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Abstract. In this paper, we report a novel and efficient algorithm for
searching P2P networks having a power law topology. Inspired by the
natural immune system, it is a completely decentralized algorithm where
each peer searches by sending out random walkers to a limited number of
neighbors. As it finds other peers having similar content, it restructures
its own neighborhood with the objective of bringing them closer. This re-
structuring leads to clustering of nodes with similar content, thus forming
P2P communities. Alongside, the search algorithm also adapts its walk
strategy in order to take advantage of the community thus formed. This
search strategy is more than twice as efficient as pure random walk on
the same network.

1 Introduction

Due to the dynamic nature of large scale peer-to-peer networks, the search algorithms
used for such system need to be decentralized, self-adjusting and robust against rapidly
changing system environments. Seeking inspiration from the study of biological processes
and organisms is one possibility for coping with these problems. It is well known that living
organisms can effectively organize large numbers of unreliable and dynamically-changing
components (molecules, cells, individuals, etc.) without having explicit central coordina-
tion. Consequently, borrowing ideas from the living nature has long been a fruitful research
theme in various fields of communication engineering. The inspiration of design patterns
from biological systems has been well exploited in our work [4], where we have introduced
practically relevant algorithms for distributed computing that naturally inherit the desir-
able properties of biological systems including adaptivity and robustness.

In particular, we have taken inspiration from different properties of the humoral and
secondary immune system to design and test different random walk and proliferation based
search and community formation algorithms. The idea of forming P2P communities to im-
prove search efficiency is an ongoing research field. Many groups have explored this concept
with very specific types of networks (distributed libraries for example [7]) while other have
applied it to Erdos-Renyi networks [8]. However, except some of our previous works [1],
[3], there has hardly been work on algorithms where the search process itself triggers com-
munity formation.The idea is that the network as a whole gets trained / acquires memory



as search progresses.

Our previous works [1], [3] was a preliminary work on a grid-based topology which
could not be ported in a more realistic power law network. The algorithms presented are
completely new algorithms that have been developed based upon a much more thorough
understanding of the effect of various dynamics performed on the network. We first apply
different varieties of random and greedy search mechanisms in order to understand the
dynamics. Finally, we suggest an algorithm which consists of a healthy mix of random and
greedy walking for producing search efficiencies exceeding conventional random walk and
flooding.

Section 2 discusses in detail the behavior of the immune system and our inspirations
from it. Section 3 describes the model of the P2P network that we use and the details
of the various algorithms. Their performance in simulations is analyzed in section 4 and
a final algorithm based on these results is proposed in section 5. Finally, we conclude in
Section 6 with the possible ways of improving these results.

2 Biological Inspiration: The Immune System

The immune system displays a number of amazing behaviors and attributes that can be an
inspiration in providing robust solutions to a number of well known technological problems.
The behavior can be distinctly attributed to two different parts of the immune system -
the humoral (innate) immune system and the secondary immune system. Each of them
has been a source of inspiration as described in the following section.

2.1 Humoral Immune System

In our earlier works [1],[2],[3],[4] we had proposed a search algorithm for peer-to-peer net-
works that is inspired by the simple and well known mechanism of the humoral immune
system where B cells upon stimulation by a foreign agent (antigen) undergo proliferation
generating antibodies. Proliferation helps in increasing the number of antibodies while
mutation implies a variety of generated antibodies. Consequently the antibodies can effi-
ciently track down the antigens (foreign bodies). This is modeled by considering the query
message packet as an antibody which is generated by the node initiating a search whereas
antigens are the searched items hosted by other constituent members (nodes) of the P2P
network. Similar to the natural immune system, the packets walk through the network
followed by proliferation based upon the affinity measure between the message packets
and the contents of the node visited.

