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Abstract| This paper reports the design of a T est
P atternGenerator (TPG) for V LSI circuits. The on-
chip TPG is so designed that it generates test patterns
while avoiding generation of a given Prohibited Pattern
Set (PPS). The design ensures desired pseudo-random
qualit y of the test patterns generated.The experimental
results con�rm high quality of randomness while ensur-
ing fault coverage close to the �gures achieved with a
typical Pseudo Random Pattern Generator (PRPG) de-
signed around maximal length LFSR=CA. Compared to
the conventional PRPG it incurs no additional cost.

I. Introduction
This paper addresses a real life problem usually en-

countered by the test engineers of a semiconductor com-
pany. T othe best of our kno wledge nopublished lit-
erature exists for an elegant solution of the problem
reported in this paper.

The pseudo-random pattern generators (PRPGs)
are widely used in V LSI circuits [6]. The PRPG gen-
erates a large volume of patterns to test di�erent CUT s
(Cir cuitUnder Test) of a V LSI chip that may be ac-
cessed through a full or partial scan path. How ever,
there are situations where some patterns are declared
prohibited to a CUT . If the CUT is subjected to such a
pattern of the prohibited pattern set (PPS), it may be
placed to an undesirable state and even may get dam-
aged. The manufacturers do face the problem while
testing the chip equipped with on-chip TPG.

In the above context, this paper proposes the de-
sign of a test pattern generator (TPG) to generate the
test patterns without the PPS speci�ed for the CUT .
Moreover, the design ensures the desired randomness
qualities of the generated patterns and maintains the
fault e�ciency in a CUT .

The theoretical framework of Cellular Automata
(CA) noted in [1] has provided the foundation of this
work. The class of CA referred to as non-maximal
length group CA are used for the design of the TPG.
Compared to the conven tionalPRPG, built around
maximal length CA=LFSR (Linear F eedback Shift
Register), the TPG proposed in this paper does not
incur any additional cost.

The proposed methodology can be also implemented
with LFSR based TPG. How ev er,the modular and
cascadable local neighborhood structure of cellular au-

tomata suits ideally for VLSI applications.
Layout of the paper is as follows. A brief intro-

duction to CA preliminaries (Section II) precedes the
proposed solution methodology reported in Section III.
The experimental results are subsequently reported in
Section IV which clearly establish the proposed design
of TPG as the most desirable solution for the real life
problem addressed in this paper.

II. Cellular Automata Preliminaries
The cellular automata (CA) consists of a number

of cells arranged in a regular manner, where the state
transition of a cell depends on the present states of its
neighbor. A CA cell contains memory element (FF )
and can store a value from the set f0,1g 2 GF (2) (Ga-
lois Field (2)) - such a CA is referred to as GF (2)
CA. If the next state of a cell is assumed to depend
only on itself and its tw oneighbors (left and right),
then this leads to 3-neighborhood dependency. In a
3-neighborhood CA, the state of the ith cell at time
(t+ 1) is denoted as

qt+1
i

= f(qt
i�1; q

t
i
; qt
i+1),

where qti�1, q
t
i and qti+1 are the states of the (i� 1)th,

ith and (i + 1)th cells respectively at time t; f is the
next state function of the CA. The details on cellular
automata and its applications are reported in [1] [5].
Characterization of cellular automata : An n-

cell GF (2) linear CA can be characterized by an n�n
characteristic matrix T, where

Tij =

8<
:

1; if the next state of the ith cell depends
on the presen t state of thejth cell
i, j = 1, 2, ..., n

0; otherwise

If w e restrict to the 3-neighborhood dependence,
then T becomes a tridiagonal matrix with elements
from GF(2). The n-degree polynomial of which T is a
root is called the characteristic polynomial of the CA.

If all the states lie on some cycles, the CA is referred
to as group CA. The TPG proposed in this paper em-
plo ysgroup CA.
Properties of Group CA: All the states of a CA

lie on some cycles i� its T matrix is nonsingular - that
is, for a groupCA the det[T ] 6= 0. The group CA can be
classi�ed as maximal-length and non-maximal length
CA. The maximal length CA (Fig.1) is the special
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Fig. 1. A 4-cell maximal length group CA

class of group CA ha ving a cycle of length 2n � 1 with
all non-zero states, where n is the n umber of cells in the
CA. Maximal length CA generates excellent pseudo-
random sequence [6].

