
On the broadcast of segmented messages
in dynamic networks

Sandipan Sikdar∗, Marcin Bodych†, Rajib Ranjan Maiti‡, Biswajit Paria∗

Niloy Ganguly∗, Tyll Krueger† Animesh Mukherjee∗
∗Indian Institute of Technology Kharagpur, Kharagpur, India
†Wroclaw University of Technology, Wroclaw, Poland
‡Instituto di Informatica e Telematica, Pisa, Italy

Abstract—This paper makes a systematic attempt to under-
stand the effect of message size on the speed and efficiency of
message broadcast. It considers a realistic situation where a single
message may be too large to be sent in over a single connection
and hence might require to be transmitted in segments. In specific,
we look into the push and pull message transfer techniques and
investigate in details their effect on broadcast time as well as total
number of redundant contacts incurred during the transmission
of segmented messages. For such segmentation and a complete
graph topology with n nodes, we observe that the time required
for broadcast scales as n

k−1
k (assuming there are k packets in

one message segment) as opposed to logn in the single message
epidemic case (k = 1). In order to improve broadcast time
and reduce the number of useless contacts we propose different
variants of the push and pull message transfer techniques. In this
regard we introduce the concept of giveup, which allows a node
to terminate broadcast on sensing its neighborhood has received
the message. We further study the effect of message segmentation
on various types of topologies like d-regular graph, random graph
etc. and observe that even for simple push technique, there
exists an optimal d for which the dynamics becomes fast. We
also simulate our results on real traces and finally provide some
suggestions for network designers which we believe will help in
faster message dissemination and lesser wastage, especially in
case of dynamic networks.

I. INTRODUCTION

The study of broadcast over unstructured and mobile networks
always assumes that the size of the message is small enough to
be transfered from one node to other on the short durations of
contacts between the nodes. Contrary to this, in this paper, we
explore the idea of “segmented messages” where we assume
that the duration of a contact between the nodes is not always
sufficient for the transfer and therefore the message might need
to be segmented/divided into sub-parts and sent individually.
At the ethernet level such techniques of segmented broadcast
are often termed as pipelined broadcast [15], [19]. We sys-
tematically study the effect of the size and partition structure
of the message on the broadcast time.

In specific, we investigate in details the effect of message
segmentation as well as the message transfer protocols on the
overall broadcast delay and message wastage. We assume that a
big file is split into k (> 1) packets and at the beginning, there
is only one sender node in the network that has all the packets.
Further, a node can transfer only one packet in a single contact
opportunity, and it can do so only when it has received all the
packets constituting at least one segment of the message. When
all the nodes present in the network have eventually received
all the packets, broadcasting is assumed to be complete.

Initially, we investigate the push transfer protocol whereby
messages are ‘pushed’ by the node holding a message to the
node not having the message [3], [12]. We attempt to study
the effect in different types of topologies e.g., complete graph,
d-regular tree, d-regular graph, random graph (with average
degree d). For a complete graph topology of size n and the
simple push case we show that the overall time required for
the broadcast in case of segmented messages scales as n

k−1
k

where k > 1 is the number of packets. This is in sharp
contrast to the single message case (k = 1) where it has
been shown that broadcasting time scales as log (n) [2], [9].
Another remarkable observation is that in topologies like d
regular tree, d regular graph and random graph, for even the
simple push transfer protocol, one can find an optimal value
of d(d > 1), for which the broadcast delay and wastage is
minimum. (section III). As a corollary, through simulations
on real traces, we identify that for two networks with the same
number of nodes, broadcast time required is far smaller for the
one with lesser edge density. This finding, we believe, indicates
a very crucial point – a sparse communication network per se
is not disadvantageous.

However, we observe that push transfer protocol results in
a large number of useless contacts. An unsuccessful/useless
contact here refers to a case where a sender node attempts to
send a packet to another node who already has the packet. In
order to reduce both broadcast time and wastage we propose
a combined strategy whereby the nodes in the system initially
push and then switch over to pull after a certain percentage (say
x) of the nodes have received the full message. We observe
that if x is carefully chosen, both gain in broadcast time and
reduction in wastage is achieved. However, to determine that
x% of the nodes have indeed received the message, the system
needs to maintain a global information which is not feasible
in a distributed setting like this. In order to circumvent this
problem, we introduce a distributed version of the previous
technique along with “give-up” mechanism whereby nodes at-
tempt to discover their neighborhood by maintaining a history
of all previous contacts and stops participating in the broadcast
after a certain number of unique unsuccessful contacts. This
algorithm when tested over Gnutella topologies is found to
yield lesser broadcast delay without significant increase in
wastage. We believe, our algorithm with minor modifications
is applicable to a wide range of dynamic networks [4], [8],
[18].

