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Similar-minded people tend to form social groups. Due to pluralistic homophily as well as a sort of heterophily,
people also participate in a wide variety of groups. Thus, these groups generally overlap with each other; an
overlap between two groups can be characterized by the number of common members. These common members
can play a crucial role in the transmission of information between the groups. As a step towards understanding
the information dissemination, we perceive the system as a pruned intergroup network and show that it maps to
a very basic graph theoretic concept known as a threshold graph. We analyze several structural properties of this
network such as degree distribution, largest component size, edge density, and local clustering coefficient. We
compare the theoretical predictions with the results obtained from several online social networks (LiveJournal,
Flickr, YouTube) and find a good match.
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I. INTRODUCTION

Group formation [1–3] is a very common and popular
feature among humans where a user (human) can participate
in multiple groups [4]. Consequently, many social network-
ing sites like LiveJournal,1 Flickr,2 YouTube,3 etc., provide
explicit facilities to form, maintain, and communicate within
social groups [5]. These groups can be deemed as a medium of
mass communication among its participating users [6–9]; there
is, however, an interesting side effect to this communication.
Common users belonging to multiple groups pass information
of one group to another. Hence, analyzing the extent of
connectivity among the groups can shed light into the amount
of information propagated from one group to another. This
connectivity structure can be best estimated by analyzing the
properties of an evolving intergroup network, which is the
primary focus of this paper.

Intergroup networks can be modeled as the one-mode
projection of evolving user-group bipartite networks. In
the bipartite process, the user partition grows with time,
while, if we consider only the popular groups, the group
partition remains fixed. Such bipartite networks where one
partition remains fixed is termed a alphabetic-bipartite network
(α-BiN) [10]. A projection on the groups allows us to obtain
the group-group network (i.e., the intergroup network) where
two groups are neighbors if they have at least one common
user. However, it can be safely assumed that two groups will
have high mutual interaction, thus allowing more information
to propagate if there are at least a critical number of common
users (determined by a threshold value) [5,11]. Therefore,
an interesting structure to study is the “pruned intergroup
network” where two nodes (groups) are connected if they have
more than a threshold number of common users.

The first attempt to understand the “pruned intergroup
network” was made in Ref. [5], where by mapping the

1LiveJournal: www.livejournal.com
2Flickr: www.flickr.com
3YouTube: www.youtube.com

underlying evolution dynamics to a Polya urn model, the
degree distribution of the pruned intergroup network is derived.
However, in order to gain a better insight into the connectivity
structure, the more relevant structural properties such as largest
component size, edge density, and local clustering coefficient
(assuming a large number of groups) under various possible
threshold values need to be analyzed as a first step. In this
paper, we identify the mathematical relationship between the
weight of an edge and the weights of the associated nodes
(later these node weights are referred to as “attractiveness
parameters”), derived in Ref. [5], as special importance. We
heavily leverage on this relationship to derive the formula
for the above mentioned structural properties of the “pruned
intergroup network.” We also show that this class of networks
can be appropriately modeled by a special variant of “random
threshold graph” [12], termed a “multiplicative random
threshold graph.” We compare the theoretical predictions with
the same obtained from the available real datasets, and in most
of the cases, we obtain a significantly accurate match.

Hence, the main contributions of this paper are twofold: (a)
we show how the intergroup relationships in social systems
and in a more general sense the pruned one-mode projection
of a preferentially grown α-BiN can be studied as a special
kind of random threshold graph model, and (b) we show how
the mathematical analysis of various structural aspects (degree
distribution, largest component, edge density, as well as local
clustering coefficient) of this specific kind of multiplicative
random threshold graphs can be done in a more transparent
way.

The rest of the paper is organized as follows. In the next
section, we precisely describe the basic model of α-BiN and
the special property of the intergroup networks that allows us
to map it to multiplicative random threshold graphs. In Sec. III
we present a detailed description of the mathematical analysis
of degree distribution, edge density, largest component, and
the local clustering coefficient. Next, in Sec. IV we compare
the mathematical findings with the observations made
from the real dataset. Finally, in Sec. V we present a brief
review of the state-of-the-art before drawing the conclusion.
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II. INTERGROUP NETWORK AND RANDOM
THRESHOLD GRAPH

In the following we first very briefly describe the α-BiN
model and the necessary constructions for the user-group
system. Next we discuss the mapping of the class of a pruned
intergroup network to a more basic and a simple graph theoretic
concept called a “random threshold graph.” This mapping
allows us to use certain fundamental properties of a “random
threshold graph” to characterize intergroup networks.

A. User group and α-BiN and its projections

User-group system as α-BiN: An α-BiN [10,13,14] is a
special kind of bipartite network [G = (V,U,E)], where one
partition (V , containing the active members, or the top set,
|V | = t) grows proportionally to time, whereas the other
partition (U , containing the passive members, or the bottom
set, |U | = n) remains fixed in size. The set of edges (E)
represents the interactions between the elements of the active
partition and the passive partition (see Fig. 1). For example, in
Ref. [5] the authors model the user-group online social systems
as an α-BiN where the users are considered to be the active
members and the social groups the passive members.

