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ABSTRACT
The time-dependent coverage of a network by a varying number of
random walkers is considered. Broadening the existing, coverage-
focused perspective, we here explicitely address search efficiency,
i.e. bandwidth consumption, which is essential for distributed sys-
tems. However, defining a single objective that combines speed
and efficiency for estimation of the optimal number of walkers is
a non-trivial issue, as speed increases but efficiency decreases with
more numerous walkers. First, we define a combined objective to
maximize coverage with least sacrifice in efficiency. Secondly, to
fulfill the proposed objective, we design a novel search strategy in-
spired by the statistical mechanics of multiple, overlapping random
walks. Our new algorithm is demonstrated on a four-dimensional
Euclidean grid and it can be extended to other topologies with mi-
nor modifications. Finally, we formulate a suitable objective func-
tion and compare the optimal proliferation rates from theory and
simulation.

1. INTRODUCTION
The increasing popularity of peer-to-peer systems threatens the

quality of service of established search strategies. Besides scalabil-
ity issues, existing algorithms are also vulnerable to ad-hoc changes
of neighborhood relations. As a testbed for advanced search strate-
gies we here consider multiple random walkers on a regular net-
work and pose two challenges: (1) Can we design a local control
protocol to obtain a fast and efficient random walk, i.e. simultane-
ous maximization of coverage rate and efficiency? (2) If that is pos-
sible, then when and how many walkers should self-replicate so that
the above objective is fulfilled? Answers to the above questions are
so far unknown even for the simple regular topology of the Euclid-
ean grid. The strategy developed here will help designing fast, but
still efficient enough algorithms for information dissemination and
search in large scale distributed systems (e.g. unstructured peer-to-
peer systems).

In a simple N-walkerunrestricted random walk algorithm, the
originating node sends out N independent walkers, each of them
to a randomly chosen neighbor. In every intermediate step a node
forwards each of the received random walkers to any one of its ran-
domly chosen neighbor. The walker count does not increase with
time and a walker terminates when its (time-to-live) TTL expires.

Random walk dynamics has been well studied [1]. Most at-
tention comes from the physical sciences with problems such as
diffusion-limited reaction, excitation trapping and multiple scav-
enger problems, where speed of the walk is the primary concern
and thermodynamics drives the random process at no cost. How-

ever, in recent years, random walk has been widely used in the do-
main of distributed systems e.g. for unstructured search, informa-
tion dissemination etc. In such applications, each hop of a random
walker consumes some bandwidth which is a valuable resource and
therefore, needs to be used judiciously. Hence the random walk
phenomena need to be probed from quite a different perspective.
The probing should help in designing novel algorithms to attain the
following objective.

Objective: Maximize the coverage subject to the condition that
the efficiency of the walk is at its peak.

Hereefficiencyat time t (Et), is the ratio of the number of distinct
nodes visited at time t to the number of visits at timet. Therefore,
peak efficiency implies least number of redundant visits or overlaps
which is the phenomena of multiple walkers visiting the same node.
Coverageor spread1 at timet (Ct), measures the mean number of
distinct sites visited by the random walkers up tot time steps.

In a simpleN -random walk, especially in the initial stage, a large
value ofN results into high inefficiency (see for example [4] and
[5]). Therefore, in order to avoid this inefficiency, the strategy may
be changed, by starting a walk with few initial walkers and intro-
duce new walkers gradually with time as the trajectories of the pre-
vious walkers separate. Hence, walkers need to proliferate (self-
replicate) with time in a regulated manner so that the walk may
spread fast without much sacrifice of efficiency.

In the subsequent sections, it will be shown that a proliferating
random walk strategy essentially fulfils the objective. However, we
will see that estimating the optimal proliferation rate is a challeng-
ing problem because it is solely controlled by the walker dynamics
on the underlying graph. Although some existing works [7] design
proliferation regulation schemes based on application driven con-
ditions, to the best of our knowledge, strategies based on walker
dynamics have not been investigated. The above observations pro-
vide motivation for this work.

In this paper, we formally design the suitable proliferation strat-
egy and formulate a maximizing objective function which is in-
spired by the statistical mechanics of multiple walkers. We esti-
mate the optimal proliferation rate based on the objective function.
In this work, we restrict our analysis to the infinite-size Euclidean
grid. The proposed idea can be extended to other topologies with
some minor modifications.

