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Abstract-Landmarks are signatures of our surroundings 
which help us to uniquely identify a location. Recent studies 
show that like us humans, it may be possible by the sensors 
on mobile devices to identify landmarks [1], [2]. This can open 
up the possibility of a lot of applications in the domain of 
augmented reality, gaming, retail etc. However, to make such 
applications a reality, a particular landmark need to be stable 
across mobile phones, persons carrying the mobile phones etc. 
This paper specifically builds up a framework to discover such 
stable landmarks and demonstrates its utility in the development 
of next generation apps. In order to identify such virtual land­
marks, we employ a clustering algorithm to perform non-intuitive 
feature combination of sensors like Accelerometer, Gyroscope, 
Magnetometer, Light, Sound, Wi-Fi, GSM signal strength etc. 
Further, we rigorously test the clusters to ensure that landmarks 
are stable across different devices, people, and time. According to 
our results, change in device affects the stability of a landmark 
most. Finally as a proof of concept, we develop a prototype system 
RetailGuide using landmarks to facilitate smart retail analytics 
cum recommendation service. 

I. INTRODUCTION 

In retail sector, delivering a smarter personalized shopping 
experience to the smartphone holding customers is one of the 
innovative strategies recently adapted and widely discussed. 
Innovative mobile apps like (say) RetailGuide can help in 
personalizing and enhancing individual shopping experience. 
Let us consider the following scenario to highlight the utility 
of the smart city apps like RetailGuide. Alice enters a neigh­
borhood retail store to buy a dress. While moving towards the 
garment section, she checks into her app RetailGuide. This 
app enables her to browse few reviews by her friends about 
the jeans section of that very store. On her way to cash counter, 
while crossing the book section, she just receives a notification 
by RetailGuide. It is about a previously set reminder to buy 
the latest novel by Dan Brown. While leaving the store, she 
posts some COlmnents about the not-so-good customer service 
of that store. Similar to the client like Alice, RetailGuide 
proves useful for the retail owner Bob. Bob is happy about 
giving reward points to a loyal customer. Moreover, he takes 
note about incompetent customer service of his store to make 
the store more customer-friendly. So, RetailGuide will be like 
Google Analytics in physical store space for Bob like owner. 

Efficient deployment of RetailGuide app requires accu­
rate micro-level identification of locations. One elegant way 
to perform micro level localization is to introduce virtual 
landmarks [1], [2]. The concept behind virtual landmark is 
the following. Thanks to the availability of the embedded 
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sensors (accelerometer, gravity, gyroscope, magnetometer), the 
smartphones have the ability to recognize the ambience and 
behavior of users. Consequently, the smartphones can listen 
to the distinguishable environmental signatures to identify a 
given location. The places might be a corner of a corridor, 
a GSM blind spot or a specific Wi-Fi zone. We utilize these 
unique fingerprints of natural locations in smartphone sensor 
space, as virtual landmarks. These virtual landmarks can then 
be effectively used as dropboxes of comments by the Retail­
Guide. By dropbox we mean that these landmarks will be like 
spatially scattered information containers. User comments will 
be tagged with the nearest landmark i.e. a dropbox, to facilitate 
efficient indexing and retrieval of these comments in future. 
Moreover, shop owner also can put location specific offers to 
the intended dropbox, which will provide most relevant offers 
to any user. 

In this paper, we propose a thorough virtual landmark 
enumeration procedure via clustering sensor data and evaluate 
our algorithm in an indoor space. It is important to note that, in 
order to effectively use them as dropbox, these landmarks need 
to be stable - that is, the the mobile phone based landmark 
signatures need to be trustworthy (a) across the different 
smartphones, manufactured by different vendors (b) across the 
different users. We carried a detail test of stability of landmarks 
across different factors and discovered interesting insights 
like device hardware specific heterogeneity mostly affects the 
stability. In order to demonstrate the proof of concept, we have 
developed a prototypeRetailGuide app to identify the virtual 
landmarks. This app identifies and then utilizes these virtual 
landmarks as dropboxes distributed in physical space, where 
users can drop their comments about something nearby. 