The characteristic polynomial of an n-cell maximal
length CA is the nth-degree primitive polynomial. F or
a non-maximal length CA, the characteristic polyno-
mial f(x) gets factored to invarian tpolynomials (ele-
mentary divisors), f(x) = f1(x)f2(x) � � � fn(x). Each
of the elementary divisors fi(x) forms cyclic subspace
- which leads to the generation of multiple cycles. The
entire state space V of a non-maximal length group CA
is the direct sum V = I1+ I2+ � � �+ In, where Ii is the
cyclic subspace generated by fi(x).

The 7-cell CA of Fig.2 is a non-maximal length
group CA with its states on 4 cycles. The pri-
mary cyclic subspaces (cycle length 7 and 15) of the
state space V are generated by the elementary factors
x3+x+1 and x4+x+1 of the characteristic polynomial
x7+x5+x3+x2+1. The secondary cycle of length 105
is generated through combination of primary cycles.

III. Design of The TPG
This section introduces the design of the TPG which

can only generate the patterns safe for the circuit - that
is, free from the prohibited pattern set (PPS).
Overview of the proposed design: The pat-

terns generated from a maximal length CA display bet-
ter "randomness" qualit yand hence used as Pseudo
Random Pattern Generator (PRPG) for testing V LSI
circuits. However, the n-cell (n � 16) non-maximal
length group CA ha ving a su�ciently large cycle length
doesn't su�er in respect of randomness qualities and
also can be used as the TPG for a CUT . This observa-
tion has been validated through exhaustive experimen-
tal results reported in Se ction IV.

In the proposed design, the non-maximal length
group CA is considered as the TPG, where the CA
state space is divided into multiple cycles; at least one
of the cycles has large cycle length. The patterns, pro-
hibited to the CUT , are made to fall in the smaller
length cycles whileone of the bigger cycles is utilized

T1 = 
0  1  0  0  0  0  0
1  1  1  0  0  0  0
0  1  1  0  0  0  0

0  0  0  1  1  1  0
0  0  0  0  1  0  1
0  0  0  0  0  1  1 7 x 7

0  0  1  0  1  0  0

{pps} = 0 0 0 0 1 1 0
0 0 0 0 0 1 0
0 0 0 1 0 0 1
0 0 0 0 1 1 1
0 0 0 1 1 1 1
0 1 1 0 1 0 0
1 1 0 1 1 0 1
1 0 1 1 0 0 1
0 1 0 0 1 0 0
0 0 1 0 0 0 1

a) Prohibited pattern set and T matrix of the CA
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Fig. 2. PRPG without the prohibited patterns

to generate the test patterns. The above discussions is
next illustrated with an example.

Let us consider the design of a TPG for a circuit with
7-primary inputs (PIs). The PPS of the CUT contains
10 prohibited patterns as shown in Fig.2(a). The 7-cell
group CA represented by [T1]7�7 matrix (Fig.2(a)) can
be selected as the candidate TPG. The states gener-
ated by the CA are divided into three primary cycles
of length 1, 7 & 15 and only one large secondary cycle
of length 105 (Fig.2(b)). Out of the giv enPPS, the
cycle II (length = 7) contains 3-prohibited patterns
PPS1=f0110100, 1101101, 1011001g, whereas the pro-
hibited patterns PPS2 = f0000110, 0000010, 0001001,
0000111, 0001111g fall in cycle III (length = 15). That
is, out of 10, the 8 prohibited patterns (PPS1 & PPS2)
are co vered by the cycles II and III. Therefore, the pat-
terns of the larger length cycle (Cycle IV ) can be used
for testing the CUT . Cycle IV is free from 80% of
PPS.

The rest 2 prohibited patterns f0010001, 0100100g,
covered by the cycle IV , are separated by a distance of
10 time steps - that is, T 10(0010001) = (0100100). T o
avoid these tw o prohibited patterns, theCA is loaded
with 0100100 and can run for L=94 time steps to
generate test pattern sequence starting from 1111110
(Fig.2(b)). In e�ect, the group CA (T1) with 0100100
as the seed is a desired TPG.

