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For any initially correlated network after any kind of attack where either nodes or edges are removed, we
obtain general expressions for the degree-degree probability matrix and degree distribution. We show that the

proposed analytical approach predicts the correct topological changes after the attack by comparing the evolution
of the assortativity coefficient for different attack strategies and intensities in theory and simulations. We find
that it is possible to turn an initially assortative network into a disassortative one, and vice versa, by fine-tuning
removal of either nodes or edges. For an initially uncorrelated network, on the other hand, we discover that only
a targeted edge-removal attack can induce such correlations.
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I. INTRODUCTION

The degree-degree correlations of a network is a critical
property of the network topology. For instance, these correla-
tions, as well as the network degree distribution [1-3], play a
crucial role in the resilience of the network [4-6]. Vazquez and
Moreno [4] studied the impact of random node failure in uncor-
related, assortative, and disassortative networks. They derived
some general expressions to show that the general criterion
(k?)/(k) > 2 for percolation, derived explicitly for uncorre-
lated networks in Ref. [2], is not applicable for networks with
degree-degree correlations. In Ref. [5], Noh investigated nu-
merically the nature of the percolation transition in correlated
networks. His numerical results showed that disassortative
networks exhibit the same type of percolation transition as
neutral networks. Recently, Goltsev et al. [6] contradicted
Noh and demonstrated that both assortative and disassortative
mixing affect not only the percolation threshold but the critical
behavior at the percolation transition point. Their analysis
showed that the critical behavior is determined by the eigen-
values of the branching matrix and the degree distribution.

The relevance of degree-degree correlations goes beyond
just the network resilience. These correlations also have a
strong impact on the network dynamical properties such as,
for instance, its diffusion properties. In correlated complex
networks, the epidemic threshold is determined by both the
degree distribution and degree-degree probability matrix [7,8].
However, for some particular networks, such as scale-free
networks, the epidemic threshold may not be affected by such
correlations [9]. Despite this remarkable result, the (disease)
spreading properties of most real world network are found to
be extremely sensitive to degree-degree correlations [10,11].
Along similar lines, the removal of either nodes or edges can
have a dramatic effect on the transport properties of a network,
as has been shown to occur in the worldwide airport network
[12]. Certainly, if several airports are shut down, the circulation
of passengers and goods will employ alternative routes and
airports. The overload of edges and nodes may induce further
damage in the network and eventually a collapse of the entire
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transportation system. In Ref. [12] it was shown that the robust-
ness of the worldwide airport network is particularly sensitive
to node-node correlations. Here, we will learn that the removal
of either nodes or edges affects the correlations themselves.

The degree-degree correlations of a network can be
characterized through a scalar: the assortativity (or Pearson)
coefficient [13—15]. This coefficient is zero when the network
is uncorrelated. When it is positive, it is said that the network is
assortative. In assortative networks, most edges connect nodes
that exhibit similar degrees. On the other hand, disassortative
networks, characterized by a negative coefficient, are such that
high-degree nodes are connected to low-degree nodes.

Despite the relevance of degree-degree correlations, there
has not been a study in detail as to how these correlations
and their associated assortativity coefficient are affected by an
attack. If we are able to predict the evolution of the degree
distribution and degree-degree correlations after an attack, we
will know most relevant feature of the distorted network such
as the new percolation threshold [1,2], the size of the giant
component [4-6], the average path length [15], or the new
epidemic threshold [7,8].

Here, we aim at filling this gap and focus on the effects that
either a node- or an edge-removal attack has on the degree dis-
tribution and degree-degree correlations of a complex network.
More specifically, we derive analytical expressions for the
degree distribution and degree-degree probability matrix of a
correlated network under either node- or edge-removal attack.
We test the goodness of the analytical approach by simulating
random and targeted attacks on initial networks which can be
either assortative or disassortative (or neutral). We compare
the assortativity coefficient obtained in theory and stochastic
simulations and find that the assortativity coefficient exhibits a
nontrivial behavior versus the attack intensity. While random
attacks, involving either node or edge removal, always reduce
degree-degree correlations, targeted attacks can induce drastic
changes in the degree-degree probability matrix. Interestingly,
we find that such attacks can make an initial assortative
network disassortative, and vice versa. For the particular case
of aninitially uncorrelated network, we find that only a targeted
edge-removal attack can induce correlations.

