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Abstract—We study broadcasting of information in a system
of moving agents equipped with omnidirectional as well as di-
rectional antenna. The agent communication protocol is inspired
by the classical SIRS epidemics dynamics. We assume that the
antennas of all agents have a fixed transmitting power, while
signal reception only occurs when the receivers sense signals with
power exceeding a certain threshold. Thus, information exchange
is a local phenomenon which depends on the relative distance and
antenna orientation between the transmitting and the receiving
agent. We derive an expression for the mean broadcasting time
and study the information dissemination robustness of the system
using elements of classical epidemiology and physics. In partic-
ular, we show that the mean broadcasting time depends upon ψ
which quantifies the area the radiation pattern of the antenna
sweeps as it moves. We report three important observations
(a) directional antennas perform better than omnidirectional
antennas, (b) directional antennas whose beam-width is narrower
perform even better, and (c) the performance enhances a lot if
directional antennas rotate. These behaviors can be understood
in the light of the reported analytical findings.

Index Terms—Delay tolerant networks, Broadcasting in net-
works, Epidemic dynamics, SIRS model, Mean field equation,
Directional antenna.

I. INTRODUCTION

The wide-scale adoption of wireless devices may enable
a new platform for peer-to-peer opportunistic networking.
One potential framework, termed delay tolerant networks
(DTNs) [1], is receiving increasing research attention. Delay
tolerant networks comprise of mobile wireless devices that
are not necessarily connected to each other (e.g., moving
vehicles in a road). Messages progress from one node to
another by opportunistically exploiting wireless connectivity
as well as physical node mobility. Intermediate nodes re-
ceive batches of packets, store and carry them in their local
memory, and forward them to other nodes until some (uni-
cast/multicast/broadcast) conditions are satisfied. Examples of
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DTN application include networking using buses having pre-
dictable routes [2], interplanetary networking [3], interfacing
with sensor networks [4], and using mobile nodes to bridge
data between remote village networks and the Internet [5], [6].

Here, we study the broadcasting properties of a system
of moving agents equipped with short-range communication
antennas. We show that the broadcasting dynamics of the
system depend on agent density, the motility pattern exhibited
by the agents, type of antenna, and very importantly, antenna
dynamics. We have used specifically two types of antennas:
directional antenna and omnidirectional antenna and we refer
them as “DA” and “OA”, respectively, in rest of the paper. We
consider, for simplicity, that there is only one message that is
broadcasted and assume a simple transmission dynamics.

In analogy to classical epidemic modeling [7]–[9], agents
can be in one of three possible states: susceptible, meaning the
agent does not transmit the message, infected, indicating the
agent is in broadcasting mode and transmitting the message for
a given time (denoted by τI ), and recovered, which represents
an idle mode of the agent after the broadcasting mode. The
recovered, idle state particularly help the energy-strapped
mobile agents in conserving energy. The recovered agents after
some given time, when the mobile agents have reached an
hitherto unexplored region, move back to susceptible state,
following the classical SIRS dynamics of epidemiology [7]. A
susceptible agent can only switch to broadcasting mode, i.e.,
infected state, upon reception of the message from a neighbor
node.

Broadcasting of a message in DTN with OA has been stud-
ied in the past. These previous works can be broadly classified
into two categories. (a) A number of approaches have been
taken to reduce the overhead and improve the performance
of epidemic routing by implementing probabilistic forwarding
[10]–[12], redundancy suppression scheme [13] as well as
schemes which utilize the history [14]. (b) There have been
several works which mainly through extensive simulation have
shown the performance of broadcast under different choices
of parameters (e.g. message holding time, transmission range,
etc) [15]–[17].
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Fig. 1. The state of the i-th agent at time t is characterized by its position
xi, the orientation of its antenna θi, and its transmitting mode that can be
either S, I or R. The agent antenna is characterized by its beamwidth given
by γ.

Here, we analyze a SIRS broadcasting protocol, and derive
various performance evaluation metrics, and expressions for
the mean broadcasting time and broadcasting robustness of
the system, for OA and DA antenna types. One of our main
theoretical contributions is to show that the mean broadcasting
time is a function of the effective scattering cross section ψ,
i.e., the new area explored by the agent antenna per unit time,
where ψ, in turn, is a function of the agent mobility pattern
and, very importantly, antenna orientation dynamics. We base
our study in previous works on disease spreading on moving
agent systems [17]–[20], particularly on [21]. We argue in
terms of a simple mean-field theory which, we show, provides
a reasonable description of the information spreading dynam-
ics for certain range of parameters. We validate our analytical
findings via extensive agent-based stochastic simulations.