We introduce the follo wing terminologies to desig-
nate the cycles of a non-maximal length group CA.
T argetCycle (TC): The cycle of largest length gener-
ated by the CA.
R edundant Cycle (R C):The cycles other than TC -
these are redundant in the sense that these are not
used for generation of pseudo random test patterns.
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The design of the TPG for an n� PI CUT should
satisfy the following constraints:

C1: The TPG is synthesized out of an n-cell non-
maximal length group CA ha ving a number of cycles.
One of the cycles referred to as Target Cycle (TC) can
be used for generation of pseudo-random test patterns.

C2: Most of the patterns of PPS lie in the cycles
referred to as redundant cycles (RCs).

C3: The remaining members of PPS, if there are
an y,should get clustered in the TC within a smaller
distance Dmax so that most of the patterns of TC can
be employed for testing theCUT in a single run.

A. Group CA Satisfying the Constraints

It has been established in [7] that the generation of
CA based TPG satisfying all the constraints C1; C2;
and C3 is a hard problem. F urther, the resulting CA
should have three neighborhood since local neighbor-
hood interconnects is desirable for on-chip implemen-
tation of the TPG. This leads to unsolvability of the
problem. So we proceed to develop an e�cient heuris-
tic that generates acceptable solution for majority of
the problem instances.

A.1 Design Satisfying Constraint C1

An elegant method to synthesize a group CA in O(n)
time for a giv en cycle structure has been dev eloped.
The synthesis algorithm accepts the cycle lengths as an
input and generates the T matrices & its cyclic compo-
nen ts, as the output.

F or the current problem, the n-cell CA based TPG
for a given CUT with n-PI (Primary Input), should
have a TC with length greater than or equal to:

(i) 3(2n-1)/4 for n � 16, and (ii) (2n-1)/2 for n � 16,
to ensure the desired pseudo random quality of the pat-
terns generated by the TC. The outline of the synthesis
algorithm is noted below for the simple case where RCs
have three cycles - one of length 1 with all 0's state.

Input: (i) n, (ii) the length of TC (Target Cycle)
Output: (i) T matrix of the non-maximal length group CA, (ii)
the resulting cycle structure
Step 1: Generate the num bersa & b such that

� a and b are m utually prime
� a + b = n
� (2a � 1) � (2b � 1) is close to TC

Step 2: Generate T matrices Ta and Tb corresponding to maximal

length CA of size a and b respectively

Step 3: Place Ta and Tb in bloc k diagonal form [2] to derive

Tn�n corresponding to the desired CA

For n = 7 the TC should have length of 96 (� 3=4�
127); a and b are assumed to be 3 and 4. The algorithm
syn thesizesthe CA ha vingcycle structure 1(1), 1(7),
1(15), 1(105) (that is, one cycle of length 1, 7, 15, and
105) as sho wn in Fig.2. Its Cycle IV of length 105
satis�es the constraint C1.

The synthesis algorithm generates a set SCA of CA
satisfying the constraint C1. Next we identify a subset
S0
CA

� SCA that satisfy the constraints C2 and C3.

A.2 Subset SatisfyingConstrain ts C2 and C3

The proposed methodology for generation of S0
CA

�
SCA aims to ensure that the Redundant Cycles (RCs)
of the CA that satis�es the constraint C1 cover max-
imum number of prohibited patterns 2 PPS. The
necessary and su�cient conditions to be satis�ed to
achiev e this goal are next discussed after introducing a
few commonly used terminologies:
Rank: The rank of a set is de�ned as the number of

independent vectors in the set. F or example, the rank
of PPS in Fig.2 is k=7.
Basis: A set S=f u1; u2; ��; ung of vectors is a ba-

sis of a pattern set PS, if every vector v 2 PS
can be uniquely written as the linear combination of
ui 2 S ;8i = 1; 2; � � � ; n. The number of basis vectors
in S is the rank of the set PS.
Vector Space: A vector space V over a �eld K
� is a commutativ e group under addition
� for any scalar k1; k2 2 K and any vector u; v 2 V ,
k1:(u+ v) = k1:u+ k1:v,
(k1 + k2):u = k1:u+ k2:u and
(k1:k2):u = k1(k2:u)