Evolution: In order to model the evolution of α-BiN, it
is assumed that at every time step one node joins the set
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FIG. 1. (Color online) (a) An α-Bin, G, representing a user-
group bipartite system with n = |U | = 5 social groups (G1,
G2, . . . ,G5) and t = |V |= 5 users (u1, . . . ,u2, . . . ,u5), (b) intergroup
network derived from G as the weighted one-mode projection of
G on its bottom set, and (c) the pruned intergroup network as the
pruned bottom projection of G on its bottom set GT at time t = 5,
i.e., when five users have entered set V (we assume, at each time
step one user joins the system). The users u1 to u5 each has created
three connections with the groups in U . The weight of an edge in
the intergroup network tells the number of common users that have
connected with both the end groups or in other words the number of
paths between the two groups in set U of G.

V and creates some connections (edges of α-BiN) with the
nodes in set U . The number of edges created by the nodes
in V is considered to be a random variable having a certain
probability distribution [denoted by F (u)]. This distribution
(which is effectively the degree distribution of the top set
V ) is assumed to have known finite first moment E(X) = μ

and finite second moment E(X2) = μ′. Reference [5] shows
that many interesting aspects of the dynamics of the evolution
depends on only μ and μ′, and hence, no specific form of this
distribution is assumed in the analysis. The probability that
an edge created by a node v ∈ V at time t attaches to node
u ∈ U is proportional to the current degree of the node u has
the following equation:

Pr{dt (u) = dt−1(u) + 1} = dt−1(u)∑
x∈U dt−1(x)

. (1)

This attachment strategy has been formally studied in detail in
Ref. [15].

Intergroup network: With the evolution of the user-group
systems, the relationship among the groups also changes. This
effect is generally captured by taking the one-mode projection
of the two-mode user-group α-BiN. We term this one-mode
projection as the intergroup network, which is a weighted
graph where the nodes are the social groups and there is an
edge between two such groups with weight w to indicate that
there are w common users for the two groups. The weight of
an edge fundamentally reflects the strength of the relationship
between two groups; in other words, it is an indicator of how
much information can be propagated between a pair of groups.

Pruned intergroup network: The node set in this network
is the same as that in the intergroup network. A pruned
intergroup network is associated with a threshold value �.
An edge is put between two groups if and only if the weight
of the edge in the intergroup network is above or equal to �.
Thus, fundamentally this construction is the pruned one-mode
projection of the user group α-BiN.

Special property of α-BiN: In Ref. [16] the authors show that
a single realization of the entire evolution of an α-BiN through
preferential attachment can be obtained as follows: (a) first, a
parameter (called an attractiveness parameter), sampled from
a certain distribution (Dirichlet), is preassigned with each of
the nodes in the set U of the α-BiN (denoted by ψu for node
u); (b) next, the probability that a node v ∈ V joins with node
u ∈ U is considered to be following a Bernoulli distribution
with success rate ψu. The joint distributions of these random
variables (ψ1, ψ2, . . . ,ψn) were shown to be following a
Dirichlet distribution with parameters (α1, α2, . . . ,αn), αi

denoting the initial degree of the node i of set U in the
α-BiN.4 It should be noted that this initial configuration of
the α-BiN, specifically the initial degrees of the nodes of set

4The attractiveness parameter ψi associated with a node i (∈ U )
precisely defines the probability that a node j (∈ V ) will make its
next connection with node i. Hence, in a preferential attachment-
based evolution process the attractiveness parameters associated
with the nodes change with time. However, Ref. [20] shows that
the mathematical analysis of such an evolution process can be
simplified if the attractiveness parameters are sampled from a specific
probability distribution and are preassigned to the nodes in U .
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U , are an important component of the model. Reference [16]
analyzes the special case where ∀i,αi = 1, i.e., the degrees
of all nodes in set U of the α-BiN are 1. In this case the
marginal distribution of the attractiveness value of a certain
node i follows a beta distribution with parameters (1,n − 1).
Using this modeling approach, Ref. [5] derives an important
property regarding the relationship between the attractiveness
values of two nodes and the weight of the edge between them
in the one-mode projection of the α-BiN under the assumption
of asymptotic growth in the number of elements in the top set
(i.e., t → ∞). Equation (2) describes this relationship:

lim
t→∞

W (i,j )

t
= (μ′ − μ)ψiψj , (2)

where ψi and ψj are the values of the attractiveness associated
with nodes i and j , respectively; W (i,j ) is the weight of the
edge between nodes i and j , and μ and μ′ are the first and
second moments of the distribution of the number of edges
created by the nodes entering the top set V .

Threshold graph and random threshold graph: The notion
of “threshold graph” [17,18] is defined as follows:

A graph G is called a threshold graph if there exists a set
of weights Xi for all nodes i in the graph and a real value
� (called the threshold value) such that there exists an edge
between any pair of nodes (i,j ) in the graph if and only if
Xi + Xj � �.

However, there are many other equivalent definitions of a
threshold graph based on their structural properties [17,18].

