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Abstract

In this paper, we propose an analytical framework based on percolation theory
to assess the robustness of superpeer topologies in face of user churns and/or at-
tacks targeted towards important nodes. It is observed in practice that in spite of
churn of peers, superpeer networks show exceptional robustness and do not disin-
tegrate into disconnected components. With the help of the analytical framework
developed, we formally measure its stability against user churn and validate the
general observation. The effect of intentional attacks upon the superpeer networks
is also investigated. Our analysis shows that fraction of superpeers in the network
and their connectivity have profound impact upon the stability of the network.
The results obtained from the theoretical analysis are validated through simula-
tion. The simulation results and theoretical predictions match with high degree of
precision.

1 Introduction

Peer to peer (p2p) networks have recently become a popular media through which huge
amount of data can be shared. P2p file sharing systems, where files are searched and
downloaded among peers without the help of central servers, have emerged as a major
component of Internet traffic [1, 2]. Peers are connected among themselves by some
logical links forming an overlay above the physical network. Superpeer topologies have
emerged as the most influencing structure among the overlay networks. Most of the
commercial systems like KaZaA have also adopted superpeers in their design [3]. In this
system, superpeer nodes with higher bandwidth and connectivity connect to each other
forming the upper level in the network hierarchy. Each superpeer works as a server on
behalf of the set of client peers who form the lower level of network hierarchy [4, 5].

Peers in the superpeer system join and leave the network randomly without any
central coordination. This churn of nodes might partition the network into smaller frag-
ments and breakdown communication among peers. But in practice, superpeer overlay
networks exhibit stable behavior against churn. Consequently the possible breakdown
of the network is a rare event [6]. However the stability of the overlay network can get

∗An initial version of this paper has been presented as poster in ACM SIGCOMM 2006.
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severely affected through intended attacks targeted towards the important peers [7]. A
comprehensive study of stability of the superpeer networks against all these dynamics
that take place in the network, is the primary focus of this paper. The main contribution
of the paper lies in developing a quantitative measure to analyze the stability of networks
against both churn and attack.

A survey of the literature reveals that most of the commercial superpeer networks can
be modeled as complex graphs [4, 8, 9]. Some analysis of dynamics of complex graphs
have been done mainly by the physicists. These approaches can be utilized to understand
the various properties of superpeer overlay networks. Effect of random failures and
intentional attacks in various kinds of graphs are discussed by Cohen et al. in [10, 11]. It
has been observed that Internet, which can be modeled by power law networks is resilient
to random failure, but is highly sensitive to intentional attack [12, 13]. In [14], Newman
et al. introduced the concept of generating function formalism. Using it, Callaway [15]
found the exact analytic solutions for percolation1 on random graphs with arbitrary
degree distribution. In this paper, we utilize many of the aforesaid results of percolation
theory and propose a generalized equation to measure stability2 of any given p2p overlay
structures in face of churn of peers as well as attacks mounted on them.

We characterize the topology of the network by a probability distribution P and
dynamics of the nodes by another probability distribution Q. Using these, we develop
an analytical framework to examine the stability of generalized graphs where the vertices
undergo some dynamics. The stability of superpeer networks is measured using the
concept of giant component3. We also perform simulations to verify the goodness of our
theoretical results.

The rest of the paper is organized as follows. Section 2 proposes an analytical frame-
work to find the amount of disturbances required to disrupt the giant component of the
network. Section 3 models the superpeer topologies as generalized random graph and also
models the churns and attacks mounted on the network. In section 4 we mathematically
analyze the effect of churn in the superpeer overlay networks and validate the results
with the help of simulation. In section 5 the effect of targeted attack upon superpeer
networks is discussed. Finally section 6 concludes the paper.

2 Developing analytical framework using generating

function formalism

In this section, we use generating function to derive the general formula for measuring the
stability of overlay structures undergoing any kind of disturbances in the network. We
explain the basic concept behind development of the framework without going into math-
ematical details. Generating function is a formal power series whose coefficients encode

1Percolation indicates the existence of a critical probability pc such that below pc the network is
composed of isolated clusters but above pc, a giant cluster spans the entire network (i.e. the network is
almost fully connected).

2In this paper, we do not differentiate between the terms stability and robustness. They are therefore
used interchangeably.

