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Abstract
In this paper, we propose a new p2p network based location search algo-

rithm. The algorithm is built upon the concept of a gradient search and is
applicable to unstructured networks. It is inspired by a biological phenomenon
called haptotaxis. The algorithm performs much better than the random walk
algorithm and is also more efficient than flooding. We also present some math-
ematical reasoning to explain the superiority of the algorithm.

1 Introduction

A p2p based system is a network that relies on the computing resources avail-
able from all the participants in the network instead of concentrating on a
small number of centralized servers. This kind of network allows to build a
server-less infrastructure, where participating nodes cooperate to find the de-
sired resources. Moreover many p2p architectures offer inherent scalability
and robustness as the network reorganizes itself in case of dynamic entry and
removal of nodes. However there is a cost associated with these desirable prop-
erties. The latency of locating the desired resource in the network increases
as we use a p2p network. Optimizing this lookup time is one of the primary
challenges of p2p systems.

In this chapter, we propose a new algorithm based on a gradient search,
which is a key-based algorithm. It performs a guided search for a desired key in
the entire search space. The algorithm is motivated by a biological phenomenon
called haptotaxis, hence named “hapto-search” [2]. We have previously devel-
oped algorithms for search, which are inspired by the natural immune system
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and chemotaxis [4], [5]. Both haptotaxis and chemotaxis are used in biologi-
cal interacting cell systems to regulate cell migration [3]. The regulated cell
migration phenomenon inspires us to build a gradient-based search algorithm.

2 Related work

Based on the type of neighborhood relationship between the nodes, p2p sys-
tems can be classified as structured and unstructured/semistructured. For
unstructured p2p networks, one of the simplest approach is flooding, which
is adopted by Gnutella [9]. Although flooding quickly finds out the desired
location, it is inefficient as it produces a huge number of message packets. [1]
describes random walk strategies in power law networks. It shows that k-
walker random walk is much more scalable search method than flooding but
at the expense slight increase in the average number of hops. It also discusses
replication-based search strategies and its analysis shows that the search cost
expected in such strategies is n

r
,where n is the network size and r is the

number of replicas. Our algorithm, hapto-search is also a replication-based
algorithm. However we observed that the hapto-search algorithm is far more
time efficient.

Our algorithm to some extent resembles the algorithm used in loosely
structured p2p systems such as freenet [10].

In structured p2p systems, the network topology is tightly controlled and
the placement of the resources is done not at random nodes but at specific
locations. This helps the queries to locate the desired resources efficiently. The
highly structured p2p systems like CHORD and CAN use precise placement
algorithms to achieve performance bound of log N , where N is the number of
nodes in the network. However the imposition of the structure on the topology
restricts their ability to operate in presence of extremely unreliable nodes. In
hapto-search, we assume totally unstructured network, hence is extremely
robust.

3 Definition of the hapto-search algorithm

In this section, we discuss the hapto-search algorithm, its inspiration and
details of how it works.

3.1 Design goal and basic idea

Main design goal of this algorithm is to attain a speed of location search
comparable to DHTs (i.e. log(N)) but to make no assumption about the
structure of the network. Structured networks are more prone to failure and
incur overhead to achieve robustness while robustness is a natural property
of unstructured networks.
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The algorithm defines a gradient-based search, in which every node is
assigned a k-bit key unique within our p2p network. The key represents the
identity of the node (Node ID, IP Address). A node distributes its key to a
fixed number of peers in the network at random. When a peer wants to search
for a node, it tries to search for any node, which has the key of the destination.
To do so, a query traverses in the network and the next destination of the
query is chosen in such a way that it ensures that the query always moves
“closer” to the destination than the current position.
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Fig. 1. Sketch of a network showing how the hapto-search algorithm operates. Each
node is hosting 4 keys received from random peers. This diagram illustrates a case
where node g wants to find node x (Node x is not shown in the figure). Nodes c and
d have the key of x. Node g forwards the query to a neighbor, which has a key closer
to kx (node h in this case). This way a query traverses in the network and ultimately
reaches node c. The path indicated by arrows shows a possible query traversal.