A “random threshold graph” [12,19] is also a threshold
graph where the node weights are random variables sampled
from a certain distribution.

Pruned intergroup network as random threshold graph:
From the special property as presented in the Eq. (2), it can
be understood that, there exists an edge in a pruned intergroup
network, if and only if the product of the attractiveness values
of the two nodes is above a certain threshold [as (μ′ − μ)
is constant for a given system]. Sinc a, product can be
transformed to a sum by taking a logarithm on both sides,
the class of pruned intergroup networks can be thought of as
random threshold graphs.5 We call this special variant of the
random threshold graph the “multiplicative random threshold
graph.” In this work we assume an implicit transformation of
the threshold values and hence, work with the multiplicative
representation itself.

In the following we present two important properties of
threshold graphs which directly follow from the definition.
We use these properties extensively in the derivation of the
theoretical results in the next section:

(1) Component structure: In any threshold graph, for
any given threshold value there exists only one connected
component of size larger than or equal to one.

(2) Embedded star graph: For any threshold value the
largest connected component has at least one star node, that

5In general it can be easily shown that the properties of any random
threshold graph hold true for all those graphs where the existence of an
edge is decided based on the value of any monotonically increasing
and symmetric function on the weight parameters assigned to the
nodes of the graph.

is, a node which is connected with all the other nodes within
the connected component [12].

Random threshold graph model: We assume that each node
i of the intergroup network is associated with an attractiveness
parameter θi . Using the relationship between the weight of
an edge and the attractiveness parameters of the nodes at its
two ends [as depicted in Eq. (2)], we define the existence of
an edge in a multiplicative random threshold graph with node
weights θi as follows: There exists an edge between two nodes
if and only if the product of the attractiveness parameters of
the nodes is larger than or equal to a certain threshold value
� (i.e., there is an edge between node i and node j , if and only
if θi · θj � �).

It is to be noted that for the sake of simplicity we do
not consider the factor t as well as (μ′ − μ) in the analysis.
Hence, when we compare the mathematical results with the
results obtained from real networks in Sec. IV, we require an
adjustment of the edge weights.

Work has been done in the past to analyze the evolution
of bipartite networks where both the partitions grow in size
simultaneously [20]. However, in the current work we assume
that only the top set undergoes an unbounded growth (i.e., t →
∞), while the bottom set remains fixed. In addition, we also
assume that the bottom set has a large number of nodes (i.e.,
n → ∞) from the beginning of the evolution. The theoretical
results presented in this paper have to be understood in the
following way: the limit t → ∞ is applied first, and then the
limit n → ∞ is applied. However, it is important to note that
the limits cannot be exchanged. For a specific setup it implies
that we must have the value of t much larger than n to meet
the basic requirement of α-BiN. We simulated the evolution
of α-BiN for different values of n. For each different n we
considered the value of t to be 100×n and find already a
very accurate match between the results obtained from theory
(derived in the next section) and the simulation.

III. STRUCTURAL PROPERTIES
OF INTERGROUP NETWORK

In this section we derive the main theoretical results
regarding the structure of the multiplicative random threshold
graphs as defined in the previous section.

In Ref. [12] the authors present a detailed analysis of
additive random threshold graphs, where an edge exists
between two nodes if the sum of the weights (like the
attractiveness parameters) associated with the nodes is larger
than or equal to a given threshold value. In our work, we
primarily focus on understanding the structural properties of
the pruned one-mode projection of a preferentially grown
α-BiN, which has a very specific setup, e.g., the attractiveness
parameters associated with the nodes jointly follow a Dirichlet
distribution. Furthermore the edge weights in our model are
proportional to the product of the attractiveness parameters of
the nodes. Although the Dirichlet distributed random variables
are not independent, for large n they can be well approximated
by independent exponential random variables. Next, we take
an ordered list of these exponential random variables and
thus, in order to calculate the fraction of nodes satisfying a
specific property, we convert the exponential order statistics
into uniform order statistics (a similar technique has been
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followed in Ref. [12]). In the following we describe both of
these techniques in detail:

(1) Relationship between Dirichlet and exponential: Let
the random variables {ψ1,ψ2, . . . ,ψn} jointly follow a
Dirichlet distribution with parameters {α1, . . . ,αn}. It is
well known that {ψ1,ψ2, . . . ,ψn} can be represented as
{X1/Sn,X2/Sn, . . . ,Xn/Sn}, where Xi ∼ Gamma(αi,1) and
Sn = ∑

Xi ∼ Gamma(
∑

αi,1) (1 � i � n). For large n, Sn/n

converges to 1, and since we assume that αi = 1 the Xi are
exponentially distributed with rate parameter 1. Therefore, for
large n we can well approximate the variables θi(= n ψi) by
exp (1).6

(2) Relationship between exponential and uniform order
statistics:
Let us consider n independent and identical exponential
distributed random variables with rate parameter 1. Let the
ordered sequence {Xi}, 1 � i � n be the order statistics of
these random variables in a descending order, i.e., Xi+1 � Xi ,
i is the rank of the variables in the sequence, and {Ui}
be the order statistics of n uniform (in [0,1]) distributed
random variables. We use the following result to relate the
two order statistics: an exponential random variable X having
rate parameter γ can be represented as − ln U

γ
, and the ith order

statistics Xi can be represented by − ln U(n−i)

γ
. Let αi = i

n
be the

normalized rank (hence, i can be represented as nαi). For the
following it is crucial that for large n and fixed α the random
variable U�α·n	 becomes essentially localized in the sense that
limn→∞Uα·n · n

i
= 1 with probability one. Hence, for large n

we can represent the exponential order statistics by its rank as

Xi = − ln(1 − αi). (3)

In the following we calculate the degree distribution, the
largest connected component size, the edge density, and the
local clustering coefficient.