Though there are some recent works on information broad-
cast with DA [22], [23] in static networks, to the best of our
knowledge this is the first paper which explores the impact DA
produces in context of moving agents with antenna dynamics.
The study of DA yields interesting results. We find that DA
with same power performs much better than omnidirectional
antenna (OA). Interestingly, we find that when the transmission
range of DA is comparable to the system size, the performance
enhancement cannot be explained only through mean-field
theory.

The paper is organized as follows. In section II we introduce
an agent-based model. A coarse-grain (analytical) description
of such model is derived in section III. Results and conclusions
are presented in sections IV and V, respectively.

II. AGENT-BASED MODEL

A. Agent motion and antenna orientation dynamics

We assume agents are self-propelled and move at con-
stant speed in a two-dimensional box with periodic boundary
condition, changing their direction of motion at Poissonian
distributed times. The equation of motion of the i-th agent
can be expressed as:

ẋi(t) = v V̌ (αi) (1)
θi(t) = Fθ(t) (2)

where xi(t) represents the position of the i-th agent, θi(t)
denotes the orientation of its antenna (a relevant variable for
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Fig. 2. Relevant configurations between transmitting antenna (TA) and
receiving antenna (RA), depending on the antenna type. Figure (a) corresponds
to a pair of OAs. Figures (b), (c), and (d) illustrate the relevant configurations
for a pair of DAs. The mixed case, i.e., the configurations corresponding to
OA and DA are illustrated in figures (e) and (f). Notice that if the TA becomes
RA and vice versa, the communication range remains the same.

DA, but irrelevant for OA), v is the agent active velocity,
and V̌ (αi) represents the direction of motion, defined as
V̌ (αi) = cos(αi)x̌+sin(αi)y̌. The active direction of motion,
determined by the angle αi, follows a Poisson process by
which an agent changes the direction, i.e., αi, at every time
step with probability pturn. Eq. (1) defines a continuum time
random walk characterized by a diffusion constant D =
v2κ−1, where κ represents the angular diffusion experienced
by αi. For more details see [24]. Assuming that values of αi

are strung from a step function of width η, we can express κ
as κ = (η2/24) · pturn [24].

We have also implemented a Poisson dynamics for the
orientation of the antennas. This is encoded in the functional
form of Fθ(t). Only for DA, the dynamics of its orientation is
relevant. The antennas change their orientation at every time
step with probability prot. When prot = 0, the orientation of
the antenna never changes. On the other hand, for prot = 1,
the antenna orientation changes at every time step.

Thus, the state of an agent is characterized by its position,
the orientation of its antenna, and its transmitting mode, that
can be either S, I or R, as explained below. Moreover, the
agent antenna is characterized by its beamwidth, i.e., γ. See
fig. 1.

B. Signal transmission - the agent antenna

Imagine that at time t we have the agent i at position xi(t),
whose antenna is pointing in direction θi(t), and agent j at
position xj(t) with its antenna pointing in direction θj(t). We
want to know whether agent i is able to receive a signal sent
by agent j. This is going to happen only if the i captures a
signal sent by j with a power above a certain threshold δ. For
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that we use the Friis transmission formula [25] which can be
expressed in two-dimensions as:

Pr(xi, θi,xj , θj) =
K · Pt

x2
ij

GT (θ̌j .xij)GR(θ̌i.xji) > δ , (3)

where Pt is the transimission power of the transmitter,
GT (θ̌j .xij) denotes the gain of the transmitter in the direction
to the receiver, GR(θ̌i.xji) represents the gain of the receiver
in direction of the transmitter, and θ̌j = cos(θj)x̌ + sin(θj)y̌,
while xij = xi − xj .