978-1-4673-7131-5/15/$31.00 ©2015 IEEE

Seventh IEEE International Workshop on Network Science for Communication Networks (NetSciCom 2015)

426

II. ALGORITHM OUTLINE AND SIMULATION RESULTS

In this section, we describe the overall framework and message
transfer techniques that we assume for the rest of our study
and also provide the key results.

A. Agent configuration and network setup

We consider a network topology G =< V,E > where each
node in V represents an agent of the network and any link in
E represents a contact opportunity between a pair of nodes
(agents) in the whole time span through which the network
is active. So for any node (agent) ni in this network, its one
hop neighbors are the nodes (agents) which are within the
connection proximity of ni and at each time step ni at random
can connect to any one of them.
B. Message configuration

We consider that a message M is divided into a set of m
packets, i.e., |M| = m. Packets in M are grouped into a set
S of s segments, where each segment consists of k = m/s
packets (i.e., s can take only those values for which m mod
s = 0). For instance, if M constitutes of 4 packets and 2
segments then each of the segment is composed of 2 packets.
Note that in this paper we mostly consider that there is only
a single segment in the message (m = k) unless specified
otherwise.

C. Transfer protocol

In this framework, transfer of a message during a contact
refers to the transfer of one single packet of any segment of a
message. Transfer of a packet from ui to vj during a contact
can take place only when ui qualifies as a sender by having
all the packets of at least one of the message segments. The
two basic modes of message transfer that we consider are the
push and the (restricted) pull epidemic.

Push technique:

• Step 1: At any time step, ui (already a sender)
establishes a communication link with vj , from its
neighborhood and finds an exclusive set of packets
that ui has but vj does not have in its buffer.

• Step 2: If ui can find such a (non-empty) set, then it
transfers only one packet from this set to vj .

Pull technique:

• Step 1: At any time step between vj and ui, vj
establishes a communication link with ui and requests
for a packet that it has not received yet.

• Step 2: Given that ui has already become a sender it
first finds such a packet from its own buffer and then
transfers a copy of it to vj .

Note that in the traditional pull technique, ui, being a sender,
may transfer more than one packet if it gets multiple simul-
taneous requests from more than one agent at any particular
time step. However, unlike the traditional case, here ui can
serve only one request in case there are multiple pull requests.
Such a restriction actually allows for conservation of both
battery power and network bandwidth in resource constrained
scenarios like DTN. Also note that we consider the duration
of each communication link is long enough for the transfer of
at least a single packet.

0 50 100 150 200 250 300 350
0

2000

4000

6000

8000

10000

Time

N
u

m
b

e
r

o
f
a

tt
e

m
p

ts

pull attempts

pull success

push attempts

push success

Fig. 1. Pull attempts, successful pulls, push attempts, successful pushes
versus time for gnutella1 network

D. Metrics of interest

We are interested to evaluate the performance of a broad-
cast protocol in terms of two different metrics. The first metric
concerns broadcast delay. The second metric centers around a
complementary issue of power and bandwidth consumption.

• Broadcast delay T ∗ - this is the time from the
point when the message source starts sending the first
packet to the point when all the agents in the network
have received the entire message. E(T ∗) denotes the
expected broadcast time. In addition, we are also
interested in the time Ti which is the minimum time
at which there are i senders (except the source) in
the network, and especially in T1 since, as we shall
see, that this is the prime determinant of the entire
broadcast time.

• Broadcast wastage C∗
m - let Cl and Cp be the total

number of communication links that get established in
the network and the total number of successful packet
transfers respectively. We define the broadcast wastage
as C∗

m = (Cl − Cp)/Cl. This metric essentially mea-
sures the number of useless contacts in the network
during which no packet could be transferred and is
therefore a direct cause of energy wastage.

E. Broadcast algorithms

We consider following four algorithms for broadcasting
messages-

1) Blind push (B-P): An initiator node is the one which
has the full message in the beginning. At each time step all
the nodes in the system having the full message communicate
with a node in their proximity and try to push. At the end
of each time step all the nodes which have received all the
packets qualify as sender in the next time step. The algorithm
terminates when all the nodes in the system have the full
message.