A. Degree distribution

There are essentially two equivalent ways to derive and
characterize the degree distribution for threshold graphs. First,
one can give the degree as a function of the value Xi of the
node, and second, due to the localization property of the order
statistics, one can present the degree as a function of the rank
of the node. Further, due to the monotonicity of the degree in
both variables (node value and rank) the ranking of the nodes
according to their degrees is asymptotically the same as the
ranking according to the node values. For real world networks
one usually has no observable attractiveness value. Therefore
the most natural way to compare with real networks would be
to express the degree as a function of the node rank.

We fix the threshold � and consider a node x having rank
k = nα (as defined above). To estimate the fraction of nodes

6In order to get rid of the dependent random variables, we replace
the Dirichlet distributed random variables for the attractiveness pa-
rameters (ψi) by exponential distributed random variables. However,
the range of the ψi is [0,1], whereas the range of the exponential
distributed random variables is [0,n]. Hence, when we compare the
mathematical results with the results obtained from real networks in
Sec. IV, we require an adjustment of the edge weights.

Fraction of nodes connected with the node with rank k for threshold value ∆
1 – α : minimum α, such that, θ x θ > ∆, where l = nα (0 < α < 1)

θl , Rank = l = nα
θn , Rank = n
(maximum)θ1 , Rank = 1

(minimum)

Minimum ranked node connected 
with the node having rank k

θk , Rank = k

(degree of node with rank k) / n  = 1 – α

(a)

θn , Rank = n 
(maximum)

θj , Rank = j = nα

Fraction of nodes in the largest connected component for threshold value ∆ 
1 – α : minimum α, such that, θ x θ > ∆, where j = n α (0 < α < 1)

Minimum ranked node in the 
largest connected component Nodes in the largest 

connected component = 1 – α

(b)

θ1 , Rank = 1 
(minimum)

FIG. 2. (Color online) Pictorial representation of (a) the key idea
in the computation of the degree distribution, i.e., the fraction of
nodes in the system connected with a node having rank k, and (b)
largest connected component size. The blue dotted lines indicate the
list of nodes in the system sorted in a decreasing order (from left to
right) according to their attractiveness parameter values (θ ).

which are connected with x we first consider the node that has
the minimum rank among the nodes that are directly connected
with node x. Let this specific node have rank j = nβ. Clearly
by definition of threshold graphs, all nodes with rank higher
than or equal to j are directly connected with the node
x. Figure 2(a) pictorially describes this scenario. Thus, the
fraction of nodes connected with node x is precisely 1 − β. In
other words, for the degree of node x with rank k we have

d(k)

n
= 1 − β.

For the evaluation of β we use the fact that j is the minimum
integer in [1,n] that satisfies the relationship θk × θj � �.
Replacing the exponential order statistics by the corresponding
uniform distribution order statistics [using Eq. (3)] we get

d(k)

n
= e

�
ln(1−α) . (4)

The above formula relates the rank of a node with its degree
in the network. The cumulative degree distribution can be now
easily computed:

Fd (z) = Prob.

[
d(i)

n
� z

]

= Prob.
[
e

�
ln(1−α) � z

]
= Prob.

[
α � 1 − e

�
ln z

]
= 1 − e

�
ln z , since, α is a normalized rank (5)

B. Largest component size

Owing to the star property and the fact that there is at most
one component of size � 2 in any threshold graph, the highest
ranked node, that is, the node with rank n, will always be a
part of the largest connected component, and any other node

042812-4



INTERGROUP NETWORKS AS RANDOM THRESHOLD GRAPHS PHYSICAL REVIEW E 89, 042812 (2014)

with rank j , must satisfy the following condition to be a part
of the largest connected component:

θj × θn � �. (6)

Figure 2(b) pictorially describes this scenario. For large
n the maximal order statistics of n i.i.d exponential random
variables with rate parameter 1 is ln n + z, where z is
a random variable following a Gumbel distribution with
parameters (1,1). On the other hand, the expected value of
the minimal order statistics (θ1) is of the order O( 1

ln n
). Thus,

asymptotically, for a fixed value of the threshold �, the fraction
of nodes in the largest connected component becomes 1.
Therefore, in order to get a largest connected component of size
x · n with x < 1, we need to take threshold values of the order
constant times ln n. In the following we express the largest
component size as a function of c for the threshold � = c ln n.
A straightforward computation shows that the minimum value
of α such that θαn × θn � c ln n is 1 − e−c because we have
θn

ln n
→ 1 and θαn → − ln(1 − α). Hence L(�), the fraction of

nodes in the largest connected component is given by

L(�) = e−c. (7)

