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ABSTRACT ever, in recent years, random walk has been widely used in the do-

The time-dependent coverage of a network by a varying number of r_nain _Of dist_ribu_ted systems e.g. for_ un_structured search, informa-
random walkers is considered. Broadening the existing, coverage-t'on dissemination etc. In such applications, each hop of a random

focused perspective, we here explicitely address search efficiency,"‘k’]"j‘”(efr consumes some bandv_vith_whi?h Is avalua: la resource aﬂ?
i.e. bandwidth consumption, which is essential for distributed sys- therefore, needs to be used judiciously. Hence the random wa
tems. However, defining a single objective that combines speed Pheénomena need to be probed from quite a different perspective.
and efficiency for estimation of the optimal number of walkers is | e Probing should help in designing novel algorithms to attain the

a non-trivial issue, as speed increases but efficiency decreases Witﬁollowlng_ob!ectlvg. . . .,

more numerous walkers. First, we define a combined objective to Objgc_tlve. Maximize th_e coverage subject to the condition that
maximize coverage with least sacrifice in efficiency. Secondly, to thzeff'C'fef_ncy of the walk is at Itshpeak_ . e of i
fulfill the proposed objective, we design a novel search strategy in- __Hi€reefficiencyat time t (), is the ratio of the number of distinct

spired by the statistical mechanics of multiple, overlapping random nodes v_|s_|ted a; t'me tto the number of visits at tlm_é'_herefore,
walks. Our new algorithm is demonstrated on a four-dimensional peak efficiency implies least number of redundant visits or overlaps

Euclidean grid and it can be extended to other topologies with mi- whichis the Phenome“‘? of multiple walkers visiting the same node.
nor modifications. Finally, we formulate a suitable objective func- Coverageor spread at timet (C;), measures the mean number of

tion and compare the optimal proliferation rates from theory and distinct sites visited by the random walkers ug tame steps.
simulation. In a simpleN-random walk, especially in the initial stage, a large

value of N results into high inefficiency (see for example [4] and
[5]). Therefore, in order to avoid this inefficiency, the strategy may
1. INTRODUCTION be changed, by starting a walk with few initial walkers and intro-

The increasing popularity of peer-to-peer systems threatens theduce new walkers gradually with time as the trajectories of the pre-
quality of service of established search strategies. Besides scalabilvious walkers separate. Hence, walkers need to proliferate (self-
ity issues, existing algorithms are also vulnerable to ad-hoc changesreplicate) with time in a regulated manner so that the walk may
of neighborhood relations. As a testbed for advanced search stratespread fast without much sacrifice of efficiency.
gies we here consider multiple random walkers on a regular net-  In the subsequent sections, it will be shown that a proliferating
work and pose two challenges: (1) Can we design a local control random walk strategy essentially fulfils the objective. However, we
protocol to obtain a fast and efficient random walk, i.e. simultane- will see that estimating the optimal proliferation rate is a challeng-
ous maximization of coverage rate and efficiency? (2) If that is pos- ing problem because it is solely controlled by the walker dynamics
sible, then when and how many walkers should self-replicate so thaton the underlying graph. Although some existing works [7] design
the above objective is fulfilled? Answers to the above questions are proliferation regulation schemes based on application driven con-
so far unknown even for the simple regular topology of the Euclid- ditions, to the best of our knowledge, strategies based on walker
ean grid. The strategy developed here will help designing fast, but dynamics have not been investigated. The above observations pro-
still efficient enough algorithms for information dissemination and vide motivation for this work.
search in large scale distributed systems (e.g. unstructured peer-to- In this paper, we formally design the suitable proliferation strat-
peer systems). egy and formulate a maximizing objective function which is in-

In a simple N-walkerunrestricted random walk algorithm, the spired by the statistical mechanics of multiple walkers. We esti-
originating node sends out N independent walkers, each of them mate the optimal proliferation rate based on the objective function.
to a randomly chosen neighbor. In every intermediate step a nodeln this work, we restrict our analysis to the infinite-size Euclidean
forwards each of the received random walkers to any one of its ran- grid. The proposed idea can be extended to other topologies with
domly chosen neighbor. The walker count does not increase with some minor modifications.
time and a walker terminates when its (time-to-live) TTL expires. The rest of the paper is organized as follows: Section Il de-

Random walk dynamics has been well studied [1]. Most at- signs the proposed proliferation strategy from the understanding of
tention comes from the physical sciences with problems such aswalker dynamics in existing literature and formulates the objective
diffusion-limited reaction, excitation trapping and multiple scav- function. In Section Ill, we estimate the optimal proliferation rate
enger problems, where speed of the walk is the primary concern
and thermodynamics drives the random process at no cost. How-We use the term coverage throughout the paper.




from simulation and also verify the effectiveness of the proposed
strategy. Finally, we conclude in section IV.