3Giant component is a technical term used in percolation theory which signifies the largest connected
component in the network whose size is of the order of size of the network [16]
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Figure 1: Schematic representation of the sum rule for the connected component of
vertices reached by following a randomly chosen edge. The probability of each such
component (left-hand side) can be represented as the sum of the probabilities (right
hand side) of having no vertex (which has been removed), only a single vertex, having a
single vertex connected to one other component, or two other components, and so forth.
The entire sum can be expressed in closed form as Eq. (1) and similarly (2).

information about a sequence that is indexed by the natural numbers [14]. This gener-
ating function can be used to understand different properties of graphs. For example,
let the generating function G0(x) generate the probability distribution of the vertex de-
grees k. Therefore G0(x) =

∑∞
k=0 pkx

k where pk is the probability that a randomly chosen
vertex in the graph has degree k. Importance of the generating function lies in the conve-
nient way it can be used to understand various properties of the graph - for instance, the
average degree z of a vertex in the case of G0(x) is given by z = 〈k〉 =

∑
k kpk = G′

0(1).
Higher moments can be calculated from higher derivatives also. Here we are using the
generating function to explain a slightly more complicated concept.

Let qk be the probability that a vertex of degree k be present in the network after
the removal of a fraction of nodes. In our formalism fk (=1 − qk) and pk specifies the
churn/attack model and network topology respectively whose stability is subjected to
examination. The formalism helps us to locate the transition point where the giant
component breaks down into smaller components. pk.qk specifies the probability of a
node having degree k to be present in the network after the process of removal of some
portion of nodes is completed. Hence

F0(x) =
∞∑

k=0

pk.qkx
k

becomes the generating function for this distribution. Distribution of the outgoing edges
of the first neighbor of a randomly chosen node can be generated by

F1(x) =

∑
k kpkqkx

k−1

∑
k kpk

= F ′
0(x)/z

where z is the average degree [15].
Let H1(x) be the generating function for the distribution of the component sizes that are
reached by choosing a random edge and following it to one of its ends. Except when we
are precisely at the phase transition where giant component appears, typical component
size is finite. Moreover as chance of a component containing a closed loop of edges goes
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down exponentially with size of the graph, it becomes negligible for large graph [14].
Therefore the component may be conceptualized as a treelike structure that contain zero
node if the node at the other end of the randomly selected edge is removed, which happens
with probability 1 − F1(1). The edge may otherwise lead to a node with k other edges
leading out of it other than the edge we came in along, distributed according to F1(x)
(Fig. 1). That means H1(x) satisfies a self-consistency condition of the form [15]

H1(x) = 1− F1(1) + xF1(H1(x)). (1)

The distribution for the component size to which a randomly selected node belongs to is
similarly generated by (Fig. 1) H0(x) where

H0(x) = 1− F0(1) + xF0(H1(x)). (2)

Therefore the average size of the components becomes

H ′
0(1) = 〈s〉 = F0(1) +

F ′
0(1)F1(1)

1− F ′
1(1)

which diverges when 1−F ′
1(1) = 0, that is the size of the component becomes infinite. We

present an intuitive explanation for this critical condition of giant component formation.
F ′

1(1) represents the average outgoing links of the first neighbor of a randomly chosen
node. After the node removal process, if this average number of outgoing links is more
than one, then the network should percolate, i.e. it is possible to find an infinite cluster
of connected nodes. But if it is less than one, then it is very likely that by following a
random edge, we land in a node that has no outgoing link and thus no chance of reaching
another existing node. Therefore

F ′
1(1) = 1 ⇒

∞∑

k=0

kpk(kqk − qk − 1) = 0 (3)

Significance of the Eq. (3) lies in the fact that it states the critical condi-
tion for the stability of giant component with respect to any type of graphs
(characterized by pk) undergoing any type of failure and attack (character-
ized by qk). Using this formalism, we investigate the stability of superpeer networks in
face of attack.

3 Environmental definition

In this section, we formally model the superpeer networks and churn/attack to utilize
the analytical framework. Also we define the stability metric and explain the simulations
undertaken to verify the theoretical results.