2) Blind pull: At each time step all the nodes in the system
not having the full message, communicate with a node in their
proximity and try to pull. At the end of each time step the
nodes which have received the full message stops pulling from
the next time step. The algorithm terminates when all the nodes
in the system have the full message.

3) Strategy-x% automatic switch from push to pull: In this
Strategy (X-P-P), the nodes in the system follow Blind−push
initially and then switch to Blind−Pull once x% of the nodes
in the system have the full message. The algorithm terminates
when all the nodes in the system have the full message.

Seventh IEEE International Workshop on Network Science for Communication Networks (NetSciCom 2015)

427

We consider the Blind−push and Blind−pull algorithm
on a network and check how efficiently they perform over a
broadcast time window. In figure 1 we plot the number of
attempts and the number of successful ones for the above two
cases on gnutella1 network (described later in this section).
This clearly shows pull mechanism performs poorly in the
beginning but picks up after a certain percentage of nodes
have become senders. We observe just the opposite behavior
for push mechanism. Our X-P-P strategy is based on this idea
to obtain the best out of both the strategies.

The X-P-P strategy cannot be implemented in a practical
setting because the nodes in the system need to maintain a
global information of the percentage of nodes in the system
having the full message which is difficult in a distributed
setting like this.

4) A distributed version of X-P-P strategy: Here, we in-
troduce a new strategy Push − pull − with − giveup (P-
P-G) which approximately mimics the X-P-P strategy in a
distributed setting and it functions in the following way-
Initially there is a single node in the system which has the full
message. At each time step the sender nodes in the system
communicate with one of the nodes in their proximity and
try to push. Among all the other non-sender nodes in the
system those which have at least a single packet (i.e., nodes
which have participated in a message transfer at least once and
hence are aware of the broadcast) try to pull. Each node also
keeps a local history regarding the number of unsuccessful
communications it has participated in and once this exceeds
a threshold, it ‘gives-up’ and no longer participates in the
broadcast. Once all the nodes have ‘given-up’, the broadcast
terminates.

F. Dynamic topology

We performed our experiments on gnutella snapshots and
on synthetic topologies like complete graph, regular tree,
regular graph and random graph. A topology specifies the
potential neighborhood of a node - a node at each time step
connects randomly to one of these nodes. A complete graph
topology would indicate that the node can connect to any other
node in the network while for other sparser topology it would
connect only to a subset of them.

III. EXPERIMENT ON DIFFERENT NETWORK TOPOLOGIES

In this section we systematically study the effect of topology
of the underlying contact network on the broadcast time and
wastage and come up with some suggestions which we feel
will be helpful while designing networks. First we analyze the
B-P algorithm on complete graph topology and observe that the
broadcast time scales as n

k−1
k . We then analyze B-P algorithm

on other sparser topologies like regular graph, regular tree
and random graph. In particular, we wish to check whether
the average degree (d) of the underlying contact network
influences the performance metrics. In the later part of this
section we make a comparative study of different broadcast
strategies (discussed in section II) and also reinspect into their
sparser variants to identify the effect of lowering the value
of d through removal of edges without hampering network
connectivity.

A. Blind push on complete graph

We analyze the performance of B-P on complete graph
topology. A complete graph topology indicates that a node in
the system can communicate with any other node. We provide
numeric evidence (with analytical support) that the ratio of
the overall broadcast time T ∗ and the time to create the first
sender, i.e., T1 converges to a constant which only depends on
k. For this purpose we plot in figure 2 the values of Av(T ∗)
and Av(T1) respectively as we vary n where Av(y) represents
the average of the quantity y over several simulation runs. We
report this distribution for four different values of m (2, 4, 8
and 16), in each case assuming that there is only one message
segment, i.e., k = m. Note that for B-P, the two quantities
Av(T ∗) and Av(T1) exhibit a very similar profile irrespective
of the value of m chosen. In the same figure we also plot the
function n

k−1
k suitably scaled by a constant to show how the

theoretical results which we provide next, closely approximate
the numerical simulations.

Fig. 2. Av(T ∗) and Av(T1) versus the number of nodes (n). Results are
presented for (A) m = k = 2, (B) m = k = 4, (C) m = k = 8, and (D)
m = k = 16. The plots also contain the suitably scaled function n

k−1
k for

each case.

