: We take an attractor 00100 and any two states 11111,

11101 of the attractor basin. The modulo-2 sum of these two patterns is 00010

which is a state in 0 − basin. By contrast, if we take two states 00001 and
10100 belonging to two different attractor basins 00000 and 00100 respectively,
their modulo-2 sum is 10101 which is a state in a non-zero attractor (00100)

basin.
– Result of Theorem 3: We take a state 10001. The depth (d) of the MACA is

2. Hence, Multiplying T 2·[10001] we get 00000 which is the attractor of the
basin in which the state 10001 lies.
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Fig. 2. MACA based Classification Strategy

2.3 Classification Technique Using MACA

For an ideal classifier, to distinguish between two classes, we would need one bit.
A k-attractor two class classifier needs log2(k) bits. The pseudo-exhaustive field
(PEF ) of an attractor provides the pointer to the class of states in the attractor
basin. In order to identify the class of a state ℘, the MACA is initialized with
℘ and operated for maximum of (depth) d number of cycles till it reaches an
attractor. Next, the PEF bits can be extracted (as noted in [1]) to identify the
class of ℘. In general, depth is defined as the number of time steps an MACA
needs to reach an attractor state when it is initialized with a non-reachable state
as seed (Theorem 3).



MACA based Binary Classifier The design of the MACA based classifier
for two pattern sets P1 and P2 should ensure that elements of one class (say
P1) are covered by a set of attractor basins that do not include any member
from the class P2. Any two patterns a ∈ P1 and b ∈ P2 should fall in different
attractor basins. According to Theorem 2, the pattern derived out of modulo-2
sum of a and b (a ⊕ b) should lie in a non-zero attractor basin. Let X be a set
formed from modulo-2 sum of each member of P1 with each member of P2 that
is, X = {xl | xl = (ai ∈ P1) ⊕ (bj ∈ P2) ∀i,j}. Therefore, all members of
X should fall in non-zero basin. This implies that the following set of equations
should be satisfied.

T d ·X 6= 0 (1)

where T is a valid MACA to be employed for designing two class classifier.
Hence, what we need is a scheme to get the correct MACA.

Hence, as shown in Fig 2, satisfying the above criteria, the MACA is found
/ learned (in our case searched) using a GA evolution scheme proposed in [2].
Before we look into the merits and demerits of the proposed GA based evolution
scheme, we introduce the pseudo-chromosome format and elaborate the steps of
synthesis of the T matrix from the pseudo-chromosome. The former is used to
represent the MACA in the scheme in [2].

Pseudo-Chromosome Format It is a method of representing an MACA with
respect to the sequence in which its xdi ′s and (1+x)′s are arranged. It is a string
of n bits where

– di positions occupied by a xdi is represented by di followed by (di− 1) zeros
(for example, x3 = [300]), and

– (1 + x) is represented by -1.

The pseudo-chromosome format of the MACA of Fig. 1 is illustrated in Fig.
3. T matrix being the generic way to represent an MACA can be synthesized
from the Pseudo-Chromosome as mentioned in the next section.

Fig. 3. MACA in Pseudo-Chromosome Format. Characteristic Poynomial x2(1 + x)x2

Synthesis of T matrix from Pseudo-Chromosome From Result II of Sec-
tion 2.2, the elementary divisor form of MACA is (1+x)(1+x)··m times xd1xd2 ·
·xdp & d1 + d2 · · ·+dp = (n − m), where the number of (1 + x) determines the
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number of attractors. Each elementary divisor (φi(x)) can be converted to a CA
[1]. A tri-diagonal T matrix with characteristic polynomial φi(x) is accordingly
synthesized. Let Ti matrices correspond to elementary divisors xdi (it will be a
di × di matrix) and Tj matrices correspond to each elementary divisors (x+ 1).
If Tis and Tjs are randomly arranged in block diagonal form, the characteristic
polynomial of the resultant T is xn−m · (1 + x)m and the minimal polynomial is
xdp · (1 + x) and it generates the MACA [1].
We illustrate the synthesis of the T matrix using the MACA example presented
in Fig. 1.