3.1 Topology of the superpeer overlay networks

The different types of overlay networks can be modeled using the uniform framework of
probability distribution pk, where pk is the probability that a randomly chosen node has
degree k. So the degree distribution pk signifies the topology of the overlay network. In
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this paper, we model the superpeer overlay networks as mixed poisson network. In mixed
poisson network, interconnection between superpeers are selected to approximate a E-R
graph [17, 18] which follows Poisson distribution. Similarly the degree distribution of
peers follow Poisson distribution. The average degree of the superpeers are much higher
than peers. Mathematically, if r be the fraction of peers in the network4 and rest are
superpeers then degree distribution of the network

pk = rpkpr + (1− r)pkspr

where degree distribution of peers pkpr = 〈kp〉kpr e−〈kp〉

kpr!
and superpeers pkspr = 〈ksp〉kspr e−〈ksp〉

kspr!

follow Poisson distribution with average degree 〈kp〉 and 〈ksp〉 respectively and 〈kp〉 <<
〈ksp〉. The average degree of the mixed poisson network becomes

〈k〉 = r〈kp〉+ (1− r)〈ksp〉

3.2 Different kinds of churn and attack models

As defined in the previous section, let qk be the probability that a vertex of degree k be
present in the network after the removal of a fraction of nodes. In our framework qk is
used to specify the churn and attack models.

• In churn, the probability of removal of any randomly chosen node is degree indepen-
dent and equal (constant) for all other nodes in the graph. Therefore the presence
of any randomly chosen node having degree k after this kind of failure is qk = q
(independent of k).

• In targeted attack, the nodes having high degrees are progressively removed. For-
mally qk = 1 when k < km but 0 ≤ qk < 1 otherwise. This removes a fraction of
nodes from the network with degree ≥ km. Formally

qk = 0 when k > km

0 ≤ qk < 1 when k = km

qk = 1 when k < km.

This removes all the nodes from the network with degree greater than km and a
fraction of nodes having degree km.

3.3 Stability metric

The stability and robustness of overlay networks are primarily measured in terms of
certain fraction of nodes (fc) called percolation threshold [15, 16], removal of which
disintegrates the network into large number of small, disconnected components. Below
that threshold, there exists a connected component which spans the entire network. This
connected component is also termed as the giant component. The value of percolation

4If total number of nodes in the network is N and out of them np is the number of peers then r = np

N .
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(a) Initial component size
distribution (only single gi-
ant component of size 500).
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(b) Intermediate compo-
nent size distribution.
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(c) Component size dis-
tribution at percolation
point.

Figure 2: The above plots represent the change in the component size distribution during
percolation process and indicates the percolation point.

threshold fc theoretically signifies the stability of the network, higher value indicates
greater stability against churn and attack.

We take cue from condensation theory used by physicists to develop the metric to
measure the percolation threshold experimentally [19, 20]. During the experiment, we
remove a fraction of nodes ft from the network in step t and check whether we reach the
percolation point. If not then in the next step t + 1 we remove ft+1 = ft + ε fraction of
nodes from the network and check again. This process is continued until we reach the
percolation point. After each step, we find out the status of the network in terms of the
number and size of the components formed. We collect the statistics of s and ns where
s denotes size of the components and ns, number of components of size s and define the
normalized component size distribution CSt(s) = sns/

∑
s sns at step t. We compute

CSt(s) for all the steps starting from t = 1 and observe the behavior of CSt(s) after
each step (Fig. 2). Initially the CSt(s) shows unimodal character confirming a single
connected component (Fig. 2(a)) or bimodal character (Fig. 2(b)) confirming a large
component alongwith a set of small components. As the fraction of nodes removed from
the network increases gradually, the network disintegrates into several components. This
leads to the change in the behavior of CSt(s) whereby at a particular step tn, CStn(s)
becomes monotonically decreasing function indicating tn as percolation point (Fig. 2(c)).
Therefore tn is considered as the time step where percolation occurs and the total fraction
of nodes removed at that step ftn specifies the percolation threshold.

3.4 Simulation environment

The superpeer overlay structure is represented by a simple undirected graph stored as
an adjacency list. In order to generate the topology, every node is assigned a degree
according to the mixed poisson degree distribution. Thereafter the edges are generated
using the “matching method” [21]. Some of the edges are then rewired using “switching
method” to generate sufficient randomness in the graph [22]. In our experiment, we
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simulate the overlay network by generating graphs with 5000 nodes.
Churn or attack on a peer effectively means deletion of the node and its corresponding

edges. We implement this phenomena by removing a fraction of nodes in each step
depending on the disrupting event in the network. In the case of churn, nodes are
randomly selected using a time-seeded pseudo-random number generator and its edges
are removed from the adjacency list. For targeted attack, high degree nodes in the
network are removed sequentially in each step until the percolation point is reached. We
perform each experiment for 500 times and take the average of the percolation threshold.