3.2 Our inspiration - haptotaxis

Migration of cells within our body is a fundamental process for example in tis-
sue development, tumor metastasis or wound healing. To achieve appropriate
physiological outcomes, cells must adjust direction and speed of their move-
ment in response to environmental stimuli. There are cell adhesion proteins
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at the outer surface of the cells, which bind to the adhesion ligands present
in the extracellular matrix (ECM). This extracellular matrix is a substratum
that surrounds the cells in a tissue. Cells tend to move in the direction where
the adhesion between ECM ligands and cell receptors is larger. It is believed
that the magnitude of this adhesion influences cell speed and random turn-
ing behavior, whereas a gradient of adhesion affects the resultant direction of
cell movement. This phenomenon of a guided and gradient based movement of
cells is called haptotaxis. Haptotaxis is influenced by the presence of the ECM
consisting of immobilized molecules. Alternatively, cell migration towards a
gradient of diffusible and soluble substances is known as chemotaxis.

In our example, the ECM resembles a p2p network. Then, a query path
in the p2p network can be viewed as a haptotactic cell movement in the
ECM. Accordingly, the concept of haptotaxis gives an idea of a guided search
towards the destination so that one can always make sure that at every step,
the moving entity is getting “closer” to its destination.

3.3 Detailed algorithm

In this section, we introduce the detailed algorithm, which is key-based. It
allows nodes to retrieve location information of each other. The key assigned to
each node is unique across the network. This key can be generated by hashing
the user id into a n-bit length code. Every node distributes its key, location
information (IP Address) to a fixed number of nodes in the network. This
distribution is done at random. A node (say) A knows the location information
of another node (say) B, if it has the key of B. Thus if one node wants to
search the location information of the destination, it tries to search for any
node, which has the key for this destination. Once it finds such node, it can
get the desired location information from it.

If a node doesn’t have the key required, it routes the query to the neigh-
bor, which is closest to the destination. A neighbor is said to be closer to the
destination if it has a key which is closer to the destination key (in terms of
Hamming distance) than the current node. The closest neighbor is selected
to forward the query. This way the algorithm ensures that the query always
moves “closer” to the destination as the Hamming distance between destina-
tion key and the closest key present at the current node always decreases, or
in the worst case remains the same. The search ends when the query reaches
a node hosting the destination key (i.e. Hamming distance becomes zero).
Figure 1 illustrates the steps of the algorithm.

We have developed two versions of this algorithm, simple and restricted. In
the simple version, the next hop to forward the query is chosen regardless of
whether it has already been visited during the same search query or not. As it
doesn’t remember the path, it may happen that a query goes into the loop and
keeps on moving in the circular path because of its deterministic nature. In
the case of the restricted version, we maintain the path vector storing all the
nodes visited during the search in that order. The query is forwarded to such
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a neighbor which is closer to the destination and which has not already been
visited during the search. Thus loops are avoided and the query is guaranteed
to reach the destination within N hops.

Algorithm: Hapto-search

input : Key of the destination node
output: Location information of destination node

current ←source ;
while current node doesn’t have the destination key do

for all the neighbors of current node in the network do
shortest ← GetShortestHammingDistance

(neighbor,destination);
if neighbor’s shortest distance < my shortest distance then