The rest of the paper is organized as follows: Section II de-
signs the proposed proliferation strategy from the understanding of
walker dynamics in existing literature and formulates the objective
function. In Section III, we estimate the optimal proliferation rate

1We use the term coverage throughout the paper.



from simulation and also verify the effectiveness of the proposed
strategy. Finally, we conclude in section IV.

2. PROLIFERATION STRATEGY
The following three subsections will (1) review the statistical

mechanics of multiple random walkers, (2) design the prolifera-
tion strategy and (3) formulate the objective function required to
evaluate the optimal proliferation rate.

2.1 Multiple Random Walkers
The average coverage of an infinite graph byN independent ran-

dom walkers (N À 1) all starting from the same source node has
been solved analytically [4]. The results are summarized in Table
I. Three distinct time regimes are observed. Crossover time from
the regime I to II and the regime II to III are denoted astI−II and
tII−III , respectively. The generalized expression for dimension
d > 3 in the regimes II and III are conjectured from the results in
d = 1, 2 and3.

Analyzing the results shown in Table I forN À 1, the following
are observed:

• Observation 1: The system remains in regime I for a very
short durationtI−II = ln N . Let thecoverage rateat timet
be denoted asC′t, which is dC

dt
|t i.e., the number of distinct

nodes visited at time t. In regime I,C′t = d × td−1. Hence,
regime I is similar to flooding.

Explanation: It is due to the fact that very few nodes close to
the source contain walkers (Fig. 1(I)). AsN À 1, each node
has too many walkers compared to the number of unvisited
neighbors. As a result, all the neighbors of the already visited
nodes are reached at the next step. Spread rate observed is
similar to flooding.

• Observation 2: As time passes, the trajectories of the walk-
ers separate and the dynamics enters regime II. Then cover-

ageCt ∼ [t × ln(N × t1−
d
2 )]

d
2 for d ≥ 3. In this regime,

ln N < t < N
2

d−2 , therefore considering the number of
walkersN ∼ 102, 103, coverage can be further approxi-

mated toCt ≈ t
d
2 . It implies coverage rateC′t ≈ d

2
× t

d−2
2 ,

which shows that it increases but the rate of increase is less
than that of regime I. The duration of regime II decreases
with increase in grid dimensiond.

Explanation: The rate increase ofC′t in regime II is less
compared to regime I because, the walkers gradually move
away from each other in regime II (Fig 1(II)), which results
in a decrease in the number of walkers at each node.

• Observation 3: Finally, from timet = tII−III onwards the
system remains in regime III. Analyzing results from Table I
we obtainC′t = N in regime III, which means the walkers
visit new nodes at a constant rate.

Explanation: In this regime the walkers movesufficiently
far apart from each other (Fig 1(III)), such that on average
each node contains a single walker with almost all its neigh-
bors unvisited. As a result from timet = tII−III onwards,
each walker walks in a non-overlapping exploration space
with respect to other walkers.

The following can be inferred from the above observations:
Inferences:

Figure 1: The increasing spatial separation and decreasing mu-
tual overlap of random walkers is depicted as the dynamics
passes three regimes while time progresses.

1. The coverage rate (C′t) is a function of the number of walk-
ersN i.e. C′t = f1(N). The coverage rate can be increased
by using a larger value of walker countN but the impact of
walkers is significant only in regime III.

2. For N À 1, the efficiency (i.e.Et =
C′t
N

) increases at a
faster rate with time in regime I than in regime II and reaches
the peak value1 at t = tII−III i.e. the boundary of regime
II and regime III and remains steady throughout regime III.

3. The crossover time from regime II to III is a function of N i.e.
tII−III = f2(N). It is noted that peak efficiency is reached
early if the number of walkers N used in the walk is small.

4. From the existing theory the functional form of coverage rate
in regime III and crossover time from regime II to III can be

expressed asC′t = k1 × N , andtII−III = k2 × N
2

d−2

respectively, where bothk1, k2 are constants andk1 ≤ 1.