This paper is organized as follows. First we provide a more
formal definition of the problem (Sec. II), and then derive
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expressions for the degree distribution and degree-degree
probability matrix after a node-removal attack, in Sec. III,
and after an edge-removal attack, in Sec. IV. We present a
comparison between stochastic simulations and the developed
theory in Sec. V, and conclude in Sec. VI.

II. PROBLEM DEFINITION

Let us assume that the degree distribution of the initial
network p; and its degree-degree probability matrix p; ; are
known. Our goal is to obtain the degree distribution and the
degree-degree probability matrix after either node- or edge-
removal attacks. We refer to these probabilities as p; and p; i
respectively. Notice that the degree-degree probability matrix
contains the information about the probability of finding an
edge that connects a node of degree i with another one of
degree j, and obeys

kmax Kmax

YD opi=1 (M
‘—Oj 0

Kmax

sz, = ﬂ, )

and for uncorrelated networks,
Pi,j = ﬂ&
o (k) (k)
where kp,x denotes the maximum degree in the network,
and (k) =), ip;. Equation (2) relates p; ; and p;. Similar
expressions hold for p; and p; ;.

3)

III. IMPACT OF NODE-REMOVAL ATTACKS

We consider a generic node-removal attack. Let f; be the
probability by which a node of degree k is removed from the
network. Notice that 0 < f; < 1, and in general Zk fr # 1.
This definition allows us to describe random and targeted (or
deterministic) attacks.

Any node-removal attack can be thought of as a process
involving two steps. The first step is to select the nodes that are
going to be removed according to the probability distribution
fx. After the selection of the nodes, we divide the network into
two subsets; one subset contains the nodes that are going to
survive (S) while the other subset comprises the nodes that are
going to be removed (R). In the second step of the attack all
nodes in subset R and all edges in S that are linked to nodes
in R are removed. We introduce the following definitions to
facilitate further reading:

n? = pii (k)N = f)(1 = f7) )
SR = p N = fi) £, 5)
nfsS = pi NSO = ), ©)

ni* = pi (NS £, ©)

where nS ;; represents the number of tips—let us recall that
one edge has two tips—that start from a node of degree i in S
and are connected to a tip which is lmked to a node of degree

Jj also located in S, and similarly for ”1 S S and nR R
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When the nodes in the subset R are actually removed, the
degree distribution of the surviving nodes S is changed due to
the removal of edges that run between the surviving set S and
any node of the removed set R. We focus on a node of degree
j in S before the actual removal of nodes in R. We want to
know the probability ¢; that one of the j edges of this node is
connected to a node in R. This probability can be expressed as

Dk ”S'R
SR S5
Zk ( j k )
The removal of nodes can lead only to a decrease in the degree
of a survived node. If we find a node of degree k that has
survived, it can be due to the fact that originally its degree
was k 4+ g and k of its edges survived, while g (¢ may be zero

also) were removed. Hence, using Eq. (8), we express p; as
the following binomial distribution:

¢ = ®)

[e ]

pi= Z(Z)qsg"‘(l — ) P} ©)

q=k

where p; =

Notice that ¢; becomes independent of j in two situations:
(a) when f;, = f, and (b) for uncorrelated networks. For f; =
f (random node removal), ¢; = f, while for uncorrelated
networks, ¢; = Y, k pi fi/(k). In these two limiting cases,
Eq. (9) reduces to the expression derived in Ref. [16] for the
degree distribution after the attack for uncorrelated networks.
This means that the degree distribution after a random attack
is independent of the degree-degree correlations of the initial
network and depends only on py.