Example 1. If we take Pseudo-Chromosome shown in Fig. 3 and try to regen-
erate the T matrix of the MACA using the Method I as shown in Fig. 4, we
obtain the T matrix and the basin distribution as shown in Fig. 5. However, if
we took Method III followed by Method II as shown in Fig. 4, we obtain the
T matrix and the basin distribution as shown in Fig. 5. Here, we notice a few
interesting observations.

1. The attractors of the non-Zero basins obtained in both the cases are different.
2. However, the distribution of patterns in the non-Zero basins obtained in both

the cases are same and they differ only in their position in the basin tree.
3. The PEF bit positions in both the cases remain the same.

The following observations have been made across various MACA’s and
hence found to be true. This shows that the pattern classes shall remain same
irrespective of the using Method I or a combination of Method I, II and III. The
position of the PEF bit too remains the same and hence we can conclude that
the usage of method II and III simply causes redundancy of information.

Having discussed about the Pseudo-Chromosome Format and it’s conversion
to T matrix, we discuss the GA based evolution scheme[2] next.



Fig. 5. An Example showing the effect of the solely using Method I during synthesis

2.4 GA based Evolution Scheme

TheGA based evolution scheme [2], takes a pool of randomly generatedMACA’s
uniquely characterized by their T matrix and evolves the desired T matrix of
the MACA. The evolution is guided by the fitness function[2] on the training
samples. The former is based on the criteria mentioned in the Section 2.3. The
training samples are the patterns or more specifically the states that the classi-
fication scheme needs to learn. The fitness function calculates the classification
capacity of the MACA corresponding to the T matrix.

We now perform a complexity analysis of this scheme. Assuming that there
are k training samples on which the MACA of 2m attractors is to be learnt.
The T matrix corresponding to the MACA will be of the size n × n while the
sample is of the size n. The fitness function tries to identify the attractors (refer
subsection 2.2) to which the samples (patterns/states) belong. For this, each and
every sample has to be multiplied by the T matrix d times to land in the attractor
(refer Theorem 3) to ascertain it’s attractor. The complexity of computing the
attractor given a T matrix and a sample is O(n ·d). Doing so for all the training
samples in O(n ·d ·k). Once the attractors of all the samples are ascertained, the
samples can be grouped into their respective classes in O(2m · k) by comparison
of attractors corresponding to each of samples against the 2m attractors. If there
are p MACA’s in the pool (population) then the total complexity of the GA
based scheme is p · (O(2m · k) + O(n · d · k)). Apart from this space complexity
of p · (O(n2) +O(2m)) for storing each of the MACA’s and their corresponding



Fig. 6. An Example showing the effect of the using Method II and III during synthesis

attractors in additional to O(n·k) space required to store the samples. The space
and time complexities of the scheme are given in Table 2.4.

Space Complexity p(O(n2) +O(2m)) +O(n · k)

Time Complexity p(O(2m · k) +O(n · d · k))

Table 1. Space and Time Complexities of the GA based scheme

2.5 Reduction in Time Complexity : Our Approach

As discussed through example 1, all the T matrices corresponding to a pseudo-
chromosomes are equivalent in terms of their basin configurations and pseudo-
exhaustive fields. Since, the PEF bit(s) corresponding to the MACA don’t
change for the patterns in a basin, we are done if we know values corresponding to
the PEF bits in the pattern and the class membership of the basins (attractors).
In this case, we do not require the T matrix. We can safely operate with the
Pseudo-Chromosome. Considering the same parameters as mentioned in the sub
section 2.4, the time complexity for determining the PEF bits of a pattern is
O(n), which is finding the positions of −1 in the Pseudo-Chromosome. Since, the
attractors are now fixed as shown in example, the samples will be checked only
on their PEF bits and we will hence determine the attractor basin to which a



sample belongs to in O(m) and in O(m · k) for the whole training sample. The
fitness of the whole population can now be found in p · O(m · k) + O(n). This
clearly is an improvement over the time complexity mentioned in Table 2.4.