2.2 Design of the Proposed Strategy
The objective is to maximize speed without sacrificing efficiency

at every time instant. Being inspired from our understanding of
walker dynamics explained above, the proposed strategy is stated
formally in this subsection, followed by the intuitive reasoning and
physical implication.

The proliferation strategy: Start with a small initial set of
walkersNinit and proliferate in every step at a rateP , so that
the system always remains at the boundary of regimes II and III.

Intuitive basis: Let’s see why proliferation is required to ful-
fil the stated objective. Consider that at timet = 1, N walkers
start from a single source node and lettII−III |N be denoted as the
crossover time from regime II to III forN walkers. Then walker
count must not be increased during regime II and III i.e. at time
t < tII−III |N as it will have little impact on coverage rate (re-
fer to inference 1). It can also be noted, that with an objective to
maximize coverage without sacrifice of efficiency, the walker count
must be increasedat the earliesti.e. at timet = tII−III |N (refer to
inference 1 and 2). Therefore, given initial N walkers, proliferation
becomes necessary att = tII−III |N .

Let us now consider∆N new walkers are added through pro-
liferation at timet = tII−III |N and the system now containsN ′

walkers whereN ′ = N +∆N . To fulfil the objective,∆N should
be such that the condition(t + 1) = tII−III |N′ is satisfied. The
condition essentially means that, the resulting system ofN ′ walk-
ers after proliferation should also remain at the boundary of regime
II and III. Thus, we observe that proliferation is essential and it
should be regulated in such a way that the system always remains
at the boundary of regime II and III.

To reduce the initial inefficiency during regimes I and II, the walk
needs to start initially with a small number of walkers (refer to in-
ference 3). Hence the novel strategy proposed above fulfils the
objective at each time step.



Table 1: Summary of the expressions for the average number of distinct sites visited(Ct) for different density regimes as well as the
crossover times separating the regimes (Courtesy [4]). Averaging has to be performed over repeated search runs, especially in cases
of small numbers of walkersN .

Dimension Coverage in tI−II Coverage in tII−III Coverage in
Regime I Regime II Regime III

1 Ct ∼ t ln N Ct ∼ t× ln N ∞
2 Ct ∼ t2 ln N Ct ∼ t× ln( N

ln t
) eN Ct ∼ N×t

ln t

3 Ct ∼ t3 ln N Ct ∼ [t× ln( N√
t
)]

3
2 N2 Ct ∼ N × t

d Ct ∼ td ln N Ct ∼ [t× ln(N × t1−
d
2 )]

d
2 N

2
d−2 Ct ∼ N × t

Physical implication: At the boundary of regime II and III the
walkers just start to besufficiently far apart, implying that each
walker has some non-overlapping exploration space with respect to
other walkers such that there is almost no redundant visit. There-
fore, the proposed strategy ensures that, a new walker once intro-
duced gets its own non-overlapping exploration space, thereby in-
creasing coverage rate in the most efficient way.

The key to the successful implementation of the strategy lies in
the precise estimation of the (1)proliferation rateP and (2)defining
an objective function to measure the performance of the walk.

2.3 Objective Function
This subsection formulates a maximizing objective function which

computes the total overall gain, both in terms of speed and effi-
ciency of a random walk, from the understanding of the walker
dynamics in section 2. It is used to quantify the goodness of any
random walk strategy in terms of the framed objective. Let’s eval-
uate the gain in efficiency and speed achieved byn walkers at time
t.

Efficiency achieved at timet, by n random walkers, can be ex-

pressed asC
′
t|n
n

, i.e. the ratio of the coverage rate at timet to
the number of visits at timet. The steady maximum achievable

efficiency byn walkers is C′steady|n
n

, whereC′steady|n is the
maximum achievable coverage rate. Therefore, gain in efficiency
(GEt|n) is:

GEt|n =

C′t|n
n

C′steady|n
n

=
C′t|n

C′steady|n (1)

Coverage rate of the walk is known to be proportional to the
walker count during regime III (refer to inference 1), therefore
faster coverage could have been achieved ifn walkers are intro-
duced early in the system. Let the time, whenC′steady|n is achieved,
be denoted byTsteady|n. Given the objective, there is no advan-
tage of introducingn ahead of timeTsteady|n as this does not
result in enhancement of speed (refer to inference 3). Therefore,
gain in coverage speed (GSt|n) is:

GSt|n =

�
Tsteady|n

t
: if t > Tsteady|n

1 : otherwise
(2)

The overall gain (OGt|n) of the walk at timet can be expressed
as:

OGt|n = GEt|n × GSt|n (3)

Values ofGEt|n, GSt|n andOGt|n lie in the range [0,1]. At
time t, the n walkers used, may be obtained either from a non-
proliferatingn-walker strategy or from a proliferating walk strat-

egy with rateP . For a non proliferating walk,OGt|n gradually
increases with time, reaches the peak value and then falls gradu-
ally. Therefore, there exists an optimal proliferation rateP opt(t)
which maximizesOGt|n at each time step throughout the walk.

The total overall gain of the walk until timeT , is defined as the
sum of overall gain estimated at each time stept for t = 1 to T .
LetT OGT |N,0 be the normalized total overall gain until timeT for
N non proliferating walkers andT OGT |1,P be for a proliferating
walk with rateP , starting with a single walker. In general,T OGT

is defined as follows:

T OGT =

TX
t=0

OGt|n

T
(4)

Therefore,P opt(t) maximizesT OGT |1,P for sufficiently large
T with
T OGT |1,P =

TX
t=0

C′t|n
C′steady|n ×

Tsteady|n
t

. (5)

Now, Tsteady|n andC′steady|n can be obtained from Table I
astII−III |n andC′|n at regime III, respectively butC′t|n i.e. cov-
erage rate at any timet due to proliferating walkers is not known
from existing literature. In the next section we employ numerical
simulations to determine the optimal dependencyP opt(t) after im-
plementing and testing the predicted proliferation strategy which
works at the boundary of regimes II and III.

3. NUMERICAL SIMULATIONS
This section is organized into two parts. The first section esti-

mates the values ofTsteady andC′steady from simulation. In
the second section, we estimate the optimal proliferation rate from
simulation and compare it to the above theory.

3.1 Verifying maximum coverage rate and crossover
times through simulation

We simulate a simple random walk with N walkers with the fol-
lowing objectives:

1. To check the presence of three distinct regimes and to check
the functional form predicted by theory.

2. To obtain values ofk1 andk2 to predictC′steady|N and
Tsteady|N precisely and not just their qualitative time de-
pendence.
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Figure 2: Plot of efficiency (Et), overlap probability with
other’s trail (Oothert) and overlap probability with its own
trail (Oownt) vs time (t) for simple random walk using N =
1, 20, 50, 100 walkers, d = 4.

3. To check the probability to overlap. It can be used as an
important metric to verify that forN À 1 efficiencyEt in-
creases indeed due to decrease in overlap probability with
time.

To observe the regimes distinctly, we plot efficiencyEt =
C′t
N

which lies in the range [0,1]. In addition to the metrics efficiency
(Et) and coverage rate (C′t), we also measure the overlap probabil-
ity metrics defined as follows:

• Oothert - Mutual overlap probability i.e. probability that
a walker overlaps with other walker’s trail, i.e. it visits a
node at time stept, which has already been visited by some
other walkers (excluding itself) in some previous time steps,
averaged over all walkers.

• Oownt - Own overlap probability, i.e. probability that a
walker overlaps with its own trail at time stept.

The set of N walkers, all starting from the same source node
gradually dilutes. Therefore,Oothert decreases with time. From
the above definitions it is expected thatEt +Oothert +Oownt =
1.

Simulation parameters: 4 - dimensional Euclidean torous grid
topology is used with Von Neuman neighborhood, i.e. each node
has two neighbors along each dimension. Size of the grid236421376 =
1244. Simulation is performed upto 2000 time units. Number of
runs considered for each experiment is3×105. A sufficiently large
finite size graph is used along with a relatively small simulation
time, so that during a simulation the finite size effect does not take
place, i.e. walkers never bounce back from dimension boundaries.
Torous grid is considered so that each node including the boundary
nodes have the same degree. Each metric is measured by taking the
average value of3× 105 runs. Here, we restrict our study only to a
grid of dimension 4, thereforeTsteady|N is expected to bek2 ∗N
(refer to Table I).