In our current work, we have analyzed the dynamics of the packet movement in greater
detail, in order to determine the parameters that control the degree of movement. The
movement of the antibodies can either be a purely random walk or it maybe a biased ran-
dom walk similar to the adhesion-based movements of cells within the extracellular matrix
(ECM) [6]. This phenomenon of cell movement guided by adhesion is called Haptotaxis,
and the movement of the query in a P2P network resembles a haptotactic cell movement
in the ECM [4],[5]. Based on this phenomenon, we model the two basic types of movement
strategies as random (unbiased movement) or greedy (movement biased by properties of
the neighborhood), respectively. The query movement itself can be subdivided into two



distinct phases - general movement /walk and proliferation, each of which can be indepen-
dently performed either randomly or greedily. The details of the four algorithms inspired
from such random and greedy approaches will be discussed in section 3.

2.2 Secondary Immune System

We have also taken inspiration from the secondary immune response mechanism, which
has the capability to develop memory over time and accordingly the antibodies produce
a quicker response [1],[3]. This decentralized memory is modeled in our P2P network by
restructuring the connections in the network in order to form virtual communities of nodes
having similar items (antigens). Each search initiates a rewiring of the network towards
community formation based upon the information content of the participating nodes. Due
to this community formation, the network gets trained with time to find similar nodes
with greater efficiency. In essence, the entire network acts as a large memory which is able
to optimize the search process. The exact details of the community formation process are
dealt with in section 3.

Based on these inspirations we were motivated to test out the concepts and understand
the underlying dynamics in order to decide what level of randomness or greediness is
optimal for best performance in P2P networks.

3 Model and Algorithms

In this section we first define the model of the P2P network that we will use in the follow-
ing, then we discuss the detailed implementation of the search and community formation
algorithms.

3.1 Peer-To-Peer Model

We assume a realistic power-law topology for the P2P network (as most of the existing P2P
networks exhibit a similar topology). Also, in order to form content-based communities,
we have classified the information content of the peers into abstract subcategories. The
details are provided below.

Topology & Network Load According to the characteristic heavy tailed nature of
power law networks, few nodes have high degrees while the majority of the nodes have
low degrees. These initial connections are assumed to form a connectivity layer among
the nodes and are hence termed as Connectivity Edges. New edges that are added to the
network with the intention of forming community structures over the connectivity layer
are called Community Edges.

For the purpose of our analysis, we consider the degree of a node as a measure of its
continuous bandwidth usage, assuming that a low bandwidth consuming gossip protocol
maintains the communication between the neighbors. Hence, there is a limit to the total
number of edges it can have. In other words, each node can sustain only a limited number
of new community edges. This increase in network load is measured relative to the initial



network degree (that is, the degree corresponding to its connectivity edges). This measure
is termed as X where

X =
New Degree − Initial Degree

Initial Degree

The maximum network load that each node can tolerate is assumed to be Xmax times the
initial network load (that is, the initial degree). Also, during the search protocol, there will
be bursts of high bandwidth usage when a node needs to communicate with its neighbors.
This is also limited by a maximum number of neighbors that a node can contact in a single
burst of communication. Let this limit be known as Ymax.

Profile Distribution In a file sharing P2P network, each node shares some data with
other nodes in the network. These data are categorized into abstract categories called
Information Profiles. The profiles (PI) therefore reflect the informational content as well
as the informational interest of the user. A profile is represented in our system as a m-bit
binary value, thus producing 2m distinct categories. These profiles are distributed among
the nodes following Zipf’s Law with the idea that some categories of data are highly
popular whereas others are not.

Search & Matching A search query is defined as a m-bit binary value, which is taken
to be equal to the information profile PI of the node that is initiating the search. This
is based on the simple idea that the user of the node would like to search for items that
fall into the same category as his own information content. In order to find nodes having
similar content, the query packet is forwarded in the network according to the rules set by
the search algorithm. Each node that encounters the query packet tries to match its own
profile with the queried profile. When a node is found whose information profile exactly
matches the query profile, it is said to be a search hit and the initiator node and matched
node are said to be similar nodes.