Figure 1 shows a concept image of a shopping area anno­
tated with virtual landmarks which will help RetailGuide app. 
The figure shows different landmarks at different places of the 
shopping area, e.g. a magnetometer landmark nearby mobile 
section or a sound landmark near customer care. A few of the 
landmarks may be overlapped like Wi-Fi landmark (denoting a 
specific Wi-Fi zone) and Gyroscope - Accelerometer landmark 
near one book section. The shapes of the landmarks are shown 
as circular, but in reality it can take any geometrical shape 
under some area bound. 

Summing up, the primary contributions of this paper are 
the following. 
(a). Proposing a thorough virtual landmark pruning algo­
rithm: We describe a methodology to detect virtual landmarks 
using adaptive clustering algorithm which is similar to the 
scheme proposed in [1] and validate its accuracy in an indoor 
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Fig. I. Concept image of a landmark augmented shopping mall 
needed for RetailGuide Application. 

scenario. 
(b). Studying the stability of virtual landmarks: We perform 
extensive experimental study with Samsung smartphones to 
know the internal dynamics of the stability of these landmarks 
and its dependence on different parameters like devices, time, 
and persons. We find their respective contribution on the 
instability of the landmarks and gain interesting insights. 
(c). Developing an end-to-end prototype of RetailGuide: We 
build an end-to-end simple prototype of RetailGuide to test 
the feasibility of a system based on virtual landmarks and we 
test the workings of this prototype in an indoor space which 
mimics a shopping mall floor. 

Section II focuses on the overview of the workings of a 
RetailGuide app based on virtual landmarks. Next, in Section 
III, we focus on the architecture of our landmark enumeration 
system, Landmarker. In the subsequent sections, we discuss the 
metrics, experimental setup, results, future works and related 
studies. 

II. OVERVIEW OF RetailGuide APP 

Our RetailGuide app caters to both user's and shop owner's 
need. User can COlmnent via RetailGuide's commenting inter­
face and get relevant offers or recommendation via pushed 
notifications, as shown in figure 2. Shop owner can look into 
the detail analytics of his shop through the analytics window 
shown in figure 3. He can observe the upcoming trends, the 
customers' shopping patterns, combo offer suggestions etc, by 
just selecting appropriate section in the interface. For example, 
in figure 3, the pie chart reveals that buyers are more interested 
in Food and Utensils based on their movement patterns. 

At the back-end, landmark enumeration service 
Landmarker collects the sensor readings and sends to 
the cloud. Sensor readings are location-stamped using a 
sophisticated dead-reckoning method. The processes in the 
cloud find the unique stable fingerprints via clustering, i.e., 
landmarks, mining the raw sensor data, as shown in figure 
4. We create a stable landmark database in the cloud, as 
depicted specifically in Block 1 of figure 4. Interestingly, 
these landmarks also can help later to calibrate user's current 
position, as shown in Block 2 of figure 4. Moreover, a 
comment indexing and retrieval service also runs at the 
back-end to tag users' comments with nearest landmark and 
accordingly store them in the cloud. If a user searches for 
any review pertaining to any section of the store, this service 

Users' Commenting Interface Pushed Notification of Comments 

Fig. 2. Screenshots of RetailGuide Android Application. The pie 
chart shows the places where users have visited. 

helps app to return the relevant comments only by searching 
the nearest landmark, as shown in Block 3 of figure 4. 

..n, 

Fig. 3. Screenshot of Analytics Interface of RetailGuide Java 
Application. 
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Fig. 4. Concept image of architecture of RetailGuide Application 
based on landmarks. Block 1 represents the basic landmark enumer­
ation component; Block 2 shows the feedback loop of localization 
correction using landmarks; and Block 3 depicts the commenting and 
review finding component 

Obviously, the success of this kind of system totally 
depends on the availability and stability of landmarks. Our 
intuition says that different places, especially indoors, would 
have sufficient number of landmarks. 