C. Edge density

In the following we derive the edge density E(�) for a
given threshold value � where edge density is defined as the
ratio of the actual number of edges existing in the network
at � to the total possible number of edges in the graph [i.e.,
(n2)]. Due to the multiplicative relationship between the edge
weight and the node parameters and the approximation of
Dirichlet distributed variables as explained above, the edge
weight distribution is asymptotically the distribution of the
product of two independent random variables, each following
exponential distribution. Thus the fraction of edges that exist
above a certain edge weight, which is the same as the edge
density, is described as follows:

E(�) = Pr{XY > �}

=
∫ ∞

0
e−xe− �

x dx

= 2
√

�K1(2
√

�). (8)

X and Y are independent, and ∼exp (1) and K1 (z) is the
modified Bessel function of a second kind. In the derivation we
used the fact that the cumulative distribution function F (z) of
the product of two independent nonnegative random variables
with density ϕ (x) is given by F (z) = 1 − ∫ ∞

0 ϕ(x)ϕ( z
x

)dx.

D. Local clustering coefficient

We want to derive the local clustering coefficient Cl�(α) for
a given node with rank nα for the threshold value �. For a given
threshold value �, there is a minimal rank h = nγ such that
all nodes with rank � h are connected with each other. These
nodes form the maximal clique in the network. To evaluate
this minimal rank we use the condition (θh)2 = �, which is
equivalent to ln(1 − γ ) = √

�. Therefore γ = 1 − e−√
�, and

hence e−√
� is the fraction of nodes in the maximal clique.

A crucial point to be noted here is that if rank h is the
minimum rank which is in the maximal clique, then the nodes
having rank less than h have only edges with nodes which
have rank larger or equal to h. This is a simple consequence
of the fact that the edge weights θk × θj are monotonically
increasing functions of k and j.

Since the nodes in the maximal clique are all connected, the
nodes having rank less than h have local clustering coefficient
1. However, the local clustering coefficient of the nodes above
rank h have a clustering coefficient less than 1.

Let us take a node x having rank nα > h (i.e., it is a node
inside the maximal clique). First, we categorize the nodes that
are connected with x into two parts: (a) nodes having ranks
lesser than h and (b) nodes having rank higher or equal to
h. Each of these two categories of nodes contributes to the
local clustering coefficient of x separately. In the following we
derive these two parts.

The total number of nodes connected to x, i.e., the degree
of x is ne

�
ln(1−α) . Therefore, the number of unordered pairs of

nodes that are neighbors of x are

(
ne

�
ln(1−α)

)(
ne

�
ln(1−α) − 1

)
2

� 1

2
n2e

2�
ln(1−α) . (9)

On the other hand, the number of pairs of connected nodes
inside the maximal clique with which x is connected is

n2 1
2e−2

√
�. (10)

Note further that all nodes with node weights between
− �

ln(1−α) , i.e., the minimum weight of a node connected with

x and
√

�, i.e., the minimum node weight in the maximal
clique, are connected to x. Let us denote this interval by Iα,�.
The degree fraction of a node i, for θi ∈ Iα,�, is given by
Eq. (4) as follows:

d(i)

n
= e

− �
θi ,

where θi is the attractiveness value of node i.
To calculate the number of node pairs (i,j ) with θi ∈ Iα,�

and θj �
√

� such that there is an edge between i and j , we
need to sum over the degrees of the nodes i. There will be no
double counting, since all the nodes in Iα,� are connected only
with the nodes above the upper bound of the region, i.e., above
node weight

√
�. This can be calculated as the following sum:

n

θi�
√

�∑
θi�− �

ln(1−α)

e
− �

θi .

For large value of n, this sum can be approximated by the
following integral:

n2
∫ √

�

− �
ln(1−α)

e−θ− �
θ dθ. (11)

Note that to obtain the formula above, we have used the
fact that the θi are distributed as exp(1).
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θn , Rank = n 
(maximum)

θ1 , Rank = 1 
(minimum)

Minimum ranked node in the 
maximal clique, Rank = h

Largest component

Maximal clique, all node have local clustering 
coefficient asymptotically less than 1

All node have local clustering 
coefficient equal to 1

All node have local clustering 
coefficient equal to 0

FIG. 3. (Color online) Pictorial representation of different
classes of nodes arranged in an ascending order of their attractiveness
parameter values and having different values of the local clustering
coefficient.

Combining Eqs. (9), (10), and (11), we get the expression
for the local clustering coefficient Lα(�) as follows:

Cl�(α) = 2e
−2�

ln(1−α)

[∫ √
�

− �
ln(1−α)

e−θ− �
θ dθ + e−2

√
�

2

]
. (12)

See Fig. 3 for a pictorial description of range of the
ranks of the nodes having different classes of local clustering
coefficient. The analysis also reveals the fact that, for any
threshold value, the largest component of the network will
have two distinct classes of nodes: (a) the nodes that are in the
maximal clique and hence, completely connected with each
other, and (b) the nodes that are in the largest component but
outside the maximal clique; they have no connection among
each other, but rather are connected to some node in the
maximal clique. Hence, the nodes in part (b) have clustering
coefficient 1, while the nodes in part (a) have a clustering
coefficient less than 1. Thus, the structure corresponds to a
perfect core-periphery organization [21,22].

