

# **Broadcasting in DTN as an Epidemic** Dynamics

A. Maiti<sup>1</sup>, F. Peruani<sup>2</sup>, R. R. Choudhury<sup>3</sup>, N. Ganguly<sup>1</sup> 1-Dept. of CSE, IIT Kharagpur, India, email- {abyaym,niloy}@cse.iitkgp.ernet.in 2-CEA/SPEC and ISC-PIF, France, email-peruani@pks.mpg.de 3-Dept. of ECE and Dept. of CS, Duke University, USA, email- romit@ee.duke.edu

## BACKGROUND

Message broadcasting in DTN and epidemic spreading are analogous.

- Epidemic spreading models like <u>SIRS</u>, SIR, SIS.
- Advent of Directional Antenna (DA).

# MEAN FIELD SOLUTION

- Systems with 100% OA can be represented by mean-field approach:
  - $\dot{S} = \frac{R}{\tau_R} (\rho \psi) IS$  $\dot{I} = (\rho\psi) IS - \frac{I}{\tau_I}$
- *N* total number of agents  $N_S$ ,  $N_I$ ,  $N_R$  - number of S, I and R respectively  $S = N_S / N$  $I = N_I / N$  $R = N_R / N$  $\rho$  - agent density

## PROBLEMS ADDRESSED

- Modeling broadcasting with mean field approach.
- Estimation of broadcasting time in DTN.
- Comparative study of omni-direction antenna (OA) and DA.

# AGENT BASED MODEL

\* Agents are self-propelled and move at constant speed while changing its direction at Poissonian distributed times.

- $\clubsuit$  DA changes its orientation at each time with a fixed probability ( $p_{rot}$ ).
- Agents can be in one of three possible states:
  - *Susceptible* Active without the message
  - **Infected** Received and broadcasting the message for a given time  $(\tau_I)$
  - **<u>Recovered</u>** Idle mode for fixed amount of time  $(\tau_R)$  after broadcasting

 $au_R$  $\tau_I$  $\psi$  - new area an agent explores per time unit ✤ Fraction of informed agents at time *t* : At t = 0,  $N_I = 1$ ,  $N_S = N - 1$ ,  $N_R = 0$  $Y(t) = \left(\frac{1}{N} - 1\right) \exp\left[-(\psi\rho) \int_0^t dt' I(t')\right] + 1$ Y(t) = 1 is possible at infinity Y(t) experiences a crossover Œ <del>, 10.8 √</del> when: (t) 0.6 (t) (t) 0.4 (t) 0.2  $\int_{0}^{T_b^*} dt' I(t') = \frac{1}{\psi\rho}$  $T_h^*$  is defined as broadcasting time 1500 + 2000 2500 500 1000 3000

Time evolution of S (green dashed), I (red solid), R

(black dashed), and Y (blue dash-dotted) for a system with N = 1000 agents with OA at a density of 0.06. Black solid curves correspond to the mean-field approach. The vertical black dashed line corresponds to the crossover.

# SIMULATION RESULTS





States are changed periodically in S-I-R-S cyclic order (SIRS model)

# **MOBILITY AND SIGNAL TRANSMISSION**

• The motion of the  $i^{th}$  agent :

 $\alpha_i$  - direction of motion  $= v \left( \cos(\alpha_i) \check{x} + \sin(\alpha_i) \check{y} \right)$  $\mathbf{x}_i(t)$  $\boldsymbol{v}$  - velocity  $F_{\theta}(t)$  $\theta_i(t)$ =

 $\theta_i(t)$  - antenna orientation

\* Power received by agent *i* from transmitting agent *j* (**Friis eq.**)

 $P_r(\mathbf{x}_i, \theta_i, \mathbf{x}_j, \theta_j) = \frac{\lambda^2 P_t G_T(\theta_j, \mathbf{x}_j, \mathbf{x}_i) G_R(\theta_i, \mathbf{x}_i, \mathbf{x}_j)}{(4\pi)^2 |\mathbf{x}_i - \mathbf{x}_j|^2}$ 

 $\lambda$  - signal frequency  $G_T$ ,  $G_R$  - gain of the agents in the direction to each other

\* Agent *i* receive the message from *j* if  $P_r$  crosses a certain threshold.

### SYSTEM WITH DA & OA

Average broadcasting time as function of the agent density with 100% OA. N = 1000. Circle corresponds to simulations, red dashed curve indicates the theoretical prediction



Average broadcasting time vs.  $\bar{\rho}_{DA}$  for various values of antenna beam width  $\gamma$  with rotation probability (a)  $p_{rot} = 0$  and (b)  $p_{rot} = 1$  for an agent density  $\rho = 0.05$ .

Average broadcasting time vs. agent density for various values of  $\rho_{DA}$ , for  $\gamma = 60$ ,  $p_{rot} = 0$ .

Average broadcasting time vs. DA fraction  $\rho_{DA}$  for various rotation probability  $p_{rot}$ , agent density  $\rho = 0.05$ , beam width  $\gamma = 60$ .





• OA and DA both have the same power.



 $\gamma$  - antenna beam width TA - transmitter *RA* – receiver



(f)

(Inset) - Ratio of average broadcast time of system with  $\rho_{DA} = 100$  and  $\rho_{DA} = 0$  for different agent *density*.

## CONCLUSIONS

✤ DA agents always perform better than the OA agents.

• DA agents with smaller  $\gamma$  are more efficient than those with larger  $\gamma$ .

Rotation of the antenna has a definite positive effect on broadcasting.

✤ More research is needed to explore the effects of DA in DTN.

### BIBLIOGRAPHY

• F. Peruani and G. Sibona: Dynamics and Steady States in Excitable Mobile Agent System, Phys. Rev. Lett. 100, 168103 (2008). • J.D.Kraus: Antennas, 2nd Ed., McGraw-Hill, 1988. • R.R. Choudhury and N.H. Vaidya: Impact of Directional Antennas on Ad Hoc Routing, Proc. Personal and Wireless Comm. (PWC) 2003.