Now, we look for a transformation that allows us to go
from the initial degree-degree probability matrix to the joint
degree probability matrix of the attacked network. We know
that the new matrix has to obey, by definition, Eq. (2), i.e.,
2ok P« = J P}/ (k") which implies a connection between the
new degree-distribution and the new degree-degree probability
matrix. Taking this into account, let us focus on an edge that
connects a node of degree j and a node of degree k in the
survived network. Before the attack, these nodes have had a
degree > j and >k, respectively. This means that all edges that
initially had an end connected to a node of degree equal or
larger than j, and the other end connected to a node of degree
equal or larger than k, can contribute to the number of edges
we observe after the attack connecting nodes of degree j and
k. Finally, if these two nodes are still connected, then it is clear
that the edge running between them before the attack has also
survived. All this implies the following transformation:

kmax Kmax

Pi=3 Hjp)HWk$) s  (10)

u=j v=k

where to ease the notation we have introduced
H(x,y,0) = <’y“ _ })w”(l —oy, A

and defined &, =ny 5/, n, >3, which is the probability
of finding an edge connectlng a node of degree u and a node
of degree v, both in the subset S, before the attack. It can
be shown, through Eq. (10), that for an initial uncorrelated
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network that obeys Eq. (3), either a random or a targeted node
removal attack leads to p’;, = j p k p;/ (k')? (Appendix A).
Thus, a node removal attack can never correlate an initially
uncorrelated network. On the other hand, if the initial network
exhibits correlations, a node removal attack will have an impact
on the correlations [17].

IV. IMPACT OF EDGE-REMOVAL ATTACKS

In order to analyze the impact of link removal on the degree
distribution, we need first to establish a relationship between
the degree distribution p; after the attack and the initial degree
distribution p; and degree-degree probability matrix p; ;. Let
us represent by f; ; the probability that an edge, connecting
nodes of degree i and j, is removed during the attack. The
link-removal attack is a two-step process whereby first the
edges to be removed are selected (with probability f; ;) and
then all the selected edges are removed at once. It is important
to note that, unlike node-removal attacks, a link-removal attack
does not divide the network into two subsets.

For an undirected network, an edge between any two nodes
u and v can be thought of as a set of two edges: from u to
v and from v to u. Hence, the total number of edges in this
“undirected” network is given by N (k), where N is the number
of nodes in the network, (k) is the mean degree, and the total
number of edges from i-degree nodes and to j-degree nodes
is given by N (k) p; ;. Out of these many edges, N (k)p; ; fi ;
edges will be removed. This helps us to derive the total number
of removed edges whose one end is connected to an i-degree
node, while the other end is connected to any other degree
node, which can be expressed as

Ei=N(K)Y_ pijfij- (12)
J

The quantity E; represents the number of tips which connect
to i-degree nodes that are removed. This quantity can be used
to compute ¢;, the probability that a node of degree i loses
a tip, which reads

B= (13)

"N pi

The removal of edges can lead only to a decrease in the degree
of a node. If we find a node of degree k after the attack, it
can be due to the fact that originally its degree was g, with
k < q < kmax, and k of its edges survived, while g — k were
removed. Thus, from Eqgs. (12) and (13), and assuming that
the edges of a node are independent, we obtain the following
expression for p;:

(Z) G171 — G, py. (14)

Notice that for f; ; = f, qNSq becomes independent of g. On
the other hand, for uncorrelated networks, ¢3q reduces to
>k kpic fq.u/ (k).

In the following we derive an expression for the degree-
degree probability matrix p}.k after the attack. Given an
edge-removal attack characterized by f; ;, we look for a
transformation that allows us to move from the initial degree-
degree probability matrix p;; to the new probability matrix
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p/i, » Which has to obey Egs. (1) and (2). If we find an edge
connecting nodes of degree j and k in the network after the
attack, we can assume that before the attack the edge was
connecting nodes of degree u and v, with j < u < kp,x and
k < v < knax. Since the selected edge is not removed from
the network, then this means that the initial u-degree node
lost u — j edges (from its initial # — 1 edges not linked to the
analyzed edge), while the v degree node lost v — k edges. As
result of this process, the node degrees after the attack are j
and k, respectively. In consequence, using the probability ¢
given by Eq. (13), we can express the degree-degree probability
matrix after the edge removal attack as

kmax Kmax

P =Y Hw.jd)HWkS)puo (15

u=j v=k

where H(x,y,w)is again given by Eq. (11). It can be shown that
for an initial uncorrelated network that obeys Eq. (3), arandom
edge-removal attack leads, according to Eq. (15), to p;., =

jp;kp;(/(k’)z (Appendix B). This means that the random
removal of edges cannot correlate an initially uncorrelated
network. On the contrary, a targeted edge-removal attack can
induce correlations in an initially uncorrelated network. The
proof is given in Appendix B. If, on the other hand, the
initial network is correlated, either a random or a targeted
edge-removal attack will affect the network correlations.