Add the neighbor to the sorted list of prospects
end

if neighbor’s shortest distance > farthest then
Store neighbor and neighbor’s distance as farthest

end

end

while List of prospects is not empty do
node ← take a node from the sorted list with minimum distance;
/* In the restricted version, this if condition is

necessary whereas in the simple version, no such

check is performed. */

if node not already visited in the search process then
current ← node;
break;

end

end

if no such node available then

/* This is the condition of dead end */

current ← choose the neighbor with the largest distance
end

end

Algorithm 1: Searching a key in an unstructured peer to peer net-
work using the hapto-search algorithm. The input to the algorithm
is the key for the destination and the output is the location infor-
mation of the destination. The diagram shows both the simple and
the restricted version of the algorithm. In the simple version, query is
forwarded to a neighbor with shortest possible distance (and shorter
than the current node’s shortest distance) where as in the restricted
version, besides choosing shortest of the shortest, a path vector is
maintained to store all the nodes visited during the search and query
is forwarded to a neighbor only if it is not present in the path vector.
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Algorithm: Random search

input : Key of the destination node
output: Location information of destination node

current ←source ;
while current node doesn’t have the destination key do

node ← Choose a node at random from the list of neighbors of
current node
current ← node

end

Algorithm 2: Searching a key in an unstructured peer to peer net-
work using the random-search algorithm. In this algorithm, next hop
is chosen at random from the list of neighbors.

Dead end: It may happen that the current node itself is closer to the
destination than all its neighbors. We can call this a dead end as there is no
closer neighbor to forward the query. In such case, we continue the search
by sending the query to the farthest neighbor, i.e. the node for which the
Hamming distance of its key from the destination key is largest among all the
neighbors of the current node.

The occurrence of dead ends implies the presence of local maxima in the
search space. Dead ends will slow down the speed of the search algorithm.
However, occurrence of dead ends depends upon the number of times a key
is replicated as well as the average network degree. The details of both the
simple and the restricted version of the hapto-search algorithm are illustrated
through algorithm 1 whereas algorithm 2 depicts the simple random-search
algorithm in which, the next hop to forward the query is chosen at random
among the list of neighbors of the current node. The random-search algorithm
is used as a benchmark to measure the efficiency of the hapto-search algorithm.

4 Analysis of hapto-search

In this section, we present analysis of the hapto-search algorithm. We will
be considering the simplified version of the algorithm for the analysis and
the underlying network is assumed to be an E-R graph. We will be mainly
interested in finding an upper bound for the average number of hops.

4.1 Average number of hops

Consider an E-R graph of N nodes with average node degree M . Now in
our algorithm, every node distributes its key to say, R peers at random such
that every peer has approximately R keys. Without loss of generality, we can
assume the key of the destination to be 0 (all n bits are zero). In the simple
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hapto-search algorithm, a node not having the destination key, forwards the
query to a neighbor which is “closer” to the destination or at least as close as
the current node.

To compute the average number of hops, we need to derive formula for
the rate of change in Hamming Distance (∆HD) per hop traversal of the
query. We need to know the probabilities of the current node being a local
maximum and a global maximum. This can be represented by Plm and Pgm

respectively. We also need to introduce two more parameters, Average Forward
Move (AFM) and Average Backward Move (ABM), where AFM is defined as
the average change in HD of the current node from the destination in a single
hop if the current node is not a maximum. Similarly ABM is defined as the
average change in HD of the current node from the destination in a single
hop if the current node is a local maximum. Using these parameters, we can
calculate ∆HD as the following theorem states.

Theorem 1. In the simple hapto-search algorithm, the expected change in HD
(∆HD) in a single hop traversal of query is given as:

∆HD = Plm ∗ (−ABM) + (1 − Plm − Pgm) ∗ AFM

Proof: Consider a scenario where the current node is at HD i from the des-
tination (destination key is assumed to be 0). Now there are three cases.

1. If the node is a global maximum (a node having the replication of desti-
nation key): In this case, search algorithm ends. So ∆HD = 0

2. If the node is a local maximum (dead end): In this case, it forwards the
query to the farthest possible neighbor. Here HD is increased by the value
ABM . So ∆HD = ABM

3. Otherwise: The current node finds a neighbor closer to the destination
than itself to forward the query. In this case, HD is reduced by the value
AFM . So ∆HD = AFM

Therefore we can say that,

∆HD = Plm ∗ (−ABM) + (1 − Plm − Pgm) ∗ AFM

The average number of hops can be directly calculated from ∆HD. The
following theorem states that.