Due to Eqs. (3) and (4) there is an asymptotic one-to-one
correspondence between degree, rank, and the weight (θ )
associated with a node in the network. Equation (12) expresses
the local clustering coefficient of a node as a function of its
rank (α). However, the problem with this formula is that the
rank of a node is based on the node weights (θ ), which are only
intrinsic variables and are not an observable in real networks.
Asymptotically the rank according to the θ values can be
replaced by the rank according to the degrees which are an
observable although not local. In contrast, rank computation
needs a complete survey of the graph. On the other hand, degree

of a node can be easily computed through local observations
of the neighbors of a node. Hence, for testing whether a given
graph is like a threshold graph, it is very useful to have an
expression of the local clustering coefficient of a node as
a function of its degree [Cl�(d)], which we provide in the
following.

Let us consider a node x having degree d. From Eq. (4) and
the fact that the node weight lesser than

√
� has clustering

coefficient 1, we get immediately that Cl�(d) = 1 for d �
ne

√
�. The value of Cl�(d) for d � ne

√
� is derived as follows.

Using Eqs. (3) and (4), the right side of Eq. (9) can be
rewritten for node x as

1

2
n2

(
d

n

)2

. (13)

Similarly, Eq. (11) can be rewritten as

n2 ×
∫ √

�

ln n−ln d

e−θ− �
θ dθ. (14)

Thus, combining Eqs. (10), (13), and (14), the local
clustering coefficient for a given degree d and threshold �

(Cl�(d)) can be expressed as follows:

Cl�(d) = 2(
d
n

)2

[∫ √
�

ln n−ln d

e−θ− �
θ dθ + e−2

√
�

2

]
. (15)

IV. COMPARISON WITH REAL DATASETS

We compare the mathematical results described in the
previous section with the same obtained from the measure-
ments done on publicly available user-group membership
datasets [23] from three different online social systems: (1)
YouTube, a video-sharing site, (2) Flickr, a photo-sharing site,
and (3) LiveJournal, which allows users to share blogs, diary,
journals, and so on. The details of the formation of the real
intergroup networks are described below.

Real intergroup networks: YouTube, Flickr, and LiveJour-
nal datasets originally contain 30 087 groups and 1 157 827
users, 103 648 groups and 1 846 198 users, 7 489 073 groups
and 5 284 457 users, respectively. However, as pointed out
earlier, many of these groups can be ignored from the per-
spective of the number of users joining the groups. Therefore,
instead of considering all the groups present in the data set,
we extract out a certain number of the most popular groups
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FIG. 4. (Color online) Plot of the difference between the theory and the real datasets calculated using Eq. (17). Part (a), (b), and (c) show
the results obtained from the dataset of YouTube, Flickr, and LiveJournal, respectively.

042812-6



INTERGROUP NETWORKS AS RANDOM THRESHOLD GRAPHS PHYSICAL REVIEW E 89, 042812 (2014)

TABLE I. Details of the real data set.

Description n = |U | t = |V | μ μ′

YouTube 100 37 163 1.88 7.99
Flickr 1000 220 827 12.94 760.86
LiveJournal 100 2 550 531 6.14 70.52

and corresponding users who joined those groups. Using these
datasets we first form the intergroup network as described in
the previous section.

Transformation of the edge weights: As expressed in Eq. (2),
the weight of an edge depends on t , (μ′ − μ) as well as the
attractiveness parameters associated with the end nodes of
the edge. However, as already pointed out, for the sake of
simplicity in the analysis, we consider only the attractiveness
parameters. In order to do the necessary adjustment we divide
the weights of the individual edges by t(μ′ − μ). [This makes
the edge weights independent of the number of users as well
as the distribution of the number of connections with the
social groups the users make, i.e., F (u).] Furthermore, in
the mathematical derivations, we also convert the Dirichlet
distributed attractiveness parameters (i.e., ψ), each having
range [0,1], to exponentially distributed parameters, each
having range [0,n]. Therefore, as an adjustment, we also
multiply the weights of each of the edges in the real intergroup
network by n2. In summary, we multiply the weights of
the edges in the real intergroup network with the following
factor:

n2

t(μ′ − μ)
. (16)

The datasets: It is to be noted that in all our theoretical
analysis we assumed a large value of n. Hence, as per the
theory, the corresponding value of t should be even larger in
comparison to the value of n (to satisfy the basic definition of
α-BiN). However, the cardinalities of the top and the bottom
sets in all the real datasets are finite. Therefore, from each of
the three distinct base datasets, we first prepare many different

subdatasets with a different number of most popular groups
(i.e., the value of n), and for each such subset, we consider t as
the number of users who are members of at least one of these
most popular groups. Owing to simple empirical computations
of the largest connected component size, we first compare this
quantity with the theoretical predictions for different values
of n.