III. ARCHITECTURE AND METHODOLOGY 

We start out with the high level organization and working 
of our system of landmark pruning service, i.e., Landmarker 
and later delve into the design details of each of its compo­
nents. This is the core component of RetailGuide app. 

A. Brief Description of Design Details of Landmarker 

Landmarker service, running in the background of Retail­
Guide app, collects sensor data from different users and sends 
data to the cloud server for further processing. In cloud, we get 
the sensory landmarks via clustering the processed sensor data. 
We consider only those landmarks which recurrently occur 
for different traces. Finally, we store the stable landmarks 
systemically in a cloud database. 

Architecture Overview The overall architecture of our 
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Fig. 5. Architecture of Landmarker : the landmark pruning system 

landmark enumeration system, Landmarker is shown in figure 
5. Initially, the sensor data are collected from different devices 
and specific features are extracted after proper sampling and 
noise removal, as given in step 1 of figure 5. Thereafter, we 
cluster the sensor data in higher dimensional feature space 
using k-means algorithm. Next, we map the clusters in location 
space, using the dead reckoned location estimate of the data 
members, as shown in steps 3 and 4 of figure 5. Afterwards, 
we get the landmarks from these location clusters. Finally, we 
get the stable landmarks after combing through different traces 
and storing them in a database (steps 6,7 and 8 of figure 5). 
Interestingly, after bootstrapping stage, we can use these initial 
landmarks as minimizing the error of location estimates, which 
in turn helps to find more stable landmarks later. This iterative 
loop is initiated through step 9 of figure 5. 
The different process components of the architecture shown 
are explained in detail in the following paragraphs. 

B. Sensor Data Collection 

To form the landmarks, we need to get the raw sensor data 
from different sensors of various devices carried by different 
users. Each collected sensor data tuple can be represented as 
< Time stamp, Sensor Value, Device ID, Person ID >. The 
sensor data collection of Landmarker system can be divided 
into the following subprocesses: 
(a) Data Sampling: We have collected the data using an 
android app through different android mobile devices. The 
sampling rate can be fixed to the highest value. But, android 

OS does not poll the sensor readings at regular interval, rather 
only records the data if any change in sensor value occurs. 
So, the frequency of unprocessed sensor data vary widely, 
e.g. very high for accelerometer and very low for GSM chip. 
Therefore, the sensor data is sampled at a constant rate of 
50 Hz for uniform analysis. Then its noise is removed by 
passing it through a low-pass butter-worth filter. The data 
is then normalized according to a range of [-1,1], to have 
an uniform scale for clustering in feature combination scenario. 

(b) Dead Reckoning: The raw sensor data tuple does 
not contain any location space co-ordinate. But, forming 
landmarks from clusters, these co-ordinates are necessary. 
For this purpose, we use the method of dead reckoning. It 
helps to trace an approximate path taken by the user from the 
accelerometer, gyroscope and compass readings. If it were a 
robot or car, we could have integrated acceleration twice and 
got the distance. But this leads to huge error in the case of 
smart phones, as shown in [1]. 
The mobility trace is best modeled by using a pedometer 
algorithm which counts the steps taken by the user. This is 
done by finding the peaks in the accelerometer-z data and 
calculating the stride length based on the number of steps 
taken per unit time [3]. We have used the method of dynamic 
time wrapping as discussed in [4] for removing noise and 
false peaks. We get the direction of the motion by reading 
the compass readings provided by the phone. However, this 
can be affected by the magnetic fluctuations in the indoor 
environment. This noise can be removed by opportunistically 
comparing with the angle calculated from the gyroscope 
readings and removing the extra bias as described in detail in 
[1]. Thus we add relative (x,y) co-ordinate to the sensor data 
tuple. 

C. Sensor Feature Extraction 

We then extract the features from the sensor data tuples 
that are used to cluster in order to obtain the landmarks. The 
features we have selected are given in table I. These are 
based upon previous works in the field of activity recognition. 
For each of this feature, we have taken the standard statistical 
measures - standard deviation and mean. 
Below we give a brief description of a few features. 