Results:To observe the regimes we plotEt, Oothert andOownt

versus timet in Fig. 2. Et andOothert have been plotted for dif-
ferent values of walkers count,N =1, 20, 50 and 100.Oownt is
plotted only forN = 1 as it remains the same for anyN .

It is found thatEt|N=1 ≈ 0.8 remains almost steady att À 1.
It is becauseOothert|N=1 = 0 andOownt|N=1 ≈ 0.2, as for
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Figure 3: Plot of coverage rate(C′t) vs time (t) for simple ran-
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d = 4, each node has 8 neighbors, and probability to jump to the
last visited node is1

8
, therefore the most trivial lower bound of

Oownt is 1
8
≈ 0.125.

Et|N=20,50,100 is found to increase very fast for a short while,
which can be interpreted as regime I. It is also observed that mu-
tual overlapOothert|N=20,50,100 decreases drastically during this
regime. As time progresses,Et|N=20,50,100 still increases, but at
a slower rate, which refers to regime II. Correspondingly in this
regime,Oothert|N=20,50,100 decreases, but slowly compared to
that in regime I.

Finally, Et|N=20,50,100 reaches a plateau and becomes steady at
a value≈ N ×0.8 which signifies regime III. It is further observed
that, Oothert|N=20,50,100 also takes a steady value≈ 0 during
this regime. Therefore, it is noted that in asymptotic time the max-
imum efficiency achieved by N walkers is N times the maximum
efficiency of a single walker (regime III). This confirms the mutu-
ally non-overlapping subspaces predicted by theory. It have been
verified that for all N, at any time t,Et|N +Oothert|N +Oownt|N
= 1 holds true.

To get the estimate ofC′steady|N andTsteady|N , we plotC′t
versus timet for N =20, 50 and 100 in Fig. 3. A closer look
into the plot shows that att = N coverage rateC′t ≈ N × 0.73,
close toN × 0.8 as expected from theory. It is also observed that
for a given N att = N, (N × 4), and(N × 15), coverage rate is
C′t ≈ (N × 0.73), C′t ≈ (N × 0.78) andN , respectively.

To summarize, the simulation results show that for a 4-d grid,
the coverage rate becomes steady at a timeTsteady|N ≈ N × 15
with C′steady|N = N × 0.8. It is also noted that at timet =
N × 15 andN × 4, efficiency is 8.7 and 2.5 percentage less only
than the peak value, respectively. The next subsection estimates
the optimal proliferation rate through simulation using the above
mentioned results.

3.2 Estimation of the optimal proliferation rate
Let P̂S be denoted as the optimal proliferation rate obtained from

simulation. We perform two experiments with the following objec-
tives:

1. To obtainP̂S .

2. To see that regulated proliferation using optimal proliferation
rateP̂S is an essential strategy to fulfil the objective to max-
imize coverage with least sacrifice in efficiency, for a given
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time which cannot be achieved otherwise using a simple ran-
dom walk using equivalent number of hops.

Experiment 1:- Estimation ofP̂S

In the experiment, the total overall gain is computed for different
values of proliferation rateP . The simulation considersNinit = 1
and variesP from 0 to 2.5 with step size 0.1. The total simulation
time is assumed to be 500 units.̂PS is estimated as the value of
P that maximizes total overall gainT OG500|1,P . The rest of the
simulation parameters are same as used in subsection 3.1.P̂S is
of interest with respect to peak efficiency constraint but also for
stepwise relaxed constraint. Through simulation we estimateP̂S

considering three different cases:

• Case 1- EstimateP̂ without any sacrifice of the peak effi-
ciency, i.e.Tsteady andC′steady is substituted byN ×15
andN × 0.8, respectively to calculate overall gainOGt|1,P

at each time stept (refer equation 6). It is in accordance to
the rule framed by the optimal proliferation strategy.

• Case 2 - EstimateP̂ by sacrificing 2.5 percent of the peak
efficiency i.e.Tsteady andC′steady is substituted byN ×
4 andN × 0.78 respectively.

• Case 3 - EstimateP̂ by sacrificing 8.7 percent of the peak
efficiency, i.e.Tsteady andC′steady is substituted byN
andN × 0.73, respectively.