2. PROLIFERATION STRATEGY

The following three subsections will (1) review the statistical
mechanics of multiple random walkers, (2) design the prolifera-
tion strategy and (3) formulate the objective function required to
evaluate the optimal proliferation rate.

2.1 Multiple Random Walkers

The average coverage of an infinite graph¥byndependent ran-
dom walkers {V > 1) all starting from the same source node has
been solved analytically [4]. The results are summarized in Table
I. Three distinct time regimes are observed. Crossover time from
the regime | to Il and the regime |l to Il are denotedtAs’” and
tHI-II regpectively. The generalized expression for dimension
d > 3in the regimes Il and Il are conjectured from the results in
d=1,2and3.

Analyzing the results shown in Table | foF > 1, the following
are observed:

e Observation 1: The system remains in regime | for a very
short duratiort! ! = In N. Let thecoverage ratet timet
be denoted ag’;, which is%h i.e., the number of distinct
nodes visited at time t. In regime@; = d x t?~!. Hence,
regime | is similar to flooding.

Explanation: Itis due to the fact that very few nodes close to
the source contain walkers (Fig. 1(1)). A6 >> 1, each node
has too many walkers compared to the number of unvisited
neighbors. As aresult, all the neighbors of the already visited
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Figure 1: The increasing spatial separation and decreasing mu-
tual overlap of random walkers is depicted as the dynamics
passes three regimes while time progresses.

1. The coverage rate't) is a function of the number of walk-
ersN i.e. C{ = f1(IN). The coverage rate can be increased
by using a larger value of walker coun but the impact of
walkers is significant only in regime Il1.

. For N > 1, the efficiency (i.e. E; %) increases at a
faster rate with time in regime | than in regime Il and reaches
the peak valué att = t!I=117 j.e. the boundary of regime
Il and regime Ill and remains steady throughout regime IlI.

. The crossover time from regime Il to Ill is a function of N i.e.
tHT=1T — £,(N). Itis noted that peak efficiency is reached
early if the number of walkers N used in the walk is small.

. From the existing theory the functional form of coverage rate
in regime Il and crossover time from regime Il to Ill can be

expressed a€' = ki x N, and¢!T~ 111 = k, x Na-z
respectively, where bothky, k2 are constants and, < 1.

2.2 Design of the Proposed Strategy

nodes are reached at the next step. Spread rate observed is The objective is to maximize speed without sacrificing efficiency

similar to flooding.

Observation 2: As time passes, the trajectories of the walk-

ers separate and the dynamics enters regime Il. Then cover-

ageC; ~ [t x In(N x t'=2)]2 for d > 3. In this regime,

InN <t < Nﬁ, therefore considering the number of
walkers N ~ 102,10%, coverage can be further approxi-

. . d—2
mated toC; ~ t2. It implies coverage rat€; ~ 4 x ¢ 2,

which shows that it increases but the rate of increase is less

than that of regime |. The duration of regime |l decreases
with increase in grid dimensiof

Explanation: The rate increase af’t in regime Il is less

at every time instant. Being inspired from our understanding of
walker dynamics explained above, the proposed strategy is stated
formally in this subsection, followed by the intuitive reasoning and
physical implication.

The proliferation strategy: Start with a small initial set of
walkers N;,;+ and proliferate in every step at a rat®, so that
the system always remains at the boundary of regimes Il and 111

Intuitive basis: Let's see why proliferation is required to ful-
fil the stated objective. Consider that at tihe= 1, N walkers
start from a single source node and#tt~’'!| v be denoted as the
crossover time from regime Il to Il fo’v walkers. Then walker
count must not be increased during regime Il and Ill i.e. at time
t < t!7=11|y as it will have little impact on coverage rate (re-

compared to regime | because, the walkers gradually move fer to inference 1). It can also be noted, that with an objective to

away from each other in regime Il (Fig 1(Il)), which results
in a decrease in the number of walkers at each node.
Observation 3: Finally, from timet = ¢!/ ~7!! onwards the
system remains in regime lll. Analyzing results from Table |
we obtainC; = N in regime Ill, which means the walkers
visit new nodes at a constant rate.