TABLE l. FEATURES SELECTED FOR LANDMARK IDENTIFICATION 

I Sensor I Feature 

Accelerometer Jacc� + acc; + acc;, IlinearAccxl 
llinear Acc" I + Ilinear Accz I (SMA) 

+ 

Magnetometer Vmag; + mag; + mag;, -!it (mag") 
Gyroscope gyroz, RotationM atrixz 
Sound in dB 
Light Intensity 
Wi·Fi Access Point Similarity Signature 
GSM Signal Strength 

AP Similarity Signature : The value of the access point sim­
ilarity signature of Wi-Fi at two locations hand 12 is 



calculated as given in [1] by the formula 

S = � " min(h(a),12(a)) 
(1) 

IAI \is max(h(a), 12(a)) 

where h, 12 are the RSSIs of the APs at two locations 
hand 12 respectively and A = Al U A2 denotes the 
total number of access points at two locations hand 12. 
This way, locations which have similar set of APs with 
approximately the same RSSI have low distance in the 
Wi-Fi feature space. 

Signal Magnitude Area (SMA): SMA is defined as the ac­
celeration magnitude summed over three axes within each 
window normalized by the window length [5]. It is an 
efficient depiction of the energy of motion. 

In addition to these ten features with the corresponding 
statistical ones, we have also analyzed the combination of these 
features. 

D. Feature Based Clustering 

We now mine the features extracted from sensor data to 
find any unique characteristics. To do it in an unsupervised 
manner, we employ feature based clustering method on this 
processed sensor data. We have chosen k-means clustering 
for this, as this has been proven to be robust and widely 
used in practice. In this clustering, different dimensions are 
the features of different sensors. However, we have taken the 
following two options for implementing k-means : 

Selection of k :  We chose k by following the methods 
given in [6] where the optimal k are chosen by clustering 
random samples of the data for different k and choosing 
the one for which the intra-cluster centroid distance is 
minimized. 

Selection of initial seed : The initial seeds are chosen by 
clustering over random samples of data and choosing the 
centroids of the cluster which performs best according to 
the distance metric given in [7]. 

But, not all clusters identified from k-means are candidates 
for landmarks. The clusters which are dense and which can 
distinguish from its neighborhood clusters are chosen. This is 
measured by the low average intra-cluster centroid distance 
and by the high average inter-cluster centroid distance. So, 
a dense small-area cluster would be good candidate of a 
landmark if it differs well from other clusters spatially. The 
properly normalized feature clusters, by taking note of the 
dimensionality, which satisfy these threshold conditions, are 
then passed on for location space mapping. We have also tried 
with different other clustering algorithms, which either yielded 
similar results like EM algorithm, or did not suit the purpose 
like hierarchical clustering, DB Scan etc. 

E. Clusters to Landmarks 

Once we have these clusters, we check if they transform 
into spatial landmarks. For this we map each of these cluster­
points in the feature space to location i.e (x, y) coordinates, as 
show in figure 6. These location points are now clustered using 
our augmented k-means algorithm. The clusters thus formed 
contain points which are near in both the feature space and 

Feature Space Location Space 

Each data point tuple: "" Sensor Feature Value, X-Lac, V-Lac :> 

Fig. 6. Landmark Formation : Feature space to Location space 
Mapping 

location, thus an ideal candidate for a landmark. In figure 6, 
some of the clusters in feature space got scattered in location 
space. Thus, they are not considered as landmarks. We have 
considered different area thresholds for the landmarks formed 
in location space. 

F. Combining Landmarks 

Once the landmarks are identified for a mobility trace, their 
stability needs to be analyzed. This can be done by combining 
similar landmarks from different traces. The traces are logged 
by changing devices, person, and time. The convergence of 
the location of the landmark is dependent on the estimated 
landmark location of new traces. If similar landmarks from dif­
ferent traces are within a threshold distance, they are combined 
to give a new landmark, as shown in figure 7. We combine 
the corresponding points of the two landmark clusters and take 
an average of these two points. The basic assumption is that 
errors produced in different samples are independent. After 
this, we discard the points which do not fit in the landmark 
area threshold. 
The landmarks thus identified