� unit scalar 1 2 K, where 1.u = u
Subspace: Let W be a subset of a vector space V

over a �eldK. W is called a subspace of V ifW is itself
a vector space overK with respect to the operations of
vector addition and multiplication on V .
The necessary condition: It is assumed that, the

number of Redundant Cycle (RC) in the synthesized
CA 2 SCA is 3. On exclusion of trivial cycle (with
all 0 state), the number of RCs is assumed to be 2 in
the rest of this paper. However, its generalization (#
RC � 2) can be easily implemented.

The prohibited pattern set fPPSg is en tirely cov-
ered by the tw o non-trivial cycles ofRC implies that,
the PPS should get dividedin to tw o disjoint pattern
sets (PPS1 & PPS2) where PPS1 falls in the subspace
S1 and PPS2 in subspace S2. The follo wing theorem
formalizes the necessary condition for achieving an ex-
pected solution - that is the existence of a linear opertor
T with unrestricted neighborhood.

Theorem 1: If the rank of a pattern set (PPS) is
k � n and k1 & k2 are the ranks of two disjoint subsets
PPS1 & PPS2, where PPS1 [ PPS2 = PPS, then
a linear operator T of rank n will generate tw o disjoint
subspaces containing PPS1 & PPS2 respectively only
when k1 + k2 � n.

Proof: Let us assume that u and v are the vec-
tor space encompassing PPS1 and PPS2 respectively.
Hence, the dimesion of u � k1 and the dimesion of
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v � k2. If V is the direct sum of u and v - that is
u+ v, then the dimension of V is at least k = k1 + k2.
A linear operator T of rank � k can be constructed to
generate V . Hence, to construct a T with rank n, the
condition k1 + k2 � n must be satis�ed.

In order to illustrate the result of Theorem 1, let us
assume that the PPS (of rank k = 7) noted in Fig.2(a)
be broken up into

0000110 0110100
0000010 1101101

PPS1 = 0001000 & PPS2 = 1011001
0000111 0100100
0001111 0010001

where the rank of PPS1 and PPS2 are k1 = 4 and
k2 = 4 respectively. Since, k1 + k2 6= k, w e can
conclude that there is no such CA which accommodates
the pattern set PPS1 and PPS2 in its tw oRCs.

By con trast, if PPS2 gets modi�ed to PPS
0

2 (as

noted below) and PPS0=PPS1 [ PPS
0

2,
0000110
0000010 0110100

PPS1 = 0001000 PPS
0

2
= 1101101

0000111 1011001
0001111

then the rank of PPS0; PPS1 and PPS
0

2 are 7, 4 and
3 respectively. Now, since k = k1 + k2, the required
subspaces exist and the pattern set PPS1 & PPS02 can
fall in t w o separateRCs of a group CA.
The su�cient condition: If a pattern set PPS

satis�es the necessary condition, it results in a linear
operator T . However, the derived T should satisfy the
3-neighborhood restriction. The su�cient condition for
the existence of a desired 3-neighbourhood CA based
TPG is formulated in the next theorem.

Theorem 2: Let a given PPS be partitioned
into disjoint subsets PPS1 & PPS2 with basis
b1 = fu1; u2; ��; umg and b2 = fum+1; um+2 � �; ung
respectively. A CA can be synthesized with elements
of PPS1 and PPS2 in its tw odi�erent cycles if each
individual basis fb1; b2g is a v alid basis of the subspace
of the CA

A heuristic scheme is proposed to achieve a faster
but approximate solution for iden tifyingS0

CA
� SCA

while verifying the necessary & su�cient conditions for
eac h member of the SCA deriv ed for the given PPS.