4 Stability of superpeer networks against churn

The superpeer networks mostly suffer from the churn of peers which can be modeled by
the random failure of nodes in complex graph. In this section, we use our equation to
show that stability of the superpeer networks is quite unaffected due to churn of peers.
We validate the theoretical results with the help of simulation. At first, we present the
result for generalized random graph and then customize it for superpeer networks.
Generalized random graph
In this section, we discuss the effect of random failure in a generalized random graph. If
q = qr is the critical fraction of nodes whose presence in the graph is essential for the
stability of the giant component after this kind of failure then according to Eq. (3)

∞∑

k=0

kpk(kqr − qr − 1) = 0

⇒ qr =
1∑∞

k=0
k2pk∑∞

k=0
kpk

− 1
⇒ qr =

1
〈k2〉
〈k〉 −1

where 〈k2〉 =
∑∞

k=0 k2pk and 〈k〉 =
∑∞

k=0 kpk are the second and the first moment of the
degree distribution respectively. Now if fr is the critical fraction of nodes whose random
removal disintegrates the giant component then fr = 1 − qr . Therefore percolation
threshold

fr = 1− 1
〈k2〉
〈k〉 −1

(4)

This is the well known condition [10] (derived differently) for the disappearance of the
giant component due to random failure. Note that, we have reproduced it to show that
it can also be derived from the proposed general formula (Eq. (3)).
Superpeer networks
In mixed poisson network, let r be the fraction of peers in the network and rest be
superpeers. Superpeer nodes are connected to each other to form an E-R network [17, 18]
with average degree 〈ksp〉. Similarly peers connected with superpeers forms another E-R
graph with an average degree 〈kp〉 where 〈kp〉 << 〈ksp〉. Now we examine the stability
of this kind of superpeer network undergoing churn. In mixed poisson network, first
and second moment of the degree distribution becomes 〈k〉 = r〈kp〉 + (1 − r)〈ksp〉 and
〈k2〉 = r〈k2

p〉 + (1 − r)〈k2
sp〉 respectively. If k is a random variable following Poisson

distribution then it can be shown that 〈k2〉 ≈ 〈k〉2 + 〈k〉. Hence according to Eq. (4),
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Figure 3: The above plots represent a comparative study of theoretical and simulation
results of stability for two mixed poisson networks undergoing churn. Here X-axis rep-
resents the fraction of peer nodes (r) exists in the network and Y-axis represents the
corresponding percolation threshold (fr). We keep the average degree 〈k〉 = 5 fixed and
vary the mean superpeer degree 〈ksp〉 = 30, 50 for two plots.

percolation threshold becomes

fr = 1− r〈kp〉+ (1− r)〈ksp〉
r〈kp〉2 + (1− r)〈ksp〉2

Substituting for 〈kp〉, we get

fr = 1− 〈k〉r
〈k〉2 − 2〈k〉(1− r)〈ksp〉+ (1− r)2〈ksp〉2 + r(1− r)〈ksp〉2 (5)

Feasible fraction of peers : Since the mean peer degree 〈kp〉 needs to be > 0 to be
connected in the network therefore

〈k〉 − (1− rr)〈ksp〉
rr

> 0

⇒ rr > 1− 〈k〉
〈ksp〉

That means we can form a connected superpeer network with prescribed peer and super-
peer degrees only if the fraction of peers in the network is greater than the feasible peer
fraction (rr). For 〈ksp〉 = 30, 50 this feasible fraction rr becomes 0.833, 0.90 respectively.
Below that fraction, there does not exist any network, therefore our theoretical analysis
as well as simulations are performed with peer fraction r above the feasible fraction rr.
Using Eq. (5), we study the variation of percolation threshold (fr) due to the change
in the fraction of peers (r). We validate the analytically derived result with the help
of simulation. We perform the simulation on two mixed poisson networks with average
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superpeer degree 〈ksp〉 = 30 and 50, keeping the average degree 〈k〉 = 5. Comparative
study reveals that networks having higher superpeer degree exhibit more robustness than
with lower superpeer degree for any peer-superpeer ratio. It can be observed from Fig. 3
that simulation results match closely with theoretical predictions which shows the success
of our theoretical framework.
Observations:
1. It is important to observe that for the entire range of peer fractions, the percolation
threshold fr is greater than 0.7 which implies that superpeer networks are quite robust
against churn.

Since churn affects peers and superpeers depending upon their individual fraction
in the network, peers are affected much more than superpeers. The removal of a
significant number of low degree peers alongwith a few high degree superpeers have
less impact upon the stability of the networks. Practical experience also ensures
that superpeer networks exhibit high robustness in face of churn.