Results -The plot of total overall gainT OG500|1,P versus pro-
liferation rateP is shown in Fig. 4 corresponding to the above three
cases. It is found that for case 1,P̂S = 0.3 with T OG500|1,0.3 =

479.8903. For case 2,P̂S = 0.4, i.e. the system is allowed to
proliferate in a marginally higher rate at the cost of 2.5 percent ef-
ficiency. For case 3,̂PS = 1.0, i.e. by using the same value of
Tsteady|N as analytically predicted and at the cost of 7.3 percent
efficiency, the obtained proliferation rate approaches 1. Finally, it
is observed that the coverage obtained up to simulation time 500
time steps usinĝPS = 0.3, 0.4 and 1, i.e. optimal rates by sacrific-
ing 0, 2.5 and 8.7 percent efficiency, respectively are 29987, 39555
and 95078 nodes. There is 217 and 8.7 percent increase obtained
by sacrificing 2.5 and 8.7 percent efficiency, respectively.

To summarize, the precise value ofTsteady|N andC′steady|N
is essential to obtain the correct estimate ofP̂ . If a very small
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percentage of efficiency is sacrificed, then the system is allowed
to proliferate at a marginally higher optimal rate, which results in a
huge increase in coverage. Though ideally ensuring peak efficiency
is a desired condition, but it is not an application specific constraint.
Therefore, a small amount of overlap may be allowed in practice to
get the benefit of increase in coverage.

Experiment 2:- Testing the effectiveness of the regulated
proliferation strategy

This experiment compares the performance of the proposed opti-
mal proliferation strategy usinĝPS = 0.3 (sayPR) with a simple
random walk utilizing equal amount of bandwidth resource (i.e. to-
tal number hops up to specified simulation time T). The simple ran-
dom walk usesN walkers. In this experiment, we chooseN = 75
and simulation timeT = 492 judiciously so that the total hops
used matches. Let the proliferating random walk and simple ran-
dom walk be denoted asPR andSR, respectively. Performance is
compared in terms of theEt, C′t andT OG|500 for both the strate-
gies.

The plot ofEt for both the strategies is given in Fig. 5. It shows
that the efficiency ofPR remains close to the efficiency of a single
walker (refer Figure 2) throughout the proliferating walk, in spite
of the fact that the walker count increases with time, because pro-
liferation is regulated properly. The efficiency ofSR is less than
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PR in the initial stage of the walk, as it passes through regime II
and III. Plot ofC′t versust given in Figure 6 shows that the cover-
age rate ofPR is higher thanSR almost from the half way mark
onwards, because the number of walkers used byPR exceedsSR.
Fig. 7 shows the plot ofOG versust for both the strategies, which
is found to be greater forPR in the initial stage as simple walk is
penalized due to initial inefficiency captured byGEt. The plot of
GEt closely matches withOGt as in this experimentGSt is always
1 for both the strategies.

It may be noted thatT OG|PR = 472.16, T OG|SR = 459.321
showsPR performs better thanSR considering efficiency and
coverage combined. Further, the total coverageCPR = 29035
andCSR = 27855, showing that given a time 500 units, the reg-
ulated proliferation strategy covers 4.2 percent more nodes com-
pared to simple random walk. The results show that given the time
and fixed amount of resource (bandwidth), properly regulated pro-
liferating random walk strategy always covers more nodes than a
simple random walk.

4. CONCLUSIONS
The optimal proliferation rate estimated in this paper answer the

fundamental questions raised in the introduction, which are highly
relevant in the domain of distributed systems. The proposed regu-
lated proliferation strategy is solely topology dependent and devel-
oped from insights on walker dynamics, hence provides an applica-
tion independent generic approach towards designing fast and effi-
cient random walk strategies. The optimal rate has been estimated
both based on theory and simulation and the reasons for deviation
have also been explained. Results show that regulated proliferation
is an essential strategy to ensure optimal use of resources.

In this work, we considered infinite 4-d Euclidean graph. Though
it is a simple topology, the proposed approach can be well applied
to other dimensions of grid as well as other network topologies
(e.g. random graph, small world, power law), on which work is in
progress.
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