3.2 Algorithms

As indicated in section 2, we would like to test out the four major types of the proliferation-
based search algorithms – named RR, RG, GR and GG. In this section, we describe these
algorithms in full detail. As mentioned earlier, there are two distinct processes in the
algorithms – Search and Community Formation.

Search algorithms
Neighbor selection strategy RR GR RG GG
During query forwarding Random Greedy Random Greedy
During proliferation Random Random Greedy Greedy

Table 1. Neighbor selection strategies in different search algorithms

Search — Any node in the networks can start a search query. Let us say, it is initiated
at a node U . It sends a search query message M to a few of its randomly selected (at
most Ymax) neighbors, carrying the information profile (PI) of U as the query profile to
be searched. This message packet walks through the network until it comes across a node



whose information profile matches with the queried profile. Then it is said to have made
a search hit. Let that node be called node A. Following the search hit, A performs two
operations - Proliferation and Community Formation. A proliferates (replicates) the query
to a number of its neighbors (at most Ymax neighbors) with the aim of making a more
intensified search in its vicinity. This is done to exploit the fact that due to community
formation, nodes similar to A (hence similar to U) should be present in the neighborhood
of A. Moreover, the general walk is further optimized by making each query packet store
the nodes it has traversed through, so that they are avoided while forwarding the packets.
We next explain the latter process, that is, Community Formation.

The neighbor selection process for general walking and proliferation decides the ran-
domness / greediness of the overall walk mechanism. The neighbors for the general query
forwarding can be selected in two ways.

– Random: Any neighbor connected by any type of edge is chosen randomly
– Greedy : A neighbor connected by community edges is preferred over other

neighbors

Similarly, during proliferation, the neighbors can be chosen in either of the following ways.

– Random: Any number of the connected neighbors are chosen without any
bias

– Greedy : Neighbors connected by community edges are preferred over other
neighbors

Various permutations of these general walk and proliferation schemes lead to four different
types of searches. As shown in table 1, they have been named by two letters based on the
Random or Greedy scheme used. The first letter represents the scheme used for general
walk and second letter for the proliferation scheme.

Community Formation — Whenever there is a search hit, we want to evolve the topol-
ogy in order to increase the probability of the next query reaching the node A from U . This
can be ensured simply by connecting the similar nodes U and A with a new community
edge. This brings the similar nodes within one hop distance of each other, thus increasing
the probability of reaching it in the next search attempt. On the other hand, due to the
network load limit of Xmax, the algorithm is forced to delete edges when a new edge AB
causes the network load of A and/or B to exceed its limit. Hence, we delete the edge with
the following strategy. If both A and B exceed limits because of the new edge AB, then
this edge is removed. If either A or B exceeds the limit, then another community edge
is randomly selected for deletion from the corresponding node. Furthermore, each edge is
added with a probability of Padd. This regulates the speed of addition and prevents the
network load of each node from reaching its limit very fast. Hence each node gets ’time’
to learn and the network does not undergo unnecessarily a huge amount of churn to stabi-
lize. It must also be noticed that we are churning only the community edges, and not the
connectivity edges, which ensures that the whole network remains connected at all times.

3.3 Evaluation Criteria

We will like to evaluate the performance of these algorithms based on the following criteria.



Search related metrics Let us assume that the ith search produces a total of hi search
hits using a total of pi packets. Let the total number of nodes similar to the initiator node
(that is the maximum possible search hits) be Hi. Let the search be performed n times.
Then the search-related metrics are defined as follows:
Total Hit Count : Average number of hits (similar nodes) found in each search, i.e.

∑
i hi/n

Efficiency : Average number of hits per search packet, i.e.
∑

i
hi

pi
/n

Similar Node Coverage Average fraction of all the similar nodes present in the network
that is returned in each search, i.e.

∑
i

hi

Hi
/n.100.