B. The Heuristic Solution
The problem de�ned in the previous Se ctionis hard.

How ever, veri�cation of each solution that satis�es the
su�cient and necessary conditions (noted in the earlier
subsection) is accomplished in polynomial time. The
cardinality of PPS for all practical purpose is very
small (we have assumed it to be at most 25). Moreover,
the set of basis which supports a valid 3-neighborhood
CA is a small subset of the set of basis represented b y
an y linear operatorT . This fact drastically reduces the
solution space. F urther, the design does not require the

strict inclusion of all the patterns 2 PPS in the RCs; a
few of these may as well be included in the TC (Target
Cycle) satisfying the constraint C3.

Acceptable criteria: After exhaustive experimen-
tation w e set the values of the following parameters
in order to ensure the desired pseudo-random qualities
of the patterns generated by the TC employed for the
TPG. The approximate solution is acceptable only if:
(i) the 75% of PPS falls in the RCs, (ii) the TC, gener-
ating the test pattern sequence, is not less than q=50%
of the maximal length ((2n� 1) for an n-cell CA) with
n > 16, and (iii) the value of Dmax (maximum dis-
tance lost in the TC to a void generation of any PPS
element) is 10 % of the cycle length.

F or a given PPS the veri�cation algorithm performs
the following basic tasks on the members of SCA

1. Finding the basis of the RCs.
2. Estimation of the number of prohibited patterns
that fall in the RCs.

3. Computation of the value of Dmax in case a few
members of PPS are covered by the TC.

These three tasks are elaborated with illustration.

Task 1. Finding the Basis of the CA sub-

spaces generated by the Redundant Cycles RCs:
The synthesis of CA is follo w ed by enumeration of ba-
sis of the each individual subspace generated by the
RCs of the CA. The elements of subspaces - that is,
the elements lying in the RCs of length l1 & l2 (say)
can be found out by evaluating the null space [1] of
T l1 + I and T l2 + I . The basis fa1; a2; ��; al1g and
fb1; b2; ��; bl2g for each individual set can be computed
by any standard basis-�nding algorithm (Row Space
Algorithm and Casting Out Algorithm) [2].

Example 1: The basis of RCs (cycles III and II )
of the CA in Fig.2(b) are A = fa1 = 0000001, a2 =
0000010, a3 = 0000100, a4 = 0001000g & B = fb1 =
0011111, b2 = 0101011, b3 = 1000110g.

Task 2. Estimation of the number of prohib-

ited patterns in the RCs: On execution of T ask1
we have a candidate CA with (say) tw o subspacesS1
and S2 and their basis corresponding to the tw oRCs.
A pattern 2 PPS falls in the subspace S1 or S2 if it can
be generated by either of the basis set. Thus the per-
cen tage of prohibited patterns covered by the RCs can
be computed as illustrated in the following example.

Example 2: It is possible that the 8 patterns of PPS
in Fig.2(a) can be represented by the basis A and B of
Example 1. The patterns that fall in cycle III are rep-
resen ted b yA, whereas the patterns represented from
B fall in cycle II.
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Patterns represented by A Patterns represented by B
0000110 = a2 + a3 0110100 = b1 + b2
0000010 = a2 1101101 = b2 + b3
0001001 = a1 + a4 1011001 = b1 + b3
0000111 = a1 + a2 + a3
0001111 = a1 + a2 + a3 + a4

The percentage of prohibited patterns covered in the
tw oRCs = 8/10= 0.8 or 80 %.

Task 3. Computation of Dmax: The patterns
that are not covered by the RCs must fall in the TC.
Let PPS00 is the set of prohibited patterns that fall in
the TC. For ev ery pattern Pi 2 PPS00, load the CA
with Pi and then run for Di time steps to cover all the
patterns in PPS00. Then the Dmax can be computed
as Dmax = min(Di);8i.

Let the terminal statesof the en tire span (denoted
as Lmax) covered in the TC be P1 and P2. The TPG
should beloaded with a seed P2, where T

Dmax(P1) =
P2. The TPG will not encounter any member of PPS
till it reaches P1. If Dmax is within the tolerable limit,
the CA is accepted. Otherwise, the search for a better
CA is continued.

Example 3: The patterns fP1=001001 & P2=0100100g

are not covered by the tw oRCs (Fig.2(b)). T o get
Dmax, T1 is multiplied with P1 until T d1

1 �P1 = P2.
Here, Dmax=d1=10. So the TPG desiged with the TC
can generate 105-11=94 test patterns.