Explanation: In this regime the walkers mowaufficiently

maximize coverage without sacrifice of efficiency, the walker count
must be increaseat the earliest.e. attimet = t'7~/7| y (refer to
inference 1 and 2). Therefore, given initial N walkers, proliferation
becomes necessarytat t'7 11|y

Let us now consideA N new walkers are added through pro-
liferation at timet = ¢’ ~7!7| 5 and the system now containg’
walkers wheréV’ = N + AN. To fulfil the objective AN should
be such that the conditioft + 1) = ¢'/~/1|y, is satisfied. The

far apart from each other (Fig 1(lll)), such that on average condition essentially means that, the resulting systedv ‘oivalk-

each node contains a single walker with almost all its neigh- ers after proliferation should also remain at the boundary of regime
bors unvisited. As a result from time= t’?~7/7 onwards, Il and Ill. Thus, we observe that proliferation is essential and it
each walker walks in a non-overlapping exploration space should be regulated in such a way that the system always remains
with respect to other walkers. at the boundary of regime Il and Ill.

To reduce the initial inefficiency during regimes | and Il, the walk
needs to start initially with a small number of walkers (refer to in-
ference 3). Hence the novel strategy proposed above fulfils the
objective at each time step.

The following can be inferred from the above observations:
Inferences:



Table 1: Summary of the expressions for the average number of distinct sites visitgd’;) for different density regimes as well as the
crossover times separating the regimes (Courtesy [4]). Averaging has to be performed over repeated search runs, especially in cases
of small numbers of walkers NV.

Dimension| Coverage in| ¢!~/ Coverage in tH=11T | Coverage in
Regime | Regime Il Regime 11l
1 Cy~t In N Ci~txInN 00
2 Cy ~ 2 In N Cy ~tx ln(%) eV Cy ~ ]Ynxtt
3 Cint? | InN Ci ~ [t x In(2))2 N? | Ci~Nxt
d Comt? | InN [ Cin[txIn(Nxt:=%)% | No7 [ Gy~ N xt

Physical implication: At the boundary of regime Il and lll the  egy with rateP. For a non proliferating walkQg,|,, gradually
walkers just start to bsufficiently far apart implying that each increases with time, reaches the peak value and then falls gradu-
walker has some non-overlapping exploration space with respect toally. Therefore, there exists an optimal proliferation r&@* (t)
other walkers such that there is almost no redundant visit. There-which maximizesOg,|, at each time step throughout the walk.
fore, the proposed strategy ensures that, a new walker once intro- The total overall gain of the walk until tim€, is defined as the
duced gets its own non-overlapping exploration space, thereby in- sum of overall gain estimated at each time stdpr ¢ = 1to 7.
creasing coverage rate in the most efficient way. Let7 OGr|n,0 be the normalized total overall gain until tirfiefor

The key to the successful implementation of the strategy lies in N non proliferating walkers and OG |1, be for a proliferating
the precise estimation of the (1)proliferation r&end (2)defining walk with rate P, starting with a single walker. In generalOGr
an objective function to measure the performance of the walk. is defined as follows:

2.3 Objective Function

This subsection formulates a maximizing objective function which
computes the total overall gain, both in terms of speed and effi-
ciency of a random walk, from the understanding of the walker
dynamics in section 2. It is used to quantify the goodness of any ont - -
random walk strategy in terms of the framed objective. Let’s eval- Thﬁrefore,P **(t) maximizesT OGr|s,p for sufficiently large
uate the gain in efficiency and speed achieved byalkers at time T wit
L TOGrhp =

Efficiency achieved at timg by n random walkers, can be ex-

pressed ascilﬁ, i.e. the ratio of the coverage rate at timeo

the number of visits at timeé. The steady maximum achievable
efficiency byn walkers is%, where C’ steadyl|, is the
maximum achievable coverage rate. Therefore, gain in efficiency
(GE¢ln) is:

T
> 06l

TOGr = = (4)

T ’
Z Ciln y T'steadyl|n 5)
— C'steady|n t '

Now, T'steady|, andC'’steady|, can be obtained from Table |

ast!! ~11|n andC’|n at regime I11, respectively buf;|,, i.e. cov-

C/ ‘TL . . . .
GE4|n = " _ Ciln ) erage rate at any timedue to proliferating walkers is not known
' % C'steadyly, from existing literature. In the next section we employ numerical

simulations to determine the optimal dependeREy* (t) after im-

Coverage rate of the walk is known to be proportional to the plementing and testing the predicted proliferation strategy which
walker count during regime lIl (refer to inference 1), therefore works at the boundary of regimes Il and Il
faster coverage could have been achieved Wfalkers are intro-
duced early in the system. Let the time, wi@®Bteady|,, is achieved,
be denoted by'steady|.. Given the objective, there is no advan-
tage of introducing: ahead of timeT'steady|,» as this does not
result in enhancement of speed (refer to inference 3). Therefore,
gain in coverage speed§;|.) is:

3. NUMERICAL SIMULATIONS

This section is organized into two parts. The first section esti-
mates the values df steady and C’steady from simulation. In
the second section, we estimate the optimal proliferation rate from
simulation and compare it to the above theory.

3.1 Verifying maximum coverage rate and crossover
@ times through simulation

We simulate a simple random walk with N walkers with the fol-
lowing objectives:

Tsteady|n

GSiln = { z if t> Tsteady|n

1 : otherwise

The overall gainQg,|,) of the walk at timet can be expressed
as:

1. To check the presence of three distinct regimes and to check
the functional form predicted by theory.

Ogt|n = g€t|n X gstln (3)

Values ofGE,|n, GS¢|n and OG,|,, lie in the range [0,1]. At
time ¢, the n walkers used, may be obtained either from a non-
proliferating n-walker strategy or from a proliferating walk strat-

2. To obtain values ofk; and k2 to predictC’steady|n and
T'steady|n precisely and not just their qualitative time de-
pendence.
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Figure 2: Plot of efficiency (E:), overlap probability with
other’s trail (Oother,) and overlap probability with its own
trail (Oown,) vs time (t) for simple random walk using N =
1,20, 50, 100 walkers, d = 4.
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Figure 3: Plot of coverage rate(C}) vs time (¢) for simple ran-
dom walk using N = 20, 50, 100 walkers, d = 4.

d = 4, each node has 8 neighbors, and probability to jump to the
last visited node i% , therefore the most trivial lower bound of

3. To check the probability to overlap. It can be used as an Oown; isé ~ 0.125.

important metric to verify that foiV > 1 efficiency E; in-

E¢|n=20,50,100 is found to increase very fast for a short while,

creases indeed due to decrease in overlap probability with which can be interpreted as regime |I. It is also observed that mu-

time.

To observe the regimes distinctly, we plot efficienEy = %
which lies in the range [0,1]. In addition to the metrics efficiency
(E:) and coverage rat€);), we also measure the overlap probabil-
ity metrics defined as follows:

e Oother,; - Mutual overlap probability i.e. probability that
a walker overlaps with other walker’s trail, i.e. it visits a
node at time step, which has already been visited by some
other walkers (excluding itself) in some previous time steps,
averaged over all walkers.

e Oown: - Own overlap probability, i.e. probability that a
walker overlaps with its own trail at time step

The set of N walkers, all starting from the same source node

gradually dilutes. Therefor&)other: decreases with time. From
the above definitions it is expected that+ Oother: + Oown, =
1.

Simulation parameters 4 - dimensional Euclidean torous grid

topology is used with Von Neuman neighborhood, i.e. each node

has two neighbors along each dimension. Size of thex$6d21376 =
124*. Simulation is performed upto 2000 time units. Number of
runs considered for each experimertt is 10°. A sufficiently large

finite size graph is used along with a relatively small simulation

time, so that during a simulation the finite size effect does not take
place, i.e. walkers never bounce back from dimension boundaries.

tual overlapOother:| n=20,50,100 decreases drastically during this

regime. As time progresses;|n—20,50,100 Still increases, but at

a slower rate, which refers to regime Il. Correspondingly in this
regime, Oother:| N=20,50,100 decreases, but slowly compared to
that in regime .