Metrics related to community formation The community edges make connections
between similar nodes only. If we consider nodes of a particular profile, then these edges
form a community overlay network over these nodes. The size of the largest connected
component (LCC) in a network is generally considered as a measure of its connectedness.
Since, we desire that all the nodes of a profile are well connected by the community overlay
network, we take the LCC of the network as a measure of the ‘goodness’ of the community
structure. It is expressed in terms of the percentage of nodes of each particular profile that
lie within the LCC. This is averaged over all the profiles in the system, and is termed as
Average LCC of the community structure.

4 Simulation and Results

In order to test out the performance of the proposed algorithms, we resorted to simulations
whose details are as follows.

4.1 Simulation Scheme

For simulating our algorithm, we took a power-law network of 1000 nodes, generated using
the Barabasi-Albert preferential attachment method, which gave us a gamma of approx
2.0. 16 profiles (m = 4) were distributed among the nodes by Zipf’s law with a gamma of
0.8. Each search query is propagated in this network up to 15 hops. A set of search queries
(generally 200) executed on random nodes constitute a generation and all performance
metrics were averaged over a generation. Edge addition probability Padd is 0.2, while the
network load limit Xmax is 1.5. Ymax was chosen to be 3 nodes. A number of generations
performed on the same network constitute a simulation. Multiple simulations are per-
formed on different profile distributions for averaging the performance of the algorithm.
In order to prove the importance of community formation, we performed a fairness test

by comparing the performance of community edge addition (CEA) of RR with the perfor-
mance of a RR-type search on a network with an equal number of edges. In this equivalent
network, we start from the same initial power law network as the actual simulated network,
and we compensate for the increase in the edge count of the latter (due to community edge
addition) by randomly adding an equal number of edges (that is, random edge addition
(REA))in the equivalent network.

4.2 Results and Analysis

First of all, we present the performance of RR with community edge addition versus ran-
dom edge addition on an equivalent graph. Figure 1(a) shows that as generations of search
progress, the total number of hits returned by community edge addition increases steeply
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Fig. 1. Performance of RR search using Community Edge Addition (CEA) compared
to Random Edge Addition (REA)

compared to random edge addition, finally producing an average of 20 hits compared to 11
by the latter. In terms of efficiency, the former performs up to 20% better than the latter
(Fig. 1(b)). This clearly proves that strategic addition of edges by community formation
improves the search efficiency, unlike random addition edges.
Next we present the performance of RG and GG (we omit the result of GR due to lack of
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Fig. 2. Performance of RR, RG and GG wrt hit count and search efficiency

interesting inferences). Figure 2(a) shows that on average, the number of results brought
by both types of greedy-proliferation based searches is comparable, while being more than
2.6 times better than that of RR. In terms of search efficiency, GG and RG perform about
30% and 50% better than RR, respectively. Also, GG saturates much slower compared
to RG. Both these figures confirm without doubt the importance of greedy walking in
proliferation. This is actually obvious – only by greedily choosing the community edges
can the already formed community be efficiently searched.

The most obvious question that arises is - what produces the difference in the search
efficiencies of GG and RG? The answer is evident in figure 3(b). On the average, each
search by RG is able to retrieve almost 50% of all the similar nodes that exist in the



network, while GG is able to retrieve only up to 40%. This is primarily because of the
extent of community formation in both cases. To quantitatively measure the community
formed between nodes of a particular profile, we calculate the size of the largest connected
component (LCC) in terms of the fraction of similar nodes it contains. The larger this
fraction, the more well connected they are. Referring to Fig. 3(a) again, we see that the
increase in percentage of similar nodes returned correlate well with the average LCC size.
This proves the direct correspondence between the goodness of the community structure
and the search performance. In fact, on one hand, greedy general walking in GG is unable
to produce as good a community structure as the random walking in RG, since it directs
all the query packets into already discovered areas of the network and hence inhibiting the
exploration (that is, node discovery). But on the other hand, RG is also not able to exploit
the good community structure created, as it is returning smaller fraction of similar nodes
compared to that present in the average LCC. Overall, it produces a more efficient search
in case of RG than GG.