The logical steps for the complete design of the TPG
are given in the following algorithm.

A lgorithm 1: Design TPG
Input : Prohibited pattern set PPS, n� PI CUT
Output : (i) CA based TPG (ii) seed (iii) test results (fault
coverage, no. of test patterns, etc) for the CUT

Iterate for a number of times f
Step 1: Randomly synthesize a non-maximal length group CA
with required cycle structure - that is generate a member of SCA
satisfying the constraint C1

Step 2: Iden tify theTC and RCs
Step 3: Find the basis of the RCs
Step 4: P artition thePPS with respect to the bases of the RCs
Step 5: Find percentage of prohibited patterns covered byRCs
Srep 6: Find Dmax to �t the rest of the PPS covered by the TC
Step 7: Chec k whether theCA meet the Acceptable Criteria
If yes then sele ct theCA as the TPG else

Iterate for the next CA g
Step 8: Find a set of v alid seeds in theTC of the selected CA
& run the CA for maximum of Lmax cycles generating the test
patterns
Step 9: Evaluate fault coverage of the CUT with each of the
valid seeds
Step 10: Select the seed with maximum fault coverage

IV. Experimental Observation

Real life data in respect of PPS for a CUT is propi-
tory in nature and not usually available. In the absence
of real life data, the experiment is conducted for di�er-
ent randomly generated PPS. The number of prohib-
ited patterns for a CUT is expected to be very small
and we have set the value as 25 for a CUT . The suc-
cess rate of the proposed solution will be substantially

TABLE I

Success rate of the TPG design

(1) (2) (3) (4) (5) (6) (7)
# (%) PPS Avg #
Cell jPPSj TC RCs in RCs Dmax Itern

9 9 465 15,31 75 48 25
14 15 14329 7,2047 80 1223 20
14 15 8191 1,8191 95 106 23
16 20 57337 7,8191 65 21259 50
16 20 32767 1,32767 97 259 17
17 25 65535 1,65535 94 1000 25
18 25 131072 1,131072 98 336 13

24 25 223 � 1 1,(223-1) 84 18121 14

26 25 225 � 1 1,(225-1) 78 42342 14

32 25 * (215-1),(217-1) 89 33571 16

33 25 * (216-1),(217-1) 95 17498 21

35 25 * (217-1),(218-1) 97 7853 12

36 25 * (217-1),(219-1) 95 14322 18

41 25 * (220-1),(221-1) 82 31132 14

43 25 * (221-1),(222-1) 93 20211 15

* indicates that the cycle length � 2n � 2n=2

better with real life PPS data which are expected to
have certain correlation rather than being random in
nature.

Table I depicts the summary of the success rate in
designing the TPG that generates good quality pseudo
random patterns while avoiding generation of the given
PPS. The value of n and cardinality of PPS are noted
in Column 1 & 2. Column 3 denotes the length of TC,
while Column 4 displays the length of the RCs. F or
a particular value of n, the experimentation is done
for 10 di�erent randomly generated PPS. The average
percentage of prohibitive patterns which are covered
by the RCs is noted in column 5. The value of Dmax

is given in Column 6. Finally, the average number of
iterations taken to arrive at the solution of identifying
the CA based desired TPG is noted in the last column.
Study of randomness property: The random-

ness property of the patterns generated by the TC, for
di�erent values of n, are studied, based on the metric
proposed in [8] and DiehardC [9]. DiehardC 1.01 is a
public domain tool which supports randomness testing
of a set of patterns. It consists of 15 di�erent tests. The
results of 10 tests are noted in Column 1 of Table III.
Each test produces a set of 'p' values. F or a pattern set
with good randomness quality, the values of p's will be
uniformly distributed betw een 0.001 and 0.999.