2. Another significant observation is, lower fraction of superpeers in the network (specif-
ically when it is below 5%) results in a sharp fall of fr, that is the vulnerability of the
network drastically increases when the fraction of superpeers is below 5%.

Higher fraction of superpeers results in low mean peer connectivity. Therefore most
of the peers are only connected to superpeers (and not within themselves), hence
stability of the network depends entirely upon superpeers. As fraction of superpeer
reduces below 5%, mean peer degree becomes quite high (4 to 5). This gives rise
to situations where some peers are not connected to the superpeers at all, but
only connected to fellow peers. Hence removal of individual peers also result in the
removal of fellow peers. This produces an avalanche effect which results in a drastic
reduction of stability of the network in this region.

5 Stability of superpeer networks against occasional

attack

Stability of the superpeer networks is challenged by various kinds of attacks on prominent
peers or superpeers. The attack model has been formally defined in section 3. In this
section, we analyze the effect of this kind of targeted attack upon superpeer networks
where r be the fraction of peers and rest are superpeers. In the case of targeted attack
two cases may arise

Case 1 Removal of a fraction of superpeers is sufficient to disintegrate the network. This
happens when the percentage of superpeers is relatively higher than peers.

Case 2 Removal of all the superpeers is not sufficient to disintegrate the network. Therefore
we need to remove some of the peer nodes along with the superpeers.

We analyze these two cases separately with the help of our analytical framework.
From Eq. (3) the critical condition for the stability of the giant component can be
rewritten as ∞∑

k=0

k(k − 1)pkqk = 〈k〉
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Figure 4: The above plot represents the behavior of the mixed poisson network in face
of targeted attack found experimentally and compares it with the proposed theoretical
model. Here X-axis represents the fraction of peer nodes (r) exists in the network and Y-
axis represents the corresponding percolation threshold (ft). We keep the average degree
〈k〉 = 5 and mean superpeer degree 〈ksp〉 = 30 fixed. Case 1 and case 2 of the theoretical
model represent Eq. (7) and (8) respectively.

The equation can be further expanded as below to differentiate between peers and su-
perpeers

kmax−1∑

k=0

k(k − 1)pkqk +
∞∑

k=kmax

k(k − 1)pkqk = 〈k〉 (6)

where all the nodes having degree less than kmax are peers and rest are superpeers.
Case 1: In this case, removal of a fraction of superpeers is sufficient to disintegrate the
network. If fsp be the critical fraction of superpeer nodes, removal of which disintegrates
the giant component then qk = 1 for k < kmax and qk = 1 − fsp for k ≥ kmax. Hence
according to Eq. (6),

kmax−1∑

k=0

k(k − 1)pk +
∞∑

k=kmax

k(k − 1)pk(1− fsp) = 〈k〉

⇒ fsp = 1− 〈k〉 −∑kmax−1
k=0 k(k − 1)pk∑∞

k=kmax
k(k − 1)pk

As the fraction of superpeer nodes in the network is (1 − r), then percolation threshold
for case 1 becomes ft = (1− r)× fsp

⇒ ft = (1− r)

(
1− 〈k〉 −∑kmax−1

k=0 k(k − 1)pk∑∞
k=kmax

k(k − 1)pk

)

= (1− r)


1− 〈k〉 − r

∑〈kp〉+δ
k=0 k(k − 1) 〈kp〉ke−〈kp〉

k!

(1− r)
∑∞

k=〈kp〉+δ+1 k(k − 1) 〈ksp〉ke−〈ksp〉

k!


 (7)
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where mean peer degree 〈kp〉 = 〈k〉−(1−r)〈ksp〉
r

and we choose suitable value of δ depending
on the standard deviation of the Poisson distribution. δ ensures the inclusion of all peer
and superpeer degrees around their respective means 〈kp〉 and 〈ksp〉 during the calculation
of above equations.
Case 2: Here we have to remove fp fraction of peer nodes alongwith all the superpeers
to breakdown the network. Therefore qk = 1− fp for k < kmax and qk = 0 for k ≥ kmax.
Hence according to Eq. (6),

kmax−1∑

k=0

k(k − 1)pk(1− fp) = 〈k〉

⇒ fp = 1− 〈k〉
∑kmax−1

k=0 k(k − 1)pk

Therefore the total fraction of nodes required to be removed to disintegrate the network
for case 2 becomes ft = rfp + (1− r).