Since we did not use Method II and III, which used to cause an interdepen-
dence between the blocks [2], we had the advantage of not storing the MACA’s
T matrix at every crossover and mutation [2] as would have been required. Thus,
we have a space complexity of p ·(O(n)+O(2m))+O(m ·k) and have saved space
in our current classification scheme. Summarizing the complexities we have the
Table 2.5.

Space Complexity p(O(n) +O(2m)) +O(n · k)

Time Complexity p(O(m · k) +O(n))

Table 2. Space and Time Complexities of Our GA based scheme

3 Experiments

With the modification of doing away with the synthesis as well as the use of
T matrix in classification scheme altogether, we experiment comprehensively
to see the performance of our new scalable MACA Classifier. We perform ex-
periments for checking the classification strengths using the functionality tests.
Having reduced space and time complexities, we perform scalability tests. We
also perform test on a real world data to validate the claim that our current
classification scheme is ideal for developing a inferencing schemes in future.

4 Datasets Considered

To test for the functionality of our new Scalable MACA Classifier, we have
first artificially created four datasets which represent four different binary clas-
sification problems. The MACA’s ability to classify the four diverse datasets is
tested. Each of the datasets is briefly explained one by one next.

1. Linear Classification Problem
This classification problem has two classes which can be separated using
a linear hyperplane. A two dimensional linear classification problem would
look like Fig 7.a.

2. Concave Classification Problem
This classification problem has two classes which cannot be separated using
a linear hyperplane, but can be separated by a quadratic hyperplane. A two
dimensional concave classification problem would look like Fig 7.b.



3. Double Spiral Classification Problem
The two-spiral problem was first proposed by Alexis Wieland of MITRE
Corporation and now forms one the important benchmarks at the Carnegie
Mellon repository [6]. The task requires the pattern classifiers to learn a map-
ping that distinguishes between points on two intertwined spirals as shown
in Fig. 7.c. The classifier is provided with two inputs, which represents the x
and y coordinates on the 2-D plane and should output a one if the point falls
on one spiral and a zero if it falls on the other spiral. This particular problem
is difficult for most current algorithms because it requires the classifier to
learn the highly nonlinear separation of the input space. The two-intertwined
spirals problem has been used by some researchers as a benchmark for neural
networks [5, 7].

4. Annular Classification Problem
This classification problem has two classes one of which is enclosed in circle
and the other lies on an annular ring which encompasses the first circle. A
two dimensional annular classification problem would look like Fig 7.d.

The datasets were prepared artificially by placing points of dark and lighter
shades on an image file of dimension 256 × 256 as shown in Fig. 7. The darker
points represented one class and the lighter points the other. The two features
extracted were the x and y co-ordinates of the points (dark or light). Hence, we
had a two-dimensional binary classification problem.

Fig. 7. The pictorial view of datasets used to represent the different types of classifi-
cation problems



4.1 Implementation Details

Input: Since the range of the feature (the x and y co-ordinates) was between
0 and 255, each feature was represented using 8 bits. Both the feature vectors
were then concatenated to yield a 16 bit vector, which is the input vector to our
classifier. Hence, in our case, the MACA is of length n = 16.

Training: For our GA formulation, we started off with an m = 4 and an initial
population of 50 MACA, each of which has m=4. The top ten fittest MACAs go
into the next round (new population) and they perform crossover and mutation
[2] to generate the rest 40 of the new population. The training data consisted
around 2000-3000 samples of each of the classes for each classification problem.
The MACA ran on the average for 6-7 rounds (of generating new population)
before all the top-ten fittest MACAs ended up having the same fitness values.
This is when we stopped the training and took the first of the MACAs as our
solution MACA.

Testing: The test dataset had again typically around 2000-3000 samples of each
of the classes for each problem. Using the PEF bit values and their corresponding
class association, we tested the test dataset to obtain the results mentioned in
the next sub section.