A comparative study on randomness quality of the
patterns generated by the proposed TPGs and the cor-
responding maximal length CA is presented in Tables
II & III. Column 1 depicts the names of the 6 tests.
The columns under the heading of `Max' specify the
test results for an n-cell maximal length CA, while the
columns under TPG signify the result out of the pat-
terns generated by the proposed design. Each of the
tests is performed for a number of runs with di�erent
seeds. The results noted for maxlength CA and the
proposed TPG are the average of the results produced
with di�erent seeds. Here `pass' implies that the test
succeeds at least for 75% cases.
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TABLE II

Randomness Test I

Random n = 9 n = 15 to 20
T est Max TPG Max TPG

Gap test pass pass pass pass
Run test pass fail pass pass

Serial corr test pass pass pass pass
Equidist. test fail fail fail fail
Auto-corr test pass pass pass pass
Cross-corr test pass fail pass pass

The results reported in the T ables II& III establish
the fact that the randomness qualit yof the proposed
TPG is as good as that of maximal length CA.
The fault cov erage: It is observed that the TPG

designed with the proposed scheme is as pow erfulas
the corresponding maximal length CA based test pat-
tern generator in respect of fault coverage and number
of test patterns required to achiev ethe desired fault
coverage. The fault simulation is done for a large num-
ber of ISCAS benchmark circuits in the framework of
Cadence fault simulator verifault. T able IVcompares
the fault coverage shown by maximal length CA and
the TC of the proposed TPG in Column 4 and 5 re-
spectively. The fault coverage �gures are expressed in
terms of

faultcoverage = Total no. of detected faults
T otal no. of faults in the CUT

,

while the FF s of the sequential circuits are assumed to
be initialized to 0. A benchmark circuit is tested with
the same number of test vectors, noted in Column 3,
for both the designs.

Table IV reports the test results of 21 combinational
and sequential circuits. It can be observed that out of
21 cases, the fault coverage of the proposed TPG:

(i) is same or better for 8 cases (marked with *), and
(ii) w orse for 13 cases

than the result obtained with maximal length CA.
The di�erence in fault coverage betw een the tw o

schemes is marginal and can be reduced by re�ning
the heuristics employed. Hence, the proposed TPG
achieves the goals of generating good quality patterns
without generating the given PPS for the CUT .

V. Conclusion
The paper presents an elegant solution for the prob-

lem of designing a TPG that generates good qual-
ity pseudo random test patterns while avoiding gen-
eration of Prohibited P atternSet (PPS) for a giv en
CUT . The reported solution does not incur an y ex-
tra area overhead than the conven tionalCA=LFSR
based TPG. Exhaustive experimentation con�rms
that the the TPG maintains the fault e�ciency in a
CUT that could be achiev ed through a maximal length
CA=LFSR based design.

TABLE III

Randomness Test II

Random n = 24 n = 32 n = 48
Test Max TPG Max TPG Max TPG

Overlap Sum pass pass pass pass pass pass
Run pass pass pass pass pass pass

3Dsphere pass pass pass pass fail fail
P arking lot fail fail fail fail fail fail

B'day spacing fail fail fail fail fail fail
Craps pass pass pass pass pass pass

Minimum Dist fail fail fail fail fail fail
Overlap 5-permut fail fail fail fail pass pass

DNA fail fail fail fail pass fail
Squeeze fail pass fail fail pass fail

TABLE IV

Comparison of Test Results

Circuit # # Test Fault Co verage (%)
Name PI Vector Max Len TPG

s349 9 400 84.00 84.00 *
s344 9 400 84.21 84.21 *
s1196 14 12000 94.85 94.04
s1238 14 10000 89.67 89.08
s967 16 9000 98.22 98.12
s1423 17 15000 56.50 53.60
s1269 18 1200 99.18 99.48 *
s3271 26 10000 98.99 98.99 *
c6288 32 60 99.51 99.43
c1908 33 4000 99.41 99.41 *
s5378 35 8000 67.63 67.72 *
s641 35 2000 85.63 85.08
s713 35 2000 81.41 80.72
s35932 35 14000 61.91 59.82
c432 36 400 98.67 99.24 *
c432m 36 4000 83.57 83.96 *
c499 41 600 98.95 98.68
c499m 41 2000 97.78 97.22
c1355 41 1500 98.98 98.11
c1355m 41 12000 92.23 92.17
s3384 43 8000 91.78 91.60
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