V. COMPARISON BETWEEN THEORY AND
STOCHASTIC SIMULATIONS

We test the goodness of the analytical approach by compar-
ing the degree distribution and the degree-degree probability
matrix obtained from the theory and from stochastic simula-
tions. The comparison is performed through the assortativity
coefficient r that is defined as follows [18]:

. (j+k) 2
L i kpik— ("5 i) . ae

2k (/2;k2> Pjk— (Zj,k (]_12% ijk)z
The following convention is used: “r” refers to the initial
assortativity coefficient, and “r’” to the coefficient after the
attack. Thus, r’ is a function of p},k; see Egs. (10) and (15).

The comparison has been performed on Erdds-Rényi,
bimodal, and scale-free networks, obtaining in all cases
an excellent agreement between theory and simulations. To
illustrate the goodness of theory, we choose to present only
results on scale-free networks given their broad applicability.
The various attacks were simulated on initially assortative
and disassortative scale-free networks. Thus, we refer to these
initial networks as the initially disassortative network (IDN)
and the initially assortative network (IAN). These networks
were generated using the method described in Ref. [19] and
their details are given below.

(1) The IDN is characterized by a negative assortativity
coefficient r = —0.168, and a power-law degree distribution
of exponent —2.3. The first and second moments of the
degree distribution are (k) = 3.2348 and (k%) = 28.9350,
respectively, and the maximum degree is 37.

(2) The TAN is characterized by a positive assortativity
coefficient » = 0.275, and a power-law degree distribution
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of exponent —2.3. The first and second moments of the
degree distribution are (k) =2.3760 and (k%) = 11.2140,
respectively, and the maximum degree is 23.

A. Results for node removal

We tested two node-removal attacks [20]: a random attack,
sometimes also referred to as failure, where f, = f, and a
targeted attack given by

1 for k> ke,
fk = 6] for k = kcut’ (17)
0 for k < key.

The first attack defines a situation in which randomly selected
nodes are removed from the network, independent of their
degree. The second attack defines a targeted attack procedure
where all nodes having degrees higher than k., are removed.
The attack intensity / of a node-removal attack is given
by the fraction of nodes that are removed from network.
For f, = f, I = f. For the attack given by Eq. (17), I =
qDkew + Zi:i]tcuﬁ-l Dk-

Figures 1(a) and 1(b) and Figs. 2(a) and 2(b) show that for
an initial either disassortative or assortative network, Eq. (9)
predicts the correct deformed degree distribution. On the other
hand, Figs. 1(c) and 2(c) indicate that for a random attack
Eq. (10) allows us to compute the correct assortativity coeffi-
cient for both disassortative and assortative initial networks.

From the figures it can be inferred that random removal of
nodes induces randomness, and consequently the assortativity
coefficient r' of the IDN increases as the attack intensity is
increased, while for the IAN, r’ decreases. In both cases, r’ —
Oas 1 — 1.

In the case of a targeted attack, the network correlations
exhibit a complex, nontrivial behavior with ups and downs as
the attack intensity is increased; see Figs. 1(d) and 2(d). This
complex behavior is also predicted by Eq. (10) which indicates
that the observed complex functional form of »” with I is not