4.2 Classification Accuracy

The performance of our classifier was compared against a linear classifier based
on SVM Light [4] on the datasets shown earlier. The results are shown below

Dataset Scalable MACA classifier SVMLight
accuracy on Accuracy

Training Data Test Data results

Linear 99.24% 99.61% 99.71%

Concave 92.77% 91.99% 95.44%

Spiral 83.88% 77.45% 82.46%

Annular 73.8% 75.94% 75.95%
Table 3. Accuracy test results across different Classification problems

We find that the MACA Classifier performs at par with the SVM over the
Linear and Concave Datasets. There is no discrepancy between the training and
test data accuracy results. The MACA slightly lags behind the SVM on the
Spiral Dataset, however performs at par over the Annular Dataset again. This



shows that the MACA Classifier performs as good as the linear SVM which
has been widely used as a general purpose classifier across various benchmark
problems in classification.

5 Scalability

The purpose of this was to ascertain that the classification scheme is scalable.
Hence, we picked the linear classification problem and scaled it up. In the previ-
ous experiment, we had theMACA of size n=16. We, then performed experiment
for higher values of n.

5.1 Large Datasets

The datasets were prepared by assuming that the dimension of the figure (grid)
was 2n×2n, where 2n is the required size of MACA which we intend to scale to.
The examples (points in our case) belonging to Class 1 were chosen randomly
from the points inside the circle with radius 2n/5 and center at (2n/4,2n/4),
while the points belonging to Class 2 were chosen randomly inside the circle
with center at (3·2n/4,3·2n/4) and radius 2n/5. The net effect was that the grid
looked similar to Fig. 7a, and we intended to show that we can fare well by
scaling the size of the problem.

5.2 Computational Time

Dataset Training Data Test Data Time taken
Length of MACA (2n) Accuracy Examples Accuracy Examples in seconds

16 99.24% 4311 99.61% 2313 2

32 98.42% 12000 97.66% 2000 3.0

64 96.22% 50000 96.33% 8000 28

100 100.00% 60000 98.54% 10000 32

100 100.00% 4000 99.69% 2000 3
Table 4. Scalability Test results

The time values in the scalability test results are obtained when the program
was run on a Java Virtual Machine (JVM) on a system with Pentium c© III
processor and 512MB RAM. The behaviour is in accordance with the complexity
analysis of Table 2.5. Here, we can particularly see that there is almost no time
dependance on the size of the size of MACA but only on the number of samples
(refer Row 1 & 5 in Table 4). Hence, we find that the proposed classification
scheme scales extremely well with the size of the input.



6 Application to Remote Sensing Image Classification

We test our scheme on a real-world classification example. We have chosen a
binary classification problem. A four band image of the city of Kolkata, India
taken by Indian Remote Sensing (IRS) Satellite and a known classification of
the pixels (ground truth) into two classes is taken. One class consists of pixels
that correspond to manmade structures and water bodies while the other class
doesn’t. The goal of the classification scheme is to correctly classify unknown
pixels (samples) into the class representing manmade structures and water bodies
or otherwise.

6.1 IRS Dataset

The IRS image is a four band image in 512 × 512 grid. Hence, corresponding
to each pixel, we have we have four intensity values (or features / attributes).
The values of each of the band was found to be between 14 and 80, so we
could therefore represent each of the values using 7 bits. Hence, for a pixel,
we would have 28 bits. Therefore, the MACA would be of the size 28. Ground
truth is available from a pre-classified image in [8] and 120000 examples are
chosen randomly as training samples from the aforementioned tagged examples
and 20000 as test examples. Also, the classified image obtained using MACA
classifier is shown in Fig. 8. It was found to tally well with the ground truth.

Training Data Test Data

accuracy samples accuracy samples

97.76% 120000 97.26% 20000
Table 5. Accuracy results on IRS Dataset

The results int Table 5 show that performance of the classifier is fairly good
in terms of accuracy in classifying the pixels.