⇒ ft = r

(
1− 〈k〉

∑kmax−1
k=0 k(k − 1)pk

)
+ (1− r)

= r


1− 〈k〉

r
∑〈kp〉+δ

k=0 k(k − 1) 〈kp〉ke−〈kp〉

k!


 + (1− r) (8)

where mean peer degree 〈kp〉 = 〈k〉−(1−r)〈ksp〉
r

.
Transition point: The transition from case 1 to case 2 can be easily marked by observing
the value of percolation threshold ft. While calculating using Eq. (7) (case 1), if the
percolation threshold ft exceeds the fraction of superpeers in the network (1 − r), it
indicates that removal of all the superpeers is not sufficient to disrupt the network.
Hence subsequently we enter into case 2 and start using Eq. (8) to find percolation
threshold.
We validate our theoretical model of attack on mixed poisson network with the help
of simulation. In simulation, we consider a mixed poisson network with average degree
〈k〉 = 5 and mean superpeer degree 〈ksp〉 = 30. We increase the fraction of peers
gradually keeping average degree 〈k〉 = 5 fixed and observe the change in the percolation
threshold ft (Fig. 4). It is important to note that when the fraction of superpeers in
the network is high, it is possible to breakdown the network only by removing a fraction
of superpeers and modeled as case 1 (Eq. (7)). But when the fraction of superpeers is
below some threshold, a fraction of peers should be attacked alongwith the superpeers
to stop percolation in the network and modeled as case 2 (Eq. (8)).
Observations: In the networks with peer fraction r < 0.89 (where mean peer degree
0 < 〈kp〉 ≤ 2), the removal of only a fraction of superpeers causes breakdown hence makes
these networks vulnerable. Moreover, increase of peer fraction r in this range increases
mean peer degree from 1 to 2 that makes networks with 〈kp〉 = 2 more vulnerable.
Normal wisdom would expect the attack vulnerability of the network to decrease with
the increase of fraction of peers. But the opposite happens here. The reason is in this
zone, although peers have a larger share in the network, yet it is not large enough to
form effective connections within themselves. Therefore the stability of the network is
still entirely dependent on the superpeers, hence now attacking even a smaller fraction
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Figure 5: We plot percolation threshold fc for various peer fraction r. Two different
mixed poisson networks have been considered with average superpeer degree 〈ksp〉 =
25, 35 with fixed average degree 〈k〉 = 5. Feasible fraction of peers are considered only.
We compare theoretically the stability of these two networks against pure churn and
combination of churn (60%) and attack (40%). Comparative study shows that the impact
of the combination is more severe for the network having higher mean superpeer degree
(〈ksp〉 = 35) specially when the fraction of superpeers in the network is quite high. As the
fraction of superpeers decreases, the influence of the superpeers as well as attack upon
the stability of the network decreases. Hence the percolation threshold of both networks
becomes close to each other.

breaks down the network.
However as peer fraction becomes ≥ 0.89, the mean peer degree increases to 3 and 4 and
a fraction of peers is required to be removed even after removal of all the superpeers to
dissolve the network. This is because, the high degree peers connect among themselves
and are not entirely dependent on superpeers for connectivity. This results in the increase
of stability of the network with peer degree 〈kp〉 = 4.

6 Conclusion

In this paper we have developed a common analytical framework to evaluate the ro-
bustness of superpeer networks against various disturbances in the network. We have
modeled superpeer networks by mixed poisson degree distribution. We have also modeled
the churn of peers as random failure of nodes. It has been observed from both theoret-
ical and simulation results that superpeer networks remain robust for user churn. Next
we have analyzed the behavior of superpeer networks in face of targeted attack. Unlike
churn, in this case increase of peers improves the stability of the network and the rate of
improvement is almost linear to the fraction of peers present in the network.

Our analysis has shown that presence of superpeers impart conflicting advantages for
churn and attack. Hence proper mix of fraction of superpeers with peers is necessary to
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improve the robustness of the network in face of combination of churn and attack. It
appears from Fig. 5 that when percentage of attack is 40%, the network having lower
superpeer degrees (〈ksp〉 = 25) performs better than network having higher superpeer
degree (〈ksp〉 = 35). So to obtain optimized performance, it is upto the design engineers
to choose the correct superpeer to peer ratio depending on the working environment. The
theoretical framework developed in this paper will help them to easily and accurately
calculate the ratio.
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