1) Analytical estimate: We initially start by considering a
message which has m = 2 packets and s = 1 segment (i.e., the
segment has k = 2 packets). We compute the expected time to
obtain the first sender1 E(T1). It is important to note that T1 is
an indicator for the total broadcast time T ∗ since the remaining
growth is of logarithmic order as after creation of the first
sender, several senders are produced at regular interval thus
speeding up the transfer exponentially. We provide an outline
of the analytical expression, the detail is more involved and is
ommitted in the interest of space.

At time T0, an initiator is created and it has the full
message. Since we are considering message size of 2 so the
first sender can be created at least in 2 time steps which is
possible if the same node is selected in these two time steps.
Next we calculate Pr{T1 = t} that is the probability that the
first sender is created at time t. This implies for the t−1 time
steps, only the nodes without any packets are selected and at
time step t one from the t− 1 nodes are selected. So we have

1Note that first sender refers to the first node (other than the initiator) which
receives the full message during the broadcast phase.

Seventh IEEE International Workshop on Network Science for Communication Networks (NetSciCom 2015)

428

Fig. 3. (A) Broadcast time and (B) broadcast wastage versus different values
of d for B-P. The parameters values are n = 200,m = 4, k = 2.

Pr{T1 = t} = (1− 1

n
)(1− 2

n
)(1− 3

n
)...(1− t− 2

n
)(
t− 1

n
)

=
t− 1

n

t−2∏
l=1

(1− l

n
), t ≥ 2

Infact if τi represent the time to create the first sender then
it can be shown that the recursion E(τi)

E(τi−1)
=
(
1− 3

2i

)
holds.

From this one can show that E(T ∗) = 2 ∗ E(T1)

Generalizing for case where k > 2, we calculate the time
to create the first sender T1. To do it we look into how the
number of nodes with exactly l packets (say) grow with t (l
varies from 1 to k -1). We can show that the number of nodes
with l packets grow as tl

(l)!nl−1

With this estimation we can now proceed in the same way
as we did in case of k = 2 case and show that

Pr (T1 = t) ∼ tk−1

(k − 1)!nk−1

t∏
i

(
1− ik−1

(k − 1)!nk−1

)
∼ tk−1

(k − 1)!nk−1
e−

tk

k!nk−1

From the above probability distribution of T1 we calculate

E(T1) =
∑
t ∗ tk−1

(k−1)!nk−1 e
− tk

k!nk−1 and through a lengthy

calculation can show that E(T1) is of the order n
k−1
k .

B. Blind push on sparser topologies

Next we empirically analyze the B-P algorithm on sparser
topologies like regular-tree, regular-graph and random-graph.
For each topology we consider n = 200, m = 4 and k = 2.
Note that here we consider that the message has 2 segments
and each segment has k = 2 packets. We then vary the average
degree d for each of these networks and check how broadcast
delay and wastage depend on it. Remarkably, for each of these
topologies - regular tree (figure 3), regular graph (figure 4)
and random graph (figure 5), one can observe that there is
a critical value of d for which we obtain minimum broadcast
delay and wastage.

Fig. 4. (A) Broadcast time and (B) broadcast wastage versus different values
of d for B-P technique. The parameters values are n = 200,m = 4, k = 2.
The inset in both the figures show the metrics of interest for the first few
values of d to indicate the critical d more appropriately.

Fig. 5. (A) Broadcast time and (B) broadcast wastage versus average degree
for B-P . The parameters values are n = 200,m = 4, k = 2.

C. Comparison of different broadcast strategies on Gnutella
Topology

We measure the performance of the algorithms (B-P, X-P-
P and P-P-G) on three real network traces based on broadcast
time, wastage and coverage. The data sets are Gnutella network
snapshots namely p2p-Gnutella04 (gnutella1), p2p-Gnutella06
(gnutella2) and p2p-Gnutella25 (gnutella3) [10], [17] taken on
dates August 4, August 6 and August 25, 2002 respectively.
The gnutella1 network has 10876 nodes and 39994 edges in its
largest connected component. Corresponding number of nodes
and edges in the largest connected component in gnutella2
and gnutella3 are respectively 8717, 31525 and 22663, 54693.