FIG. 1. Impact of node-removal attacks on an IDN. (a) and (b)
show the degree distribution of the attacked network after the random
removal of 60% of its nodes, in (a), and the removal of the 2% of the
highest-degree nodes, in (b). The solid lines correspond to Eq. (9).
(c) and (d) show the assortativity coefficient r" as a function of the
attack intensity / for random and targeted attacks, respectively. The
solid curves correspond to the evaluation of Eq. (16) using Eq. (10).
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FIG. 2. Impact of node -removal attacks on an IAN. (a) and (b)
show the degree distribution of the attacked network after the random
removal of 40% of its nodes, in (a), and the removal of the 2% of the
highest-degree nodes, in (b). The solid lines correspond to Eq. (9).
(c) and (d) show the assortativity coefficient ' as a function of the
attack intensity / for random and targeted attack, respectively. The
solid curves correspond to the evaluation of Eq. (16) using Eq. (10).

due to arbitrary fluctuations that result from a poor statistics.
Below we offer a tentative, more physical interpretation of
these nontrivial curves.

A targeted node-removal attack affects first high-degree
nodes. For an initially disassortative network the removal of a
few of the highest-degree nodes leads to a homogenization of
the network. Nodes tend to have similar degrees, and so most
connections occur among nodes that exhibit similar degree.
Consequently, the assortative coefficient increases, becoming
even positive; see the maximum in Fig. 1(d). Further removal
of nodes has the opposite effect. This is arguably due to the
fact that after most hubs in the system have been removed, a
targeted attack is not very different from a random attack,
and so ' decreases. This latter observation can be easily
understood if we imagine a simpler scenario where all nodes
have the same degree. Then, the removal of nodes necessarily
induces heterogeneity and ' tends to 0. Interestingly, '(I) in
Fig. 1(d) is more complex than what we have just described.
Particularly intriguing is the fact that for large I values r’
seems to tend asymptotically to a small but negative value.
Although the arguments provided above do not account for all
the details of the curve, they constitute a tentative explanation
for the nonmonotonic shape of the curve and the observed
transition from disassortative to assortative.

The nonmonotonic behavior observed in Fig. 2(d) for an
initially assortative network can be understood along similar
lines. The removal of a few high-degree nodes leads to a
dramatic reduction of the number of edges running among
high-degree nodes. Consequently, the statistical weight of
those connections running between high- and low-degree
nodes can become remarkably important. Figure 2(d) clearly
shows that targeted node removal can even make the assortative
coefficient for an IAN become negative.

Figures 1 and 2 show that, despite the complexity of the
process, Eq. (10) is able to predict the correct degree-degree
correlations of the network after the attack. Deviations between
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the theory and simulations are observed when some simulation
attacks start to lead to heavily fragmented networks. As the
number of simulation attacks is increased, the agreement
between Eq. (10) and the numerically obtained r’ seems
to become systematically better. More importantly, we have
learned that a targeted node-removal attack can be used to
transform an initially assortative network into a disassortative,
and vice versa [see Figs. 1(d) and 2(d)].

B. Results for edge removal

We tested two attacks for edge removal: a random attack,
with f; ; = f, and a targeted attack [21] of the form

fij =BG )", (18)

where § is a normalization constant and « is another constant
that controls the type of attack (see also [12]). Notice that
for the same number of removed edges, different values of o
induce different effects. For instance, with « = 1, the attack
tends to affect those edges connecting high-degree nodes,
while for « = —1 edges running between low-degree nodes
are more likely to be removed. For targeted edge-removal
attack, we have conducted attack simulations using as control
parameter the (attack) exponent «, while keeping constant the
number of edges to be removed, i.e., I = const. For random
edge-removal attacks, the attack intensity 7 is simply I = f,
while for a targeted edge-removal attack, [ = Zi, jpijfij-
Figures 3(a) and 3(b), and Figs. 4(a) and 4(b) show
that Eq. (14) suffices to predict the new degree distribution
after edge-removal attacks for either a disassortative (Fig. 3)
or assortative (Fig. 4) initial network. From Figs. 3(c)
and 4(c), we learn that random edge removal, f; ; = f,induces
randomness, with the assortativity coefficient getting closer
to 0 as the attack intensifies. In summary, a random attack,