The functional forms of GT and GR depend on the specific
antenna used by the transmitter and receiver, respectively. For
more details regarding the Friis transmission formula and the
possible functional forms of GT and GR we refer the reader
to [25]. For our purposes, we can take these expressions to
be:

GT/R(θj ,xj ,xi) =





GM
0 (γT/R) θ̌j .xij < cos(γT/R/2)

GS
0 θ̌j .xij > cos(γT/R/2)

,

(4)

where GT/R refers to the transmission and receiving gain,
respectively, and γT/R is the angle for maximum gain for the
transmitter and receiver. The gain of a DA antenna is defined,
at a given distance d, as the area of the sphere of radius d
divided by area of the solid angle γ at distance d, assuming
that the ideal DA radiates all its power through that solid angle.
In a more realistic scenario, one has to assume that antennas
exhibit some small leakage of power, which we have modeled
by GS

0 . Although there variations among individual DAs, GS
0

tentatively represents average behavior and is taken as 0.0316.
Here, GM

0 takes the form: GM
0 = 1.4/(1 − cos(γT/R/2))

considering 30% leakage. For more details see [26].
To gain some intuition, we illustrate in Fig. 2 some represen-

tative situations. Depending on the type of the antennas and
their relative orientations, the maximum transmission radius
can be estimated. This is given in table I for the examples
shown in Fig. 2. The entries in the table are generated as
follow. For omni-directional antennas, gains (GT , GR) are
considered as one and the maximum interaction range (r(xij))
for omni-omni configuration is also considered to be one.
When we consider directional antenna, to maintain fairness,
we assume it has same transmission power Pt, then the
maximum interaction range (r(xij)) is simply determined by
the square root of GT · GR. For example, take the case of
r2 for γ = 10. Here, GT = 0.0316 and GR = 368, from the
formula of GM

0 , then r2 = 3.41.

C. Broadcasting algorithm

In this subsection we summarize the steps involved in
the implemented broadcasting algorithm, and list the model
parameter values. Since computer implementations involve
always a discrete time, here we provide for clarity a discrete
time description of the algorithm. Our time step is ∆t, a small
quantity. The individual-based model works as follows:
Motion of the agents : In each ∆t we first update the position
of the agents. This is done by discretizing Eq. (1) by a simple

TABLE I
RANGES OF DA FOR DIFFERENT γ WHERE r1, r2, r3, r4, r5 ARE RANGES

FOR ANTENNA ORIENTATION OF FIGS. 2(b, c, d, e, f ) RESPECTIVELY.
HERE THE ASSUMPTION IS THAT BOTH THE SENDING AND RECEIVING

ANTENNA HAVE THE SAME γ .

γ(in degree) r1 r2 r3 r4 r5

10 368 3.41 0.0316 19.2 0.18

15 163 2.27 0.0316 12.76 0.18

30 41 1.14 0.0316 6.4 0.18

45 18 0.76 0.0316 4.24 0.18

60 10 0.562 0.0316 3.16 0.18

90 5 0.4 0.0316 2.24 0.18

Euler method such that xi(t + ∆t) = xi(t) + v V̌ (αi(t))∆t.
Since αi(t) follows a Poisson process, at each time step we
decide with probability pturn whether αi(t + ∆t) is a new
random angle between 0 and 2π. Otherwise, αi(t + ∆t) =
αi(t). Initial direction of motion of each agent, αi(0), is taken
as random.
Antenna Direction : We update the orientation of the antenna
according to (2) (for OA this step is irrelevant). Similarly to
what we do with αi(t), since θi(t) also follows a Poisson
process, we decide at each time step with probability prot

whether θi(t + ∆t) is a new random angle between 0 and
2π [27]. Otherwise, θi(t + ∆t) = θi(t). The initial direction
of antenna of each agent, i.e., θi(t = 0), is taken as random.
Message State : Here we update the message state of each
agent. If the i-th agent is in state “S”, we explore the space
looking for all j-agents in the system in state “I”, that is,
transmitting the message, and checking whether there is at
least one of them that fulfills Eq. (3). We replace the state of
the i-th agent by “I” if an agent is found. On the other hand,
if the i-th agent is in either “I” or “R” state, we advance the
internal clock associated with that state by ∆t. If the state
is “I” and the internal clock marks a time larger than τI , we
change the state of the agent to “R” and reset the clock. If the
state is “R” and the clock indicates a time larger than τR, the
agent moves back to the “S” mode. The transition from I to
R, and from R to S is a fully deterministic process. Initially
only a single agent is in state “I”.