10 20 30 40 50 60 70 80 90
400

500

600

700

800

X%

T
*

 gnutella1

gnutella2

gnutella3

10 20 30 40 50 60 70 80 90

0.8

0.9

1

X %

C
m

*

Fig. 6. Average broadcast time and wastage versus x for gnutella1,gnutella2
and gnutella3

Seventh IEEE International Workshop on Network Science for Communication Networks (NetSciCom 2015)

429

m=k=2 m=k=4 m=k=8m=k=16
0

500

1000

1500

2000

2500

Message size
T
*

m=k=2 m=k=4 m=k=8m=k=16
40

50

60

70

80

90

100

Message size

C
m
*

m=k=2 m=k=4 m=k=8m=k=16
0

0.2

0.4

0.6

0.8

1

Message size

C
ov

er
ag

e

P−P−G X−P−P B−P

Fig. 7. (A) Broadcast time versus message size (B) Wastage versus message size (C) Coverage versus message size for gnutella3

m=k=2 m=k=4 m=k=8 m=k=16
0

2

4

6

8

10

12

Message size

T
* a

lg
o
/T

* P
−

P
−

G

m=k=2 m=k=4 m=k=8 m=k=16
0

1

2

C
m

* a
lg

o
/C

m
* P

−
P

−
G

X−P−P vs P−P−G

B−P vs P−P−G

(A)

m=k=2 m=k=4 m=k=8 m=k=16
0

5

10

15

Message size

T
* a

lg
o
/T

* P
−

P
−

G

m=k=2 m=k=4 m=k=8 m=k=16
0

1

2

C
m

* a
lg

o
/C

m
* P

−
P

−
G

X−P−P vs P−P−G

B−P vs P−P−G

(B)

Fig. 8. Gain in broadcast time of P-P-G over X-P-P and B-P [Inset shows gain in wastage] for (A)gnutella1 and (B)gnutella2 networks. Note: algo = B-P/X-P-P

We simulate these algorithms for varying message sizes. We
perform our simulations on peer-to-peer systems specifically
as our study can find a major application in such systems.

For simulating the X-P-P algorithm in particular we first
need to obtain the best value of x for each network and then
run the simulations for varying message sizes. In figure 6,
we show how the broadcast time and wastage varies with x
for networks gnutella1, gnutella2 and gnutella3. We observe
that the best value of x lies around 50% for the gnutella1
network. Similarly the obtained value of x are found it to be
around 50% and 60% for gnutella2 and gnutella3 respectively.
In figure 7 we plot the broadcast time, wastage and coverage
for gnutella3 network. We observe that with P-P-G we gain
in both broadcast time and wastage with respect to B-P. With
respect to X-P-P, P-P-G offers better broadcast time but with
a higher wastage. For gnutella1 and gnutella2 networks we
plot (figure 8) the ratio of broadcast time and wastage of
X-P-P and B-P over P-P-G for different message sizes. We
observe that across different message sizes, on an average the
gain in broadcast time of X-P-P over P-P-G and B-P over
P-P-G are 5.45 and 1.5 respectively for gnutella1 network
while for gnutella2 network the corresponding values are 5.9
and 1.6 respectively. Corresponding values for wastage are
0.75 and 1.10 respectively for gnutella1 network and 0.72 and
1.06 respectively for gnutella2 network. So with P-P-G we
gain in both broadcast time and wastage with respect to B-P
while with respect to X-P-P we gain in broadcast time without
significant increase in wastage. Actually, X-P-P provides the
best optimization between broadcast time and wastage but
it would be hard to implement in a distributed setting. Our
proposed algorithm (P-P-G) presents the best possible trade-
off of delay and wastage guaranteeing almost 100% coverage
and can be implemented in a distributed fashion with almost
negligible computational overhead.

m=k=2 m=k=4 m=k=8 m=k=16
0

500

1000

1500

2000

2500

Message size

B
ro

a
d
c
a
s
t
ti
m

e

original network(39994 edges)

sparser variant 1(30329 edges)

sparser variant 2(22933 edges)

m=k=2 m=k=4 m=k=8 m=k=16
0

500

1000

1500

2000

2500

3000

Message size

B
ro

a
d
c
a
s
t
ti
m

e

sparser variant 1(22149 edges)

sparser variant 2(19310 edges)

original network(31525 edges)

Fig. 9. Broadcast time for the gnutella snapshots and their sparser variants
versus different values of message sizes for (a). gnutella1 and (b). gnutella2