We quantify the extent of match between theory and real
data for all these different values of n, by computing their
difference as follows. The absolute difference between the
largest connected component size obtained from theory and
real data for each threshold value is first normalized by
the largest connected component size obtained from the real
data. Next, these normalized absolute differences are averaged
over all the threshold values. This is given in the following
formula:

D =
b∑

�=a

|Lth(�) − Lre(�)|
Lre(�)

, (17)

where Lth(�) and Lre(�) are the values of the fraction of
the nodes in the largest connected component obtained from
theory and the real data for the threshold value �, respectively:
a and b being the minimum and the maximum threshold values
considered for the comparison, respectively. We select the
results obtained from the real datasets to normalize the absolute
difference because real results were always found to remain
higher than the theory. Figure 4 shows this result for the three
real datasets.

It can be seen from the figure that as n increases up to a
certain value, a match between the theory and the real dataset
also increases. This happens due to our assumption of a large
value of n in the mathematical computation. However, after
a certain value of n, the match starts degrading. The reason
is that, with the increase in n, the associated value of t also
increases. However, due to the finiteness of the real datasets,
as n becomes large the value of t becomes insufficient in
comparison to n to satisfy the fundamental property of α-BiN,
t � n. Therefore, we find that for each dataset there is a certain
value of n for which the match is the best (below which the
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FIG. 5. (Color online) Comparison of the fraction of nodes having degree larger or equal to a certain value, i.e., a complementary cumulative
degree distribution [calculated from Eq. (5)] with the same obtained from the pruned intergroup network derived from YouTube (a, b), Flickr
(c, d), and LiveJournal (e, f) datasets.
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FIG. 6. (Color online) Comparison of the analytically derived fraction of the nodes in the largest component of the multiplicative random
threshold graph with the same obtained from the pruned intergroup network derived from YouTube (a), Flickr (c), and LiveJournal (e) datasets
with a few different values of n.

value of n is not sufficient and above which the value of t

is not sufficient). This n value in case of YouTube, Flickr,
and LiveJournal is around 100, 1000, and 100, respectively
(see Fig. 4).

For the rest of the comparisons between theory and real data,
we select these specific n values. The details of all parameters
(n, t , μ, and μ′) for these specific subdatasets of all three
real systems are given in Table I. In the following we present
the comparison of the theoretically derived formula of degree
distribution, largest connected component size, edge density,
and local clustering coefficient given in Eqs. (5), (7), (8),
and (12), respectively, with the same obtained from the pruned
intergroup networks derived from these three subdatasets.
Figures 5, 6, 7, and 8, respectively, depict these comparisons
for different values of threshold �.

YouTube: The dataset derived from YouTube was seen to
be matching accurately in many cases [e.g., see Fig. 5(b) for
degree distribution, Fig. 6(a) for largest component size, and
Fig. 7(a) for edge density]. However, in some cases the match
was not so accurate (e.g., see Fig. 5(a) for degree distribution as
well as Figs. 8(a) and 8(b) for the local clustering coefficient).

Flickr: The match between the theory and the results derived
from the dataset of Flickr was the most accurate among all
three different datasets in all four observable properties [see
Figs. 5(c) and 5(d) for degree distribution, Fig. 6(b) for largest
component size, Fig. 7(b) for edge density, and Figs. 8(c)
and 8(d) for local clustering coefficient].

LiveJournal: The dataset derived from LiveJournal was
also seen to be matching well with theory in terms of all
four observable properties [see Figs. 5(e) and 5(f) for degree
distribution, Fig. 6(c) for largest component size, Fig. 7(c)

for edge density, and Figs. 8(e) and 8(f) for local clustering
coefficient]. However, the match was not as well as with Flickr,
and not as bad as with YouTube.

A. Discussion

The comparison between real data and theory shows quite
a good match from an overall perspective. The few cases
of inaccurate matching were from the dataset obtained from
both YouTube, and LiveJournal. However, LiveJournal always
shows a better match than YouTube. The gradation in results
directly correlates with the margin of error (D), and the three
data sets manifest when compared with theory (see Fig. 4).
It can be seen that LiveJournal shows a behavior closer to
theory in comparison to YouTube in the case of more complex
properties such as degree distribution and local clustering
coefficient. In order to have a visual understanding of the
structure, we also present snapshots (Fig. 9) of the pruned
intergroup networks from all three datasets. Although pruned
intergroup networks are unweighted graphs by definition,
to perfectly reflect the organization of the edges and their
weights in the network, Fig. 9 shows them as weighted
graphs. It can be seen that unlike Flickr and LiveJournal,
in YouTube there are more small components which devi-
ate from the basic property of a random threshold graph.
Moreover, the hierarchical arrangement of the nodes as well
as the edges are not so clear in YouTube, unlike Flickr and
LiveJournal.