The table II indicates the model parameters. Those param-
eter values shown in the table have been kept fixed across the
paper. Though the number of agents N has been varied, most
of the simulations were performed with N = 1000 agents.
The linear size of the system is indicated by L. The density
ρ is defined as ρ = N/L2, assuming rectangular area.

III. MEAN-FIELD APPROACH

When communication occurs most frequently between pairs
of agents (i.e, three or more agents talking simultaneously
is a rare event), the agent spatial distribution is roughly
homogeneous, and the system is well-mixed, we can expect
a mean-field approach to provide a reasonable description of
the information dynamics. However, it is well-known that a
mean-field description for systems as the ones we deal with
in this paper cannot provide an accurate description of the
system dynamics either close to its phase transition point or at
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TABLE II
MODEL PARAMETERS (SEE TEXT FOR DETAILS).

Parameter value

N varied (1000 in most cases)

L varied

v 0.1

pturn varied (0.0001 in most cases)

prot varied

γ varied

GS
0 0.0316

τI 500

τR 50

very high densities (see for instance [21], [28] and references
therein). The mean-field time evolution of the populations of
susceptible, infected, and recovered agents is described by the
following equations:

Ṡ =
R

τR
− (ρψ) IS (5)

İ = (ρψ) IS − I

τI
(6)

Ṙ =
I

τI
− R

τR
(7)

where S, I and R are defined as S = NS/N , I = NI/N
and R = NR/N , with N being the total number of agents
in the system, and NS , NI , and NR being the number of
susceptible, infected and recovered agents, respectively. The
product (ρψ)S describes the mean number of susceptible
agents an infected agent infects per unit time, where ρ stands
for the agent density and ψ represents the (new) area an agent
explores per time unit [21]. For a system with only OA agents,
ψ can be expressed as ψ = vσ0, where v is the agent speed and
σ0 the effective scattering cross section, a classical concept of
kinetic gas theory [29]. For a system with only OAs with the
same Pt for all antennas, σ0 takes the simple form σ0 = 2r,
where r represents maximum interaction range of the antenna.
For the used parameters, r = 1. For systems with DA agents,
or mixed systems, we can assume that ψ can be approximated
by

ψ = (a(γ)prot) + (vσ(γ)) , (8)

where a(γ) represents the new area DA explores each time
on changing its orientation, which is function of the antenna
beam width γ, while σ(γ) denotes the effective scattering cross
section of the DA.

A. Robustness condition

By taking the LHS of Eqs. (5)-(7) equal to zero, we obtain
the steady states of the system, which are: i) S = 1, I = 0,
and R = 0, corresponding to the epidemic extinction, i.e., no
agent transmitting the message, and ii)

Sst = R−1
0 (9)

Ist = (1− Sst)
τI

τI + τR
(10)

Rst = (1− Sst)
τR

τI + τR
, (11)

corresponding to the endemic state, where R0 = ψρτI

corresponds in epidemic dynamics to the so-called basic
reproductive number [21]. Eqs. (9)-(11) define a system state
where there is always a finite fraction of agents transmitting
the message, i.e., I(t → ∞) > 0. Strictly speaking, this is
only true for infinite systems.

Linearizing Eqs. (5)-(7) around the steady states given by
i) and ii), it is easy to see that the stability of the steady states
changes at R0 = 1. The mean-field approximation provides
us with a condition for the existence of a non-vanishing
asymptotic fraction of transmitting agents which reads:

ψρτI > 1 . (12)

For a given ψ and ρ, we can use condition (12) to estimate τI ,
i.e., the time period agents should retransmit the message to
avoid message broadcast extinction. Clearly, if we can assure
that a finite fraction of agent will be always broadcasting the
message, we can also assure that asymptotically everybody
is going to receive the message. In that way, condition (12)
defines the broadcast robustness condition of the system.

B. Average broadcasting time

Now we want to estimate the average broadcasting time. For
that, we keep track in simulations of the number of individual
agents that have received the message since the beginning of
the numerical experiment. We define Y (t) as the fraction of
informed individuals at time t, i.e., the number of agents that
have received the message at least once since the beginning
of the experiment. Thus, 1− Y (t) is the fraction that still has
not received the message. We can express the time evolution
of Y (t) as:

Ẏ = ψρ(1− Y )I (13)

The reasoning behind Eq. (13) is that each of the I(t) agents
that are broadcasting the message will transmit the message
(per unit time) to ψρ(1−Y ) agents that have not still received
the message. If we assume that we know I(t), we can think
of Eq. (13) as a simple non-homogeneous ordinary differential
equation whose solution is:

Y (t) =
(

1
N
− 1

)
exp

[
−(ψρ)

∫ t

0

dt′I(t′)
]

+ 1, (14)

where it has been assumed that at t = 0 there is only one agent
informed and transmitting the message. A similar expression
to Eq. (14) has been derived in [20] in the context of SI and
SIR message broadcasting dynamics.