Theorem 2. Given that ∆HD is the expected change in HD in a single traver-
sal of the query and IHD is the HD of the source (query generating) node
from the destination, average number of hops taken by the query to reach the
destination is given by the equation:

Hops =
IHD

∆HD

Now we will derive a formula for the probability of a local maximum,
AFM and ABM .
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4.2 Probability of a local maximum

A local maximum is a node, which doesn’t have the destination key and it
has no neighbor, which has a key closer to the destination key than the best
key available at the node itself. Without loss of generality we can assume that
the destination key is 0. In such case, there will be nCi nodes in the network,
which may have their key at HD i from the destination, where n is the number
of bits used to define the key of a node. So the number of possible keys at HD
i from the destination (h(i)) can be given as,

h(i) = nCi (1)

Let H(i) denote the number of keys at HD > i from the destination. Then
H(i) can be computed by the following equation

H(i) =

n∑

k=i+1

(h(k)) (2)

To compute the probability of a local maximum, let us first derive the
formula for the probability that a node is at HD i from the destination.

Theorem 3. Given the destination key as 0, the probability that a node is at
HD i from the destination is given by:

Pi =

R∑

j=1

(
h(i)Cj ∗

H(i)CR−j

2n

CR

)

Proof: A node will be at HD i from the destination if it has at least one key
which is at HD i from the destination and no other key is closer than i. Each
node has R keys in its storage. So there are R ways of it, where in each case
the current node has j keys at HD i (1 ≤ j ≤ R). So the total number of ways
a node can have at least one key at HD i can be given as,

ni =
R∑

j=1

(h(i)Cj ∗
H(i)CR−j)

Now the total sample set consists of the number of ways of choosing R keys
from all possible keys. Total number of possible keys is 2n. So there are 2n

CR

ways of choosing R keys for a node. Hence the probability that a node at HD
i can be given as,

Pi =

R∑

j=1

(
h(i)Cj ∗

H(i)CR−j

2n

CR

)

Theorem 4. The probability that a node is a maximum is given as,

P =

n−1∑

h=0

(Ph ∗ (

n∑

j=h+1

Pj)
M )
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Proof: The probability of a maximum is the probability that the best key
available at the current node has HD less than the best key available at any
of its neighbors. This can happen in many ways. A node can have best key
at HD 0 (P0) and keys available at all its M neighbors are at HD 1..n (n
is the number of bits in a key). The probability of this case can be given
as (P0 ∗ (

∑n

j=1 Pj)
M ). Alternatively, a node can have the best key at HD 1

and all the keys available at its neighbors are at HD 2..n and so on. Hence
the probability of a maximum is summation of probabilities of all such cases.
Hence P can be given as,

P =

n−1∑

h=0

(Ph ∗ (

n∑

j=h+1

Pj)
M )

This equation gives us the probability of a maximum in the network, which
includes both global and local maximum. When the query reaches a node at
a global maximum, the search algorithm ends. As there are R replications of
every key in the network, probability of a global maximum Pgm will be R

N
.

Hence the probability of a local maximum will be Plm = P − Pgm.

4.3 Average forward move (AFM)

In order to compute the AFM, let us define Pbi, which denotes the probabil-
ity that the best possible neighbor of the current node is at HD i from the
destination, given that the current node is not a maximum.