6.2 Observations on the Classifier

Apart from the accuracy, we also made some interesting observations on the
final pseudo-chromosome of the MACA which was the fittest. It was known to
us a priori that band 4 of the image held key to the classification. The threshold
for the classification was set on the value of the attribute representing the band
4. In the initial population of the MACA the PEF bits (denoted by -1 in the
pseudo-chromosome) were scattered randomly across pseudo-Chromosome. Our
observation (Fig. 9) shows that the PEF bits had gravitated towards the bits
that represented band 4, i.e. the last 7 bits in the pseudo-chromosome shown
in Fig. 9. The pseudo-chromosome presented corresponds to the MACA which
classifies the IRS dataset based on our classification scheme. This suggests that



Fig. 8. Image of Kolkata, India showing water bodies and man-made structures regen-
erated using our Classifier

our classifier is able to identify the important attributes (the attributes which
leads to the decision about the class membership) and hence it paves way for
us to devise inferencing mechanism for classification based on the distribution
of the dataset. The inferencing mechanism shall exploit our encoding scheme
which enables us to maintain a direct correlation between the attributes and the
representation in the final decision making step (the position and value of the
PEF bit in our case) of the classifier. This can be of remarkable consequence
because unlike the neural systems, where the final classification decision is based
on the firing of certain neurons, which is too complex to correlate the neural
weights and the input attributes to devise a inferencing mechanism on it. In our
next set of experiments we have successfully attempted towards the latter.

7 Feature Selection Using MACA Classifier

For pattern recognition task all features present in a data set may not have
the same importance, i.e., some features may be redundant and also some may
have derogatory influence on the classification task. Thus selection of a proper
subset of features from the available set of features is important for designing



Fig. 9. The 28-bit Pseudo-Chromosome corresponding to the MACA that classifies
the IRS dataset best by our classification scheme. Note the increased density in the
PEF bits corresponding to Band 4

of efficient classifiers. But most of the existing feature selection methods [?,10]
perform feature analysis in a separate phase, offline with the main classification
process. Independent domain specific schemes for automatic feature selection
have also been proposed in [12, 11], but they remain very domain specific. In the
work of [13], a hybrid feature selection algorithm that uses three different statis-
tical measurements to evaluate features: between-class pairwised distance, linear
separability and overlapped feature histogram was proposed. Their hybrid fea-
ture selection algorithm applied the Bayesian EM (Expectation Maximization)
to the features ranked by the three measurements alluded to above to select
a sub-optimal feature set. This was a general approach but again, done as a
prelude to the actual classification.

A recent approach has been reported in [9] was a neuro-fuzzy scheme for
classification with online feature selection was proposed using a four-layered feed-
forward network for fuzzy rule based classification. Based on the observations in
Section 6, we find that, it is possible for us to perform feature selection while
training. GA based scheme points to the relevant features using the PEF bits.
We clarify this using two simple experiments.

7.1 Experiment Feature Selection

We artificially create two sets of datasets (training data and testing data) in
which the classes are linearly separable. One dataset will have the classes which
show large variance in only one feature while the other will show variance in
both the features. It is expected that the classifier should show more number of
PEF bits in the bits corresponding to the vector with large variance while the
it would show more or less equal number of PEF bits corresponding to both the
features in the second case.

7.2 Datasets

Variance in Single Feature Figure 1 shows two classes which vary along
the x-axis alone. These classes have their means around (50, 150) and (150, 150)



Fig. 10. Datsets with variance along one feature only

on the (x, y) plane with a class spread of 20 units about their mean on both
axes. The classifier (in our case it is the pseudo-chromosome) that was learnt
for this dataset is depicted in Figure 2. Here, we notice that the PEF bits are
concentrated on the x feature since the variance is shown along the x axis and
it remains true to our expectations.The classifier gave a 0% error in classifying
a similar test dataset.

Another interesting observation can be made looking at the pseudo-chromosome.
The value of the bit corresponding to the PEF bit in x corresponds to 128 which
looks justifiable as the class with mean as (150, 150) in it’s x feature vector will
have the bit corresponding to 128 “on while the other class with mean as (50, 150)
in it’s x feature vector will have the bit corresponding to 128 “off. Hence, the bit
corresponding to 128 is truly a discriminating bit and has been rightly captured
by our classifier. The attractors corresponding to the class with mean (150, 150)
have been found to have the 128’s bit position on while it was off in the other
class’s attractors.

A rule extracted out of this information could be extracted from the like- if
any feature vector has x128 == 1 then it is in Class A, else, it is in Class B
could be useful. If semantics are formally attached to the feature representation
scheme which is pretty straightforward in our case, we could optimistically make
a scheme which would infer from these rules meaning like- A member of Class



Fig. 11. Pseudo-chromosome corresponding to the classifier that classifies
dataset with variation along x-axis

A has feature X >= 128 while a member of Class B has feature X < 128.