One can define the broadcasting time as the time at which
all individuals in the system have received the message. We
refer to this time as Tb. However, according to Eq. (14),
that condition is fulfilled when Y (t) = 1. Mathematically
speaking, this occurs for t → ∞. No doubt that in a finite
system, in simulations for example, Y (t) = 1 for a finite time
t. Although this is true, Eq. (14) suggests that such a definition
of Tb leads to values strongly dominated by fluctuations. To
overcome these problems, we propose to use an alternative
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Fig. 3. Time evolution of S (green dashed), I (red solid) , R (black dashed),
and Y (blue dash-dotted) for a system with N = 1000 agents with OA
at a density ρ = 0.06. Black solid curves correspond to the mean-field
approach, integration of Eqs. (9)-(11) and (14). The vertical black dashed
line corresponds to Eq. (15).
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Fig. 4. Histogram of the broadcasting time T ∗b (based on 100 realizations),
i.e., Eq. (15), for a system with N = 1000 agents with OAs at a density
ρ = 0.06. Black dotted line denotes the average broadcasting time.

definition for broadcasting time. According to Eq.(14), Y (t)
experiences a crossover when:

∫ T∗b

0

dt′I(t′) =
1

ψρ
, (15)

where T ∗b is the new defined broadcasting time. Notice that
the exponential in Eq. (14) defines, as usual, a characteristic
time. Similarly we can express this condition by asking when
Y (t) = 1− exp(−1), which occurs at t = T ∗b .

IV. RESULTS

A. Omnidirectional antenna

We start by studying the case where all agents are equipped
with identical OAs. At intermediate densities, the mean-field
approach provides, as mentioned above, a reasonable descrip-
tion of the information spreading dynamics. Both, transient
and steady state behavior are well described. Fig. 3 compares
the mean-field approach and simulations. Notice that the
mean-field approach does not involve any fitting parameters.
From the condition given by Eq. (12), the critical density
ρc = 1/(ψτI), above which the message can be successfully
broadcasted, can be derived. Recall that for OA, ψ = vσ0.
Thus, ρc = 0.01.

0.05 0.06 0.07 0.08

500

700

1000

ρ

T
* b(ρ

)

Fig. 5. Average broadcasting time T ∗b as function of the agent density ρ.
Simulations were performed using N = 1000 agents. Each circle corresponds
to the average of 100 simulations, and vertical bars indicate the standard
deviation.The red dashed curve indicates the theoretical prediction given by
Eq. (15). Notice that there is no fitting parameter.

In the following, we focus on the mean broadcasting time.
Fig. 4 shows the histogram obtained for the mean broadcasting
time T ∗b , for a density ρ = 0.06. The histogram is based on 100
realizations of the same numerical experiment. Interestingly,
the distribution of T ∗b is not a symmetric Gaussian distribution.
The vertical dashed line correspond to the average T ∗b . A more
systematic study of the nature of the distribution P (T ∗b ) is left
for future research.

Finally, we show that Eq. (15) can be used to predict
T ∗b at different densities. Fig. 5 shows T ∗b as function of
the agent density ρ. Each circle corresponds to an average
over 100 simulations, while the dotted curve is the prediction
given by Eq. (15). As it can be observed, the mean-field
approach provides a reasonable description of the broadcasting
dynamics of the system at intermediate densities without any
fitting parameter.

B. Omnidirectional vs. directional antenna

In this subsection we study the effect of DA usage in the
broadcasting time T ∗b . In simulations, DA agents have the
same values of KPt, and δ as OA agents. Recall that the
maximum interaction range between the two agents depends
on the value of γT of each of the agents. Fig. 6 shows that the
broadcasting time T ∗b decreases as the fraction of DA agents
(ρDA) is increased, where ρDA = NDA/N , with NDA the
number of agents equipped with DA antenna. Notice that for
ρDA = 0, i.e., for only OA agents, T ∗b , as expected, does
not depend on prot. The figure also shows that as the rotation
probability prot increases, T ∗b decreases at least initially at
faster pace. When the system entirely comprises of directional
antenna, i.e, for ρDA = 1, we observe even when prot = 0
that the system performs always better than OA irrespective
of the antenna angle.