Theorem 5. The probability that the best possible neighbor of the current node
is at HD i from the destination given that current node is not a maximum, is,

Pbi = (1 −

i−1∑

k=0

Pk)M
− (1 −

i∑

k=0

Pk)M

Proof: That the best possible neighbor of the current node is at HD i indicates
that all the neighbors are at HD ≥ i with at least one neighbor at HD i. We
know that the probability of a node being at HD i is Pi. Then the probability
of all M neighbors being at HD ≥ i will be (1 −

∑i−1
k=0 Pk)M . But this also

includes the case where all the neighbors are at HD > i with no neighbor at
HD i. This can occur with probability (1 −

∑i

k=0 Pk)M . We need to exclude
this probability from the answer. Hence Pbi can be given as,

Pbi = (1 −

i−1∑

k=0

Pk)M
− (1 −

i∑

k=0

Pk)M

Theorem 6. The expected value of an average forward move (AFM) is given
by the equation:

AFM =
n∑

hd=1

(hd ∗

n∑

i=hd

(Pi ∗ Pbi−hd))
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Proof: When a node is not a maximum, it has a neighbor which can reduce
the HD further by value between 0 and n. We call this reduction in HD as
∆HD. Then the AFM can be computed as,

AFM =

n∑

hd=1

(hd ∗ P (∆HD = hd))

Consider a case when the best neighbor reduces the HD by 1 (i.e. ∆HD = 1).
This is possible when the current node is at HD 1 and the best neighbor is at
HD 0 or the current node is at 2 and the best neighbor is at HD 1 and so on.
So the probability of ∆HD = 1 is,

P (∆HD = 1) =
n∑

i=1

(Pi ∗ Pbi−1)

In general we can say that the probability of ∆HD = hd is,

P (∆HD = hd) =
n∑

i=hd

(Pi ∗ Pbi−hd)

Substituting value of P (∆HD = hd) in AFM formula, we can say that

AFM =
n∑

hd=1

(hd ∗ P (∆HD = hd))

4.4 Average backward move (ABM)

In order to compute ABM, let us define Pfi+hd, which denotes the probability
that the farthest possible neighbor of the current node is at HD i from the
destination, given that the current node is a maximum.

Theorem 7. The probability that the farthest possible neighbor of current
node is at HD i + hd from the destination, given that the current node is
a maximum and at HD i is,

Pfi+hd = (
i+hd∑

k=i+1

Pk)M
− (

i+hd−1∑

k=i+1

Pk)M

Proof: This proof is quite similar to the proof of theorem 5.

Theorem 8. The expected value of the average backward move (ABM) is
given by the equation:

ABM =
n∑

hd=1

(hd ∗

n−hd∑

i=1

(Pi ∗ Pfi+hd))

Proof: This proof is quite similar to the proof of theorem 6.
We performed various experiments to verify all these formulae. Details

of these experiments will be discussed later in the performance evaluation
section.
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4.5 Analysis of random search

In the case of random search, a node chooses the neighbor to forward the
query at random and when the query reaches the node having the destination
key replica, the algorithm ends. We can derive a formula for the expected
number of hops for the random search. A similar formula has been derived
in [1]. We are presenting the result for the completeness of the article.

Theorem 9. Let R be the number of replications of the key of a node in the
network and N be the number of nodes in the network. Then the expected
number of hops taken by the random search is given as

Hopsran =
R

N
∗ (

∞∑

i=0

(i ∗ (1 −
R

N
)i))

Proof: Let Pran(i) be the probability that the destination key replica is found
at the ith hop. Then Hopsran can be given as,

Hopsran =

∞∑

i=0

(i ∗ Pran(i))

Given the key replication value R and the network size N , the probability
that a node has the destination key replica is R

N
. Now probability that the

query finds the destination key replica in one hop is (1 −
R
N

) ∗ R
N

as it is
the case when first node doesn’t have the destination key (probability of this
being (1 −

R
N

)) and the second one has it (probability being R
N

). Similarly
the probability that the query finds the destination key replica in two hops is
(1 − R

N
)2 ∗ R

N
. In general case, we can say that the probability of finding the

destination key at ith hop (Pran(i)) is,

Pran(i) = (1 −
R

N
)i
∗

R

N

Substituting this into the formula of Hopsran, we get

Hopsran =
R

N
∗ (

∞∑

i=0

(i ∗ (1 −
R

N
)i))