Finally, E:| n=20,50,100 reaches a plateau and becomes steady at
avaluex N x 0.8 which signifies regime lll. It is further observed
that, Oother:|n=20,50,100 @lso takes a steady value 0 during
this regime. Therefore, it is noted that in asymptotic time the max-
imum efficiency achieved by N walkers is N times the maximum
efficiency of a single walker (regime 1ll). This confirms the mutu-
ally non-overlapping subspaces predicted by theory. It have been
verified that for all N, at any time ;| v + Oother;| n +Oown:|n
=1 holds true.

To get the estimate afsteady|n andT steady|n, we plotCy
versus timet for N =20, 50 and 100 in Fig. 3. A closer look
into the plot shows that @t = N coverage rat€; ~ N x 0.73,
close toNV x 0.8 as expected from theory. It is also observed that
foragiven N att = N, (N x 4), and(N x 15), coverage rate is
C} ~ (N x 0.73), C{ =~ (N x 0.78) and N, respectively.

To summarize, the simulation results show that for & grd,
the coverage rate becomes steady at a fitseady|n ~ N x 15
with C’steady|n = N x 0.8. Itis also noted that at time =
N x 15andN x 4, efficiency is 8.7 and 2.5 percentage less only
than the peak value, respectively. The next subsection estimates
the optimal proliferation rate through simulation using the above
mentioned results.

Torous grid is considered so that each node including the boundarys 2 Estimation of the optimal proliferation rate

nodes have the same degree. Each metric is measured by taking the

average value df x 10° runs. Here, we restrict our study only to a
grid of dimension 4, therefor€steady|n is expected to bés x N
(refer to Table I).

Results: To observe the regimes we plbt, Oother, andOown,
versus time in Fig. 2. E; andOother: have been plotted for dif-
ferent values of walkers couny =1, 20, 50 and 10000wn; is
plotted only forN = 1 as it remains the same for afy.

It is found thatFE;|y—1 =~ 0.8 remains almost steady at> 1.

It is becaus@other,|n—1 = 0 and Oown;|n—1 ~ 0.2, as for

Let Ps be denoted as the optimal proliferation rate obtained from
simulation. We perform two experiments with the following objec-
tives:

1. To obtainPs.
2. To see that regulated proliferation using optimal proliferation

rate Ps is an essential strategy to fulfil the objective to max-
imize coverage with least sacrifice in efficiency, for a given
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Case 2: sacrifycing 2.5% of peak efficiency --—-o--— -
Case 3: sacrificing 8.7% of peak efficiency -~
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Figure 4: Plot of Normalized total overall gain (TOG) vs pro-
liferation rate (P) for three different cases of efficiency.

time which cannot be achieved otherwise using a simple ran-
dom walk using equivalent number of hops.

Experiment 1:- Estimation ofPs

In the experiment, the total overall gain is computed for different
values of proliferation raté&. The simulation conside®¥;,,;: = 1
and variesP from 0 to 2.5 with step size 0.1. The total simulation
time is assumed to be 500 unit®s is estimated as the value of
P that maximizes total overall gailiOGsqo|1,p. The rest of the
simulation parameters are same as used in subsection/3.1s
of interest with respect to peak efficiency constraint but also for
stepwise relaxed constraint. Through simulation we estinate
considering three different cases:

e Case 1- EstimateP without any sacrifice of the peak effi-
ciency, i.e.T'steady andC’ steady is substituted byV x 15
andN x 0.8, respectively to calculate overall gainG,|:,r
at each time step (refer equation 6). It is in accordance to
the rule framed by the optimal proliferation strategy.

e Case 2 - EstimateP by sacrificing 2.5 percent of the peak
efficiency i.e.T'steady andC’ steady is substituted byV x
4 andN x 0.78 respectively.

e Case 3 - EstimateP by sacrificing 8.7 percent of the peak
efficiency, i.e. T'steady and C’ steady is substituted byV
andN x 0.73, respectively.