0 a (b) 0
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FIG. 3. Impact of edge-removal attacks on an IDN. (a) and (b)
show the degree distribution of the attacked network after the random
removal of 60% of its edges, in (a), and the targeted removal of
20% edges given by Eq. (18) using « = 0.5, in (b). The solid lines
correspond to Eq. (14). (c) shows the assortativity coefficient r’ as a
function of the random edge attack intensity /, while (d) corresponds
to r’, due to the removal of 3% of edges, as a function of the targeted
attack parameter «. The solid curves correspond to the evaluation of
Eq. (16) using Eq. (15).
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FIG. 4. Impact of edge-removal attacks on an IAN. (a) and (b)
show the degree distribution of the attacked network after the random
removal of 40% of its edges, in (a), and the targeted removal of
20% edges given by Eq. (18) using & = 0.5, in (b). The solid lines
correspond to Eq. (14). (c) shows the assortativity coefficient r’ as a
function of the random edge attack intensity /, while (d) corresponds
to r’, due to the removal of 5% edges, as a function of the targeted
attack parameter «. The solid curves correspond to the evaluation of
Eq. (16) using Eq. (15).

involving either node or edge removal, always weakens the
degree-degree correlations exhibited by the initial network.

A targeted attack, on the other hand, can introduce new
correlations in the network. Figures 3(d) and 4(d) show
the impact of targeted edge removal on the degree-degree
probability matrix of an IDN and an IAN with respect to
the attack parameter « for a given value of /. For an initially
disassortative network, as the attack parameter o changes from
0 to —1, the removal of edges running between low-degree
nodes gets intensified. The removal of these edges leads to the
removal of low-degree nodes from the network. This implies an
increase in the proportion of edges connecting low-degree and
high-degree nodes in the deformed network. At the same time,
the attack reduces the degree of a low-degree nodes, which
induces a further decrease of r’. This dynamics explains the de-
crease of ¥’ observed in Fig. 3(d) as we move froma = Oto —1.
For 0 < o < 1, the attack affects those edges running between
high-degree nodes. Hence, the fraction of edges connecting
high-degree and low-degree nodes increases as « — 1 and r’
gets more negative, as observed in Fig. 3(d). In summary, for
a disassortative initial network any targeted removal of edges
at constant / (with either « > 0 or o < 0) seems to increase
negative correlations, making the network more disassortative.

For an initially assortative network we observe that as «
is increased from O to 1, r’ decreases, Fig. 4(d). Arguably,
this is due to the removal of some of the abundant edges
connecting high-degree nodes, which brings in randomness.
On the other hand, as « is decreased from O to — 1, several edges
connecting low-degree nodes are removed, which leads to the
removal of low-degree nodes. As the network becomes more
homogeneous, ' exhibits an increase, Fig. 4(d). Although
not shown here, by increasing the attack intensity, a targeted
edge-removal attack can be used to transform an IAN into
a disassortative one. While the opposite could be possible,
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TABLE 1. Summary of the obtained results. Starting from an
initial network which can be disassortative (IDN), assortative (IAN),
or uncorrelated (IUN), we indicate whether the corresponding attack
induces correlations (IC), removes correlations (RC), or does not
affect the network correlations (N).

Node removals Edge removals

Initial network Random Targeted Random Targeted
IDN RC IC RC IC
TIAN RC IC RC IC
IUN N N N IC

we have not observed it numerically. Despite the apparent
complexity of process, Figs. 3(c) and 3(d) and Figs. 4(c)
and 4(d) show that Eq. (15) is able to predict the correlation
changes due to the different attacks for either disassortiative
or assortative initial networks.

Table I summarizes the results obtained for both edge- and
node-removal attacks. Numerical and analytical results for the
particular case of an initially uncorrelated network are given
in the Appendices.

VI. CONCLUSIONS

We have derived an analytical framework that has allowed
us to understand the impact of node- and edge-removal attacks
on the correlations of complex networks. Stochastic simulation
results indicate that the derived theory provides a good estimate
of the degree distribution and degree-degree probability matrix
under node- and edge-removal attacks for both, assortative
and disassortative initial networks. The main insights obtained
from this work are the following:

(1) Random node or edge removals always introduce
randomness in the deformed network which tends to become
uncorrelated as the attack intensity is increased.