Thus, it can be concluded that the small mismatches
resulting from the YouTube dataset are due to the deviation
of its structure from the definition of the random threshold

(a)
Youtube
n = 100

Threshold (∆)

(b)
Flickr

n = 1000

(c)
Livejournal
n = 100

FIG. 7. (Color online) Comparison of the analytically derived fraction of the edges in the multiplicative random threshold graph with the
same obtained from the pruned intergroup network derived from YouTube (a), Flickr (c), and LiveJournal (e) datasets with a few different
values of n.

042812-8



INTERGROUP NETWORKS AS RANDOM THRESHOLD GRAPHS PHYSICAL REVIEW E 89, 042812 (2014)

Rank (α)

(c)
Livejournal
n = 100

(c)
Flickr
n = 1000

∆ = 2

(e)
Livejournal
n = 100

∆ = 2

(a)
Youtube
n = 100

∆ = 2

(d)
Flickr
n = 1000

∆ = 5

(f)
Livejournal
n = 100

∆ = 5

(b)
Youtube
n = 100

∆ = 5

Lo
ca

l c
lu

st
er

in
g 

co
ef

fic
ie

nt
 ( 

   
   

   
 )

FIG. 8. (Color online) Comparison of the analytically derived expression for the local clustering coefficient of the nodes in a multiplicative
random threshold graph with the same obtained from the pruned intergroup network derived (in log-log scale) from YouTube (a, b), Flickr
(c, d), and LiveJournal (e, f) datasets with a few different values of n.

graph structure. Fundamentally, this might have come from
several reasons such as partial nonpreferential selection of the
groups by the users or simultaneous growth of the set of groups
at a rate comparable to the rate of growth of the set of users.
These observations together may indicate that users’ choice of
categories of videos are more diverse, possibly due to a higher
number of available options, than the selection of categories of
pictures or blogs/journals. However, the cases of a good match
with the theory also support the fact that a significant portion of
YouTube follows the fundamental definition of multiplicative
random threshold graphs as well.

V. RELATED WORKS

Analysis of the evolution and the structure of social groups
has been the central focus of much research in the past [24].
Common membership of users in the groups has been also
studied as an overlapping community detection and analysis
problem [1,2]. However, the groups that are specifically
defined by the users themselves have special importance.
Reference [25] characterizes them as ground-truth communi-
ties. In this work the authors consider many real world social
networks along with their ground-truth communities. They
analyzed the existing structural definitions of community and
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FIG. 9. (Color online) The graphical representation of the network structure of the pruned intergroup networks (with 100 most popular
nodes) obtained from the dataset of (a) YouTube, (b) Flickr, and (d) LiveJournal for threshold value 3. Only the nodes in the largest connected
component have been displayed (number of isolated nodes are mentioned in the boxes). The thickness of an edge is proportional to its weight
in the corresponding intergroup networks. The size of a node is proportional to its page rank in the network. The numbers associated with the
nodes represent their ranks (the top rank is 100).
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present a comparative study of how well these definitions can
appropriately capture the user-defined communities. A number
of other studies have been performed on these user-defined
communities also in online social networks. For example,
Ref. [26] studies the growth of these groups and shows that the
underlying network structure among users plays a significant
role in this growth. A recent work [27] does a deeper analysis
of the relationship between the group selection and the object
selection (objects within a group, e.g., artists within a group of
users who like a specific category of music) strategy followed
by the users in online social systems by user-object and
user-group bipartite network models. Moreover, the concept
of pruned one-mode projection of bipartite networks was
also used in Ref. [28] to understand the structural robustness
or modularity of various synthetic as well as real networks
under random failure. In our work we focus on the impact
of the common membership of the users in different groups.
Specifically, we lay the foundation for the study of social
influence and spread of information or knowledge abstracted
through the connectivity structure of the network.

On the other hand, threshold graphs have been studied
independently by many researchers for a long time under
different names, e.g., difference graph, intersection graph,
interval graphs, biorders [17], etc. References [19] and [12]
introduced the concept of random threshold graphs where the
node weights follow a specific probability distribution, and
these works analyze their graph theoretic properties. In fact,
the same concept was introduced in the physics community as
the fitness model (a nongrowing model) for generating scale
free-networks [29,30]. Later the same idea was used in many
other related fields, e.g., nongeographical and geographical

threshold graphs, gravity models [31–33], etc. In the current
work we show that threshold graph can also be used to study
the intergroup relationships in social networks, and in general
the thresholded one-mode projection of α-BiN. Specifically,
we analyze a new class of random threshold graphs, called
multiplicative random threshold graphs, with node weights
jointly following a Dirichlet distribution.

VI. CONCLUSION

In this paper we analyze the structure of an intergroup
network (in user-group systems), which is fundamentally a
reflection of the social behavior of humans. We show that
many of the structural properties of the pruned intergroup
network can be well explained by the theory of multiplicative
random threshold graphs. We could come up with closed
form equations for the important properties: like-degree
distribution, largest component size, and edge density (for
large number of social groups and users). In fact, a general
mathematical framework has been developed and used in this
analysis which can be further extended to understand various
other properties of the network or even similar structures based
on multiplicative random threshold graphs. We also find that
the theoretical predictions match very well with several real
world intergroup networks.
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