Results -The plot of total overall gaif OGsq|1,p Versus pro-
liferation rateP is shown in Fig. 4 corresponding to the above three
cases. It is found that for case Bs = 0.3 with 7OGs00|1.0.3 =
479.8903. For case 2Ps = 0.4, i.e. the system is allowed to
proliferate in a marginally higher rate at the cost of 2.5 percent ef-
ficiency. For case 3Ps = 1.0, i.e. by using the same value of
T'steady|n as analytically predicted and at the cost of 7.3 percent
efficiency, the obtained proliferation rate approaches 1. Finally, it
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Figure 5: Plot of Efficiency (E:) vs time (t) for optimal prolif-
eration with rate 0.3 and equivalent simple random walk.
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Figure 6: Plot of (C;) vs time (¢) for optimal proliferation with
rate 0.3 and equivalent simple random walk.

percentage of efficiency is sacrificed, then the system is allowed
to proliferate at a marginally higher optimal rate, which results in a
huge increase in coverage. Though ideally ensuring peak efficiency
is a desired condition, but it is not an application specific constraint.
Therefore, a small amount of overlap may be allowed in practice to
get the benefit of increase in coverage.

Experiment 2:- Testing the effectiveness of the regulated
proliferation strategy

This experiment compares the performance of the proposed opti-
mal proliferation strategy usings = 0.3 (sayPR) with a simple
random walk utilizing equal amount of bandwidth resource (i.e. to-
tal number hops up to specified simulation time T). The simple ran-
dom walk usesV walkers. In this experiment, we choo8e= 75
and simulation timeél"’ = 492 judiciously so that the total hops
used matches. Let the proliferating random walk and simple ran-
dom walk be denoted &8R andSR, respectively. Performance is

is observed that the coverage obtained up to simulation time 500 compared in terms of th&:, C; and7 OG|soo for both the strate-

time steps using’s = 0.3, 0.4 and 1, i.e. optimal rates by sacrific-

gies.

ing 0, 2.5 and 8.7 percent efficiency, respectively are 29987, 39555  The plot of £, for both the strategies is given in Fig. 5. It shows
and 95078 nodes. There is 217 and 8.7 percent increase obtainedhat the efficiency o R remains close to the efficiency of a single

by sacrificing 2.5 and 8.7 percent efficiency, respectively.
To summarize, the precise valueBfteady|y andC’ steady|n

is essential to obtain the correct estimatefaf If a very small

walker (refer Figure 2) throughout the proliferating walk, in spite
of the fact that the walker count increases with time, because pro-
liferation is regulated properly. The efficiency §fR is less than
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Figure 7: Plot of (OG) vs time (t) for optimal proliferation with
rate 0.3 and equivalent simple random walk.

PR in the initial stage of the walk, as it passes through regime ||
and llI. Plot of C} versust given in Figure 6 shows that the cover-
age rate ofPR is higher thanSR almost from the half way mark
onwards, because the number of walkers useB'RyexceedsSR.

Fig. 7 shows the plot o®G versust for both the strategies, which
is found to be greater foPR in the initial stage as simple walk is
penalized due to initial inefficiency captured Gy;. The plot of
GE: closely matches witlDG: as in this experimerd S, is always

1 for both the strategies.

It may be noted thal OG|pr = 472.16, TOG|sr = 459.321
shows PR performs better thasR considering efficiency and
coverage combined. Further, the total coverager = 29035
andCszr = 27855, showing that given a time 500 units, the reg-
ulated proliferation strategy covers 4.2 percent more nodes com-
pared to simple random walk. The results show that given the time
and fixed amount of resource (bandwidth), properly regulated pro-
liferating random walk strategy always covers more nodes than a
simple random walk.

4. CONCLUSIONS

The optimal proliferation rate estimated in this paper answer the
fundamental questions raised in the introduction, which are highly
relevant in the domain of distributed systems. The proposed regu-
lated proliferation strategy is solely topology dependent and devel-
oped from insights on walker dynamics, hence provides an applica-
tion independent generic approach towards designing fast and effi-
cient random walk strategies. The optimal rate has been estimated
both based on theory and simulation and the reasons for deviation
have also been explained. Results show that regulated proliferation
is an essential strategy to ensure optimal use of resources.

In this work, we considered infinite dEuclidean graph. Though
it is a simple topology, the proposed approach can be well applied
to other dimensions of grid as well as other network topologies
(e.g. random graph, small world, power law), on which work is in
progress.
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