GG also takes a long time to reach saturation. This is due to the fact that even though
GG is unable to explore as much in the initial generations, in the later generations, while
the node discovery of RG hits almost zero, GG continues to find new nodes at a very low
rate. Hence, the community structure in GG continues to grow, slowly improving the search
efficiency until it saturates.
To summarize, while a random general walk has a better performance in terms of node
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discovery and node retrieval, greedy general walk is better at efficiently searching the
already discovered nodes. Hence, it will be beneficial if we are able to develop a search
algorithm that embraces the best of both.

5 An Approach to Self-Adjusting Search

Extending the idea of antigens and antibodies further, we want to design an algorithm that
has the intelligence to adjust itself between two phases - Exploratory Phase and Search
Phase. In the former phase, the antibodies would explore the entire network in order to
find the location of antigens. In the latter phase, when the antigens have been located, it
would like to redirect all its effort towards the affected areas. In terms of our problem, our
search algorithm should, in the initial stages, explore the graph with maximum probability



(for developing the best community structure as soon as possible) and in the later stages
search the network with maximum efficiency. In other words, it must be able to identify
automatically whether it should put the maximum effort in exploring the network or in
searching the network efficiently. We propose such an algorithm in the next section.

5.1 Algorithm

As evident in earlier results, RG performs a better exploration of the network, while GG
performs a better search of the already explored regions. Each of the algorithms is indi-
vidually suited for each of the two phases, respectively. So we need to design an algorithm
that can adjust itself based on the phase of the system, in a decentralized manner. The key
requirement for designing such an algorithm is to identify a property / parameter in the
network based on which we can control the randomness / greediness of the search process.

In order to make the search tunable to random or greedy schemes, each query packet
now holds another parameter - Random Walk Probability (P ). At the time of initiation of
the search, the value of the probability is set by the initiator node. This probability is also
copied to the new packets created at the time of proliferation. Based on this probability,
the non-matching nodes, through which the packets pass, will either forward the packet
randomly (like R∗) or greedily (G∗). In the matching nodes, the behavior is always the
same - greedy proliferation (as in ∗G). The probability can be set to different values be-
tween 0.0 and 1.0 to get a behavior in between pure RG) and pure GG.

Next, we need to choose a suitable parameter for determining the phase of the system
in a decentralized manner. We have chosen this to be the X value of the node. If X is
low, then it means that the node has the capacity of accepting new community edges and
expanding the community structure. In that case, it should try to explore the network for
previously undiscovered similar nodes with a higher probability. Conversely, when X is
high and near its limiting value, its capacity of adding to the community structure is low.
Therefore, instead of exploring, it should try to efficiently search the community structure
that has already been formed around it. More formally, the probability of random walk is
calculated as

P (random walk) = 1− XA

Xmax

where XA = X of the node A that is initiating the search. The overall behavior would be
as we desire - initially, when X is 0 for all the nodes, it will behave like pure RG, and later
as the X of all the nodes reach Xmax, the probability of random walk reduces to zero,
that is, it performs pure GG on an optimal community structure.

5.2 Simulation Results

Figures 4(a) and 4(b) reflect what had been expected. It is able to produce the best possible
community structure as fast as RG, and finally produces a search efficiency that is more
than 40% better than GG (and 90% better than the RR).

6 Conclusion & Future Work

This paper has presented a community-based search algorithm which derives its inspiration
from natural immune systems. The beauty of the algorithm lies in its simplicity. However,
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this simple decentralized algorithm generates emergent properties like a complex adaptive
system, whose underlying guiding rules are generally also very simple. We find that as
a result of the algorithm, the P2P network ‘learns’ and subsequently develops memory,
whereby the search efficiency improves dramatically after some initial learning/training
phase. The basic strengths displayed by this algorithm need to be further explored and
analyzed by building a mathematical model, and also by applying it in more realistic
circumstances in the near future.
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