Variance in Both Features Figure 3 shows two classes which vary along
both the x-axis and y-axis. These classes have their means around (50, 50) and
(150, 150) on the (x, y) plane with a spread of 20 units about their mean on both
axes. The classifier (in our case it is the pseudo-chromosome) that was learnt
for this dataset is depicted in Figure 4. Here, we notice that the PEF bits are
distributed both on the x feature and the y feature as the variance is shown along
both the axes; true to our expectations. The classifier also gave a 0% error in
classifying a similar test dataset. A similar observation can be made in this case
too. Here both axes will show some properties and the semantics shown will be
applied in a slightly different manner. The bottom line is that our classification
scheme can be extended to have rule generation. Next, we move onto a real life
example where feature selection holds importance.

8 Classification and Feature Selection in Molecular
Cancer Study

Although cancer classification has improved over the past 30 years, there has
been no general approach for identifying new cancer classes (class discovery)
or for assigning tumors to known classes (class prediction). A generic approach



Fig. 12. Datsets with variance along both features

to cancer classication based on gene expression monitoring by DNA microar-
rays is described and applied to human acute leukemias as a test case in [14]. A
class discovery procedure automatically discovered the distinction between acute
myeloid leukemia (AML) and acute lymphoblastic leukemia (ALL) without pre-
vious knowledge of these classes. The automatically derived class predictor was
able to determine the class of new leukemia cases. The results in [14] demonstrate
the feasibility of cancer classification based solely on gene expression monitoring
and suggest a general strategy for discovering and predicting cancer classes for
other types of cancer, independent of previous biological knowledge.

In this experiment, the task was to classify the test data after learning the
gene expressions from the training set and also to find the genes which are
important in characterizing the class of Leukemia. The important genes had
been medically identified and hence our task was to tally that the features (genes)
identified by our scheme with the ones medically identified.

8.1 Dataset

Blood samples were taken from the patients suffering from both ALL and AML
(the two forms of Leukemia). 7129 genes in the blood were isolated by clinical
methods described in [14]. By procedures which are beyond the scope of our
current domain, an integer value corresponding to each of the 7129 genes were
obtained. After appropriately offsetting the features to bring them to a common



Fig. 13. Pseudo-chromosome corresponding to the classifier that classifies
dataset with variation along both axis

scale, we had 7129 features. For every patient, each features lay in the range of
0-265,234. Next, each feature was binarized (so that each feature now had a size
of 19 bits) and all these features were concatenated to form the feature vector
of size 135451 (19 times 7129) bits.

The training data consisted of 38 patients in which there were 26 patients
infected with ALL and 12 patients infected with AML. The testing data consisted
of 34 patients which had 20 ALL cases and 14 AML cases.

8.2 Results

The training data was classified with full accuracy using just 10 PEF bits. The
7129 genes were pruned to some 500 genes based on expert opinion and then
they had been used for classification in [14]. Top 4 genes were identified in [14]
and proved medically too. In our trained classifier, majority of the PEF bits
were corresponding to those genes mentioned. Moreover, the class prediction in
our case was at par with results of [14] as 32 of the 34 patients were correctly
identifed in their respective classes.

Hence, this experiment re-affirms the belief that the proposed classification
scheme is capable of feature selection.

9 Conclusion

In our present work, we have exhaustively experimented on the MACA-based
binary classifier and proved it’s functional capabilities. We have developed a
fast MACA generation scheme and reduced the computational complexity of
the MACA based classification system. This has enabled us to show that the



classification system is scalable. Current classification scheme has also enabled
us to draw some conclusions on the importance of certain attributes. This shall
enabled us to devise an inferencing system on top of the MACA classifier which
is of great importance to the data mining community.

The current MACA based classifier shows a promise of building a simple
binary classifier and an inferencing mechanism on the dataset on which the clas-
sifier is being learnt. Our future work includes building a multi-class classification
based on this and theoretical work which gives us a deeper understanding on the
dynamics of the classifier.
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