(2) Targeted node or edge removals can strongly affect the
network correlations to the point that an initially assortative
network can turn into a disassortative one, and vice versa.

(3) If the initial network is uncorrelated, only a targeted
edge-removal attack can introduce correlations. All other
attacks defined in this paper keep the network uncorrelated.

These results, beyond their academic interest, are relevant
from a practical point of view. As briefly explained in
the Introduction, degree-degree correlations control several
network properties such as robustness [4—6], path length [15],
and diffusive properties [7,8,11,12], among many others. As
we have shown here, targeted as well as unintentional removal
of either nodes or edges affects the degree-degree correlations.
Consequently, the above mentioned properties—robustness,
path length, etc.—are also affected. Since most of these
properties are known functions of p; and p; j» the expressions
derived here—Egs. (9), (10), (14), and (15)—are useful tools
that allow us to recompute all these quantities for a correlated
network subject to any type of attack.
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APPENDIX A: NODE-REMOVAL ATTACK ON AN
INITIALLY UNCORRELATED NETWORK

Here, we show that for an initially uncorrelated network,
a node-removal attack cannot induce correlations. The prob-
ability p; ; of the initial network is then given by Eq. (3). In
consequence, the probability that a node loses a tip, given
by Eq. (8), becomes independent of its degree: ¢; = ¢.
Equation (3) also implies that the probability &, ,, of finding an
edge between nodes of degree 1 and v in set S becomes

up,vpy (1= fi)(1 = fp)
Zuzvupu vp, (1 - f)( _fu).

The average degree of the deformed network, (k') = > kP
and can then be expressed as

Eu,v -

(AL)

Kmax Kimax

= T\ gak(1 — gy Pal = Jo)
(k>_§k§<k)¢q A STy

Kmax 4
_N (1= f) (= 9) (q—l) gk _ g
; > el = fo) 2l )ea-o

k=0

Yok gpg (1= f) (1 — ¢)
= . A2
> e — fo (42)

Using ¢, = ¢, = ¢ and Egs. (A1) and (A2), Eq. (10) reduces to

A A
p/ _ Ip;Jp; _ Ip;Jp; (A3)
b [(17¢)Zkkpk(17fk)]2 (k)2
> e (1= fi)
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FIG. 5. Change in assortativity of an initially uncorrelated net-
work due to a (a) random node-removal, (b) targeted node-removal,
(c) random edge-removal, and (d) targeted edge-removal attack. In
(d), the attack intensity corresponds to the removal of 3% of edges.
Notice that only a targeted edge-removal attack is able to affect the
assortativity coefficient.
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This implies that under any kind of node-based attack, an
initially random network remains random. This has also been
observed in simulations as shown in Figs. 5(a) and 5(b).

APPENDIX B: EDGE-REMOVAL ATTACK ON AN
INITIALLY UNCORRELATED NETWORK

Here, we show that for an initially uncorrelated network, a
random edge-removal attack cannot induce correlations, while,
on the contrary, a targeted edge-removal attack can do it. For
an initially uncorrelated network, p; ; is given by Eq. (3), and
then the probability that a node of degree i loses a tip, given
by Eq. (13), reduces to

G = > ipifi; '

' Bl
7 (BD

Using Eq. (3) in Eq. (15), the probability that an edge exists
between nodes of degree i and j in the deformed network can
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be expressed as

Kmax Kkmax

Piy = g 2o H @0 P Y g H@.j.§)po. (B2)

u=i v=j
where H is given by Eq. (11). In the case of random edge
attack, f; ; = f, and so Eq. (B1) becomes ¢, = f. Using this
in Eq. (B2) we get

;o ipijp} _ipijp;

P [Ykpe( =] &2
This shows that under random edge-removal attack an ini-
tially uncorrelated network remains uncorrelated; see Fig. 5(c).
In case of targeted edge removal, ¢; does not become degree
independent and Eq. (B2) is not reduced to Eq. (3). This
implies that correlations have crept into the attacked network,
as Fig. 5(d) confirms. Therefore, it is only through a targeted

edge-removal attack that degree-degree correlations can be
induced in an initially uncorrelated network.
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