1) Effect of Degree on Broadcast time: In earlier part of
this section we observed that irrespective of the topology
one is able to a obtain critical value of d for which the
broadcast time is minimum. So we performed simulations on
sparser variants of these gnutella networks and observed that
broadcast time reduces even for the B-P. To obtain sparser
variants, we considered each gnutella snapshot and randomly
removed some of the edges without hampering the network
connectivity. From figure 9 we observe that the broadcast
time reduces significantly in case of the sparser variants in
comparison to the original network. Hence, while designing a
network it is advisable to keep the network sparse rather than
creating unnecessary connections between the nodes. This, as
our results indicate, should lead to a faster dissemination of
messages.

IV. RELATED WORKS

Efficient data dissemination in dynamic and distributed
networks like delay-tolerant, peer-to-peer, ad-hoc networks is
useful for many applications and the existing studies have
shown combining the push and the pull epidemic protocols can
be an efficient approach because of their inherent robustness.

Seventh IEEE International Workshop on Network Science for Communication Networks (NetSciCom 2015)

430

In an interesting study in [6], it has been shown that the cost
(in terms of time and resource utilization) to reach the last
10% of the agents is much higher compared to the cost of
reaching the first 90% of the agents during broadcasting in
DTNs. To solve this problem, the authors in this study propose
a controlled broadcasting technique where the broadcast start
using push technique, and towards the end of broadcast the
agents switch to adopt the pull technique (instead of push).
The study in [11] has proposed a cooperative file sharing
mechanism in a practical DTN framework, where only a
few agents have Internet connectivity. The authors show that,
to efficiently spread a file in the network, the agents that
are actually downloading the files from Internet or cellular
networks can use the pull technique, and then they later on can
push the received message to other agents. The study in [13]
has proposed a framework for DTNs, where the agents in the
network form communities located in different geographical
regions, and the agents in different communities use different
network technology such as Bluetooth, WiMAX, etc. Agents
located within the same region may use the pull technique for
information sharing, whereas to spread it across the different
regions they can use the push technique.

In addition, there have also been few works on fragmen-
tation of larger sized messages to make them suitable for
transmission in DTNs and Peer-to-peer networks. In [16] the
authors introduce various strategies of message fragmentation
independent of routing algorithm and evaluate their impact in
DTNs. Some of the more recent works include [1], [7]. In
peer-to-peer systems there are also numerous instances where
the authors have tried to efficiently combine the push and
the pull epidemic protocols. In [18] the authors propose a
combined strategy by interleaving between push and pull and
show that k pieces can be disseminated from a single source
to n users in 9(k+log n) time. [5] introduces a system called
Pulp which proposes a data dissemination approach by limiting
push and also reducing the redundant pulls. Some other data
dissemination strategies combining push and pull have been
proposed in [12], [14]. Since peer-to-peer systems deal with
dissemination of large files fragmenting them before spreading
is an obvious choice as is considered in all the above works.

In this paper, we study for the first time, the systematic
coupling of two different issues that have been dealt in the
literature only independently and in parts. These two issues
concern (a) the effect of message segmentation and (b) the
technique adopted for transferring the message, especially the
give-up technique allowing for a deterministic termination in a
completely distributed fashion on broadcast time and wastage.

V. CONCLUSION

The significance of the paper lies in defining a new problem
in the space of information dissemination and broadcast in
unstructured dynamic networks. In this paper we show through
simulation and initial analytical results that the speed at which
segmented data can be disseminated over dynamic network is
different from it comprising a single segment. We explore the
impact of the problem in different topologies and surprisingly
notice that mere dense topology is not of much help in a
dynamic setting. We also try to propose a practical strategy
which can optimize the dual (conflicting) objective of speed
and wastage. We believe these initial results can be enriched by
tackling the problem in a more practical setting like allowing

more than one message transfer in one time step, considering
the order of the message segments, considering wider variants
of topology snapshot etc. This along with more rigorous
theoretical analysis would be our immediate future work.

REFERENCES

[1] Ahmed B Altamimi. On Message Fragmentation, Coding and Social
Networking in Intermittently Connected Networks. PhD thesis, Univer-
sity of Victoria, 2014.

[2] Flavio Chierichetti, Silvio Lattanzi, and Alessandro Panconesi. Rumour
spreading and graph conductance. In SODA, pages 1657–1663, 2010.