5 Performance evaluation

This section presents the results of the performance evaluation of the hapto-
search algorithm. The experimental setup as well as the specific experiments
which are performed to evaluate the performance are noted next.
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5.1 Experimental setup

We ran the algorithm (both simple and restricted versions) on E-R networks.
For each network, and for different values of key replication, we ran the al-
gorithm for randomly chosen 2000 source-destination pairs. The key size is
considered as 32 for all the cases. We were mainly interested in the following
aspects:

1. Experimental verification of the theoretical prediction made for the simple
version of the hapto-search algorithm

2. Performance analysis of the restricted version. The performance is mea-
sured in terms of the average number of hops. We compared the per-
formance of the restricted version of the algorithm with state-of-the-art
algorithm:
• the random search in unstructured p2p networks
• DHT-based search in structured p2p networks

3. Understanding the dependence of the performance parameters upon the
network size N for the restricted version of the algorithm.

5.2 Simple version - Experimental results and their prediction by
theoretical analysis

We ran the simple version of the hapto-search on E-R networks with different
values of N (number of nodes) and R (key replication). We measured the
values of AFM, ABM, average hops and the number of dead ends. The number
of dead ends are computed by a method called Steepest Ascent Graph (SAG)
4. Figure 2 shows the comparison between theoretical and experimental values
of the parameters, AFM, ABM and the probability of a local maximum. It
can be seen that for all the plots, theoretical and experimental values match.

Figure 3 shows the same comparison for the average number of hops.
Here we observe that the average number of hops (both experimentally and
theoretically) in the case of the simple version is insensitive to the changes in
the key replication value. One can also observe that there is a slight difference
between the theoretical and experimental values for this plot. This is due to
the practicalities of the implementation of the simple version. As no path
vector is maintained, the query tends to go in a loop most of the times. To
avoid this, a TTL (Time To Live) value is used to restrict the number of hops.
The search is considered as a failure if the query doesn’t reach the destination
within TTL hops. We haven’t considered the failure cases during the plot.
It was experimentally observed that only 5-10% of the queries turn out to
be successful. The successful queries are the lucky queries, which find the

4 Steepest Ascent Graph (SAG): SAG is constructed for a given network, destina-
tion and the key distribution. Every node maintains only a link with the best
neighbor and drops the rest of the links. All the nodes having a self-loop are
maxima.
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Fig. 2. Comparison of theoretical and experimental values of the parameters, Aver-
age Forward Move (AFM), Average Backward Move (ABM) and the probability of
a local maximum (Plm). The first figure shows AFM on the y-axis vs key replication
value on the x-axis for the E-R network of 10K nodes, M=10. The second figure
shows the plot of ABM on the y-axis vs key replication value on the x-axis where
as the third figure plots the probability of local maxima for the same configuration.
As one can observe, the theoretical and the experimental values match for all these
parameters. Also interesting to note is that the parameter values except in the initial
phase are almost independent of the replication value R.
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Fig. 3. Comparison of theoretical and experimental values of the average number
of hops. The figure depicts the plot of the probability of a local maximum on the
y-axis vs key replication value on the x-axis for the E-R network of 10K nodes,
M=10. As one can observe, there is a slight mismatch between the theoretical and
the experimental values. The average number of hops is largely insensitive to the
key replication value.

destination in a shorter path. Hence the experimental values of the average
number of hops tend to be smaller than the theoretical values.

In the next section, we analyze the performance of the restricted version
of the hapto-search, which can also be considered as a more practical version.

5.3 Performance of the restricted version

In this section we compare the performance of the restricted hapto-search with
the random search algorithm and DHT-based search algorithm. Moreover, the
experimental testing of the scalability of the algorithm is reported.

Comparison with random search

Figure 4 shows the comparative plot of the average number of hops needed
for the random search and the hapto-search algorithm for an E-R network
with 10000 number of nodes and average degree 10. One can see that the
hapto-search algorithm performs far better than random search. The average
number of hops taken by the random search algorithm at key replication value
140 is 276.6 whereas for the hapto-search algorithm even at the key replication
value of 10, the number of average hops needed is 98.4. This shows that the
gradient-based guided search is far more efficient than the random search.