Fig. 7 focuses on the two extreme cases, prot = 0 (a) and
prot = 1 (b). When prot = 0, the evolution of message
broadcasting depends exclusively on agent migration, i.e.,
ψ = (vσ(γ)). Thus, Fig. 7 (a) shows in an indirect way the
behavior of the effective scattering cross section σ(γ) for a
mixture of OA and DA, characterized by a ρDA (detailed
discussed later). On the other hand, when prot = 1, the
new area explored by the antenna per unit time is dominated
by the turnings performed by the antenna direction, i.e.,
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Fig. 6. Average broadcasting time T ∗b vs. DA fraction ρDA for various
rotation probability prot, agent density ρ = 0.05, beam width γ = 60.
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Fig. 7. Average broadcasting time T ∗b vs. DA fraction ρDA for various
values of antenna beam width γ with rotation probability prot = 0 (a) and
prot = 1 (b) for an agent density ρ = 0.05.

ψ = (a(γ)prot). As it can be seen in Fig. 7 (b), these effects
become more pronounced for smaller values of γ. Another
important point which can be observed in both Figs. 7 (a)
and (b) is that the steep decrease in broadcasting time T ∗b for
small values of ρDA indicates that the introduction of a small
number of DA in the system can dramatically improve the
broadcasting performance.

Fig. 8 shows the response of T ∗b as agent density ρ is
changed. The simulation data indicates that DA performs
better for all densities. The figure also shows that T ∗b mono-
tonically decreases, for all agent density ρ, as the fraction of
DA agents, ρDA, is increased. Inset plot of Fig. 8 describes the
comparative performance of a system with all DA agents over
the system with all OA agents. It shows that in higher density
DA system performs better. This also highlights the benefits of
the longer range transmission of DA agents in higher density
where it broadcasts the message more quickly by reaching to
more number of distant agents.
Initial infected agent count : Another interesting aspect could
be to analyze results for varying number of initially in-
fected agents. This would require understanding the interaction
among the agents which can be complex and we believe would
need a much more detailed look. However, from initial ex-
perimentation we have noticed some interesting results which
we are reporting here. As expected, it is seen uniformly the
broadcasting time decreases with increasing number of initial
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Fig. 8. Average broadcasting time T ∗b vs. agent density ρ for various values
of DA fraction ρDA, for γ = 60, prot = 0. Inset figure shows the Ratio of
T ∗b of system with ρDA = 100 and ρDA = 0 for different agent density.

agents. However, it is observed that with an increasing fraction
of DA, the effect of multiple initial agents is better again
supporting the fact that the DA can distribute the infectious
agents to remote places whereby each can explore an area on
its own.

C. Antenna and agent rotation

Here we study the impact of pturn to the broadcasting
performance. We also study its relation with antenna rotation
prot, specifically, by considering three situations. (a) The
antenna does not turn even though its corresponding agent has
turned. (b) The antenna’s direction is fixed with respect to the
direction of the agent, and in consequence if the agent turns,
for example, 10 degrees to the West, the antenna will also turn
10 degrees to the West. (c) The antenna turns independent
of the agent’s direction. Fig 9 explains all the above three
situations.