[3] Alan Demers, Dan Greene, Carl Hauser, Wes Irish, John Larson, Scott
Shenker, Howard Sturgis, Dan Swinehart, and Doug Terry. Epidemic
algorithms for replicated database maintenance. In ACM Symposium on
Principles of distributed computing, pages 1–12. ACM, 1987.

[4] Patrick Th Eugster, Pascal A Felber, Rachid Guerraoui, and Anne-Marie
Kermarrec. The many faces of publish/subscribe. ACM Computing
Surveys (CSUR), 35(2):114–131, 2003.

[5] Pascal Felber, Anne-Marie Kermarrec, Lorenzo Leonini, Etienne
Rivière, and Spyros Voulgaris. Pulp: An adaptive gossip-based dis-
semination protocol for multi-source message streams. Peer-to-Peer
Networking and Applications, 5(1):74–91, 2012.

[6] Gian Paolo Rossi Francesco Giudici, Elena Pagani. Self-adaptive and
stateless broadcast in delay and disruption tolerant networks. Technical
report, Universit a degli Studi di Milano, 2008.

[7] Philip Ginzboorg, Valtteri Niemi, and Jörg Ott. Message fragmentation
for a chain of disrupted links. Computer Communications, 48:84–97,
2014.

[8] Zhigang Jin, Jia Wang, Sainan Zhang, and Yantai Shu. Epidemic-
based controlled flooding and adaptive multicast for delay tolerant net-
works. In Ubiquitous Intelligence & Computing and 7th International
Conference on Autonomic & Trusted Computing (UIC/ATC), 2010 7th
International Conference on, pages 191–194. IEEE, 2010.

[9] Stefano Leonardi, Alessandro Panconesi, Paolo Ferragina, and Aristides
Gionis, editors. Rumor Spreading in Random Evolving Graphs. ACM,
February 2013.

[10] Jure Leskovec, Jon Kleinberg, and Christos Faloutsos. Graph evolution:
Densification and shrinking diameters. ACM Transactions on Knowl-
edge Discovery from Data (TKDD), 1(1):2, 2007.

[11] Cong Liu, Jie Wu, Xin Guan, and Li Chen. Cooperative file sharing
in hybrid delay tolerant networks. ICDCSW ’11, pages 339–344,
Washington, DC, USA, 2011. IEEE Computer Society.

[12] R Lo Cigno, Alessandro Russo, and Damiano Carra. On some
fundamental properties of p2p push/pull protocols. In Communications
and Electronics, 2008. ICCE 2008. Second International Conference
on, pages 67–73. IEEE, 2008.

[13] Mirco Musolesi and Cecilia Mascolo. A framework for multi-region
delay tolerant networking. In ACM workshop on Wireless networks and
systems for developing regions, WiNS-DR ’08, pages 37–42, New York,
NY, USA, 2008. ACM.

[14] Oznur Ozkasap, Mine Caglar, and Ali Alagoz. Principles and per-
formance analysis of second: A system for epidemic peer-to-peer
content distribution. Journal of Network and Computer Applications,
32(3):666–683, 2009.

[15] Pitch Patarasuk, Xin Yuan, and Ahmad Faraj. Techniques for pipelined
broadcast on ethernet switched clusters. Journal of Parallel and
Distributed Computing, 68(6):809–824, 2008.

[16] Mikko Pitkänen, Ari Keränen, and Jörg Ott. Message fragmentation in
opportunistic dtns. In International Symposium on a World of Wireless,
Mobile and Multimedia Networks, pages 1–7, Washington, DC, USA,
2008. IEEE Computer Society.

[17] Matei Ripeanu, Ian Foster, and Adriana Iamnitchi. Mapping the gnutella
network: Properties of large-scale peer-to-peer systems and implications
for system design. arXiv preprint cs/0209028, 2002.

[18] Sujay Sanghavi, Bruce Hajek, and Laurent Massoulié. Gossiping
with multiple messages. Information Theory, IEEE Transactions on,
53(12):4640–4654, 2007.

[19] Jerrell Watts and Robert Van De Geijn. A pipelined broadcast for
multidimensional meshes. Parallel Processing Letters, 5(02):281–292,
1995.

Seventh IEEE International Workshop on Network Science for Communication Networks (NetSciCom 2015)

431