Comparison with DHT and scalability analysis

We know that the performance bound on DHT-based search algorithms is
log N . Therefore we tried to compare the performance of the hapto-search
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Fig. 4. Comparative plot of the average number of hops on the y-axis vs key repli-
cation value on the x-axis for the random search and the hapto-search algorithm on
an ER network with N=10000 and average degree (M)=10.
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Fig. 5. Plot of average number of hops vs the number of nodes (N). The first figure
is a log-log plot of the average number of hops (H) required to reach the destination
with key replication value = 30 on the y-axis and the number of nodes on the x-axis.
It also shows log-log plot of log N . It can be seen that the slope of the curve log N is
much less than that of the average number of hops, which shows that hapto-search
does not scale to log N . In the second plot, a E-R network of degree 10 is considered
with different key replication values = 20, 30, 40, 50 and 60 respectively. It can be
seen that the average number of hops varies linearly with N (number of nodes in
the network) unlike the formula for the average hops for the simple version of the
algorithm, which is independent of N . As the key replication value increases, the
slope of the curve decreases.
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with log N . The first plot in figure 5 shows this comparison. It is a log-log
plot of the average number of hops vs the number of nodes in the network.
log N is also plotted for the comparison. It can be seen that the performance
of the hapto-search does not scale to log N .

We then tried to evaluate the effect of the key replication on the average
number of hops. The second plot in the figure 5 shows the average number
of hops vs the network size for E-R networks of degree 10 and for different
values of R (key replication value) ranging from 20 to 60. Previously we saw
that the formula for the average number of hops for the simple version of the
algorithm is not dependent upon the network size N . Moreover, we found that
the performance is also largely insensitive to R. But in the restricted version,
we see that the average number of hops increases linearly with N . Also the
performance is dependent on R. As the value of R increases, the slope of the
curve for the average number of hops decreases.

We are still working towards formulating a theory behind the dependence
upon N in the restricted version. As a first step, we have made some important
observations regarding the behavior of the parameters, AFM and ABM in the
restricted version. This is noted next.
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Fig. 6. Plot of the parameters Average Forward Move (AFM) and Average Back-
ward Move (ABM) vs the network size (N). The first figure shows AFM on the
y-axis vs N on the x-axis for the E-R network with key replication value 10, M=10
for the restricted version whereas the second figure plots ABM on the y-axis vs the
network size N on the x-axis for the same configuration.

Dependence of AFM and ABM upon N

Figure 6 shows the plot of AFM and ABM vs the network size N for the
restricted version. The first figure shows the plot of AFM vs the network size
N whereas the second figure shows the plot of ABM vs the network size N .
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Here one can observe that the values of AFM and ABM increase linearly with
N . The rate of change in AFM and ABM are different.

6 Conclusion and future work

In this paper, we have discussed a new bio-inspired algorithm for location
search in an unstructured peer to peer network. It is a key-based search al-
gorithm, which ensures that the query always moves “closer” and ultimately
reaches the destination. We demonstrated that the algorithm is far more effi-
cient than plain random walk. We presented two versions of the algorithm, a
simple version as well as a restricted version. A rigorous theoretical analysis
to explain the simple version is reported. The theoretical predictions and the
experimental results match to a high degree of precision. We observed that the
performance parameters such as the average number of hops, the probability
of a local maximum, AFM and ABM is independent of the network size N .

While studying the experimental results of the restricted version, we iden-
tified that these performance parameters are also dependent on N . Hence we
have realized that the theory proposed here needs to be suitably modified
in the future to explain the experimental results of the restricted version of
the hapto-search. Moreover, all the results presented here are from the experi-
ments on the random networks. Future work will also explore other interesting
and realistic topologies like the small-world and power law networks.
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