In order to understand the sole effect of agent rotation, we
consider, at first, only omni-directional antenna. We find that
the broadcasting time increases as agents turning probability
increases (red lines on both Figs. 9 (a) and (b) which cor-
respond to ρDA = 0). With increasing rotation probability
pturn, each individual agent moves around within a small area,
thus losing the chance of exploring new area and coming in
contact with new potential agents. This same feature is noticed
in case of DA where T ∗b steadily increases when the DA does
not change direction (black and blue circle-line in Fig 9 (a)).
However, if antenna is rotated exactly the amount the agent
moves, T ∗b decreases with pturn if the number of DA antennas
is large enough, as the curve for ρDA = 20 and prot = 0 (blue
circle-line) in Fig 9(b) indicates. For smaller values of ρDA,
the broadcasting performance may not improve by increasing
agent rotation, since for agents with OA, large values of
pturn imply larger values of T ∗b (see curve for ρDA = 0).
Nevertheless, for intermediate values of ρDA a decrease in
T ∗b can be observed at large values of pturn (black circle-line
in Fig 9(b)). When the antenna moves independently of the
direction of agents, as can be expected, motion hardly has
any impact. We also show the situation where the random
rotation of the antenna is done after the antenna gets aligned
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Fig. 9. Average broadcasting time T ∗b vs. probability to change the node’s
moving direction pturn for various values of DA fraction ρDA and antenna
direction change probability prot (γ = 60 in case of DA nodes). (a) change
of antenna direction is independent of node’s direction, (b) node’s direction
change is reflected in antenna direction change. The same curve for ρDA =
0 (only omni-directional) is drawn in both (a) & (b) to maintain parity

with the agents motion (black and blue star-line Fig 9 (b)).
The broadcasting time is exactly same if the rotation is done
without performing the alignment (black and blue star-line Fig
9 (a)). All these findings can be explained by studying the
behavior of ψ.

D. Analysis of Results

From the above stated detailed simulation results we can
infer mainly four important observations:

1) Systems with DA agents with prot = 1 demonstrates
lower broadcast time than systems of DA agents with
prot = 0.

2) DA agents with smaller γ perform (in term of T ∗b )
comparatively better than the agents with larger γ. This
is true for all values of prot.

3) Independent of other parameters, system with DA agents
always show better results compared to the system of
only OA agents (ρDA = 0).

4) The performance of DA agents becomes better if it is
aligned with the direction of the agent motion.

As explained in the previous paragraphs, a closer look
at the mean field equations (Eqs. (5)-(7)) suggests that the
possible way of understanding these findings is by thinking in
terms of ψ (Eq. (8)). The reasons behind the first and fourth
observations are already given earlier in that line. To explain
the second observation for prot = 0 we have to calculate the
value of ψ hence the value of vσ(γ) for DAs.

Calculation of ψ for DA agents is little involved and
depending on the receiving agents and relative orientation of
antennas etc. Hence here due to shortage of space only a
representative table showing the ψ’s calculated for different
γ, considering a simplified situation that movement in all
direction is equiprobable (Table III). The table immediately
confirms the reason behind the better performance of DAs
with smaller γ (observation 2). About the third observation,
we have seen that in all cases systems with DA agents perform
better than the OA agents. From the mean field approach
(Eqs. (5)-(7)) we know that T ∗b depends on the value of ψ. So
apparent reason for better performance of DA agents should
be its larger ψ. But the table shows that ψ of DAs with larger
γ is very close to ψ of OA (which is 0.2) which points to
the fact that ψ cannot fully explain the reason behind better
performance of DA over OA. This may be due to the reason

TABLE III
VALUES EXPECTED ψ FOR DIFFERENT VALUES OF γ FOR DA ANTENNA

WITH v = 0.1

γ(in degree) 30 45 60 90 Omni

E (ψ) 0.3138 0.2374 0.1976 0.1769 0.2

that DA agents are creating some random long links and the
message is quickly distributed to remote areas. In other words,
DA induces a collapse of the diameter of the system. Under
these circumstances, the mean field equations fail, providing a
too large overestimated broadcasting time T ∗b . As the system
size increases, mean field predictions become better.

V. CONCLUSIONS

This paper makes a systematic and analytic study to un-
derstand and establish the potential of DA in DTN. We have
systematically introduced Directional Antenna in an epidemic
setting, used the classical Friis equation to model message
transmission, derived a mean-field, based on the agent mobility
and antenna dynamics, to describe information broadcasting
dynamics, and then performed extensive simulation to under-
stand the behavior of DA. Two important insights have been
developed. First, DA direction can be suitably changed to
attain a larger new explored area per time unit (ψ), and hence
faster information dissemination can be achieved. Secondly,
narrow but long-range antenna can substantially enhance the
speed of broadcasting. The affectivity and versatility of the
DA can be further established considering more realistic agent
mobility settings, some examples of which are found in [30]–
[32]. However, the two above mentioned realizations will help
in suitably couple DA with specific mobility pattern to build
efficient information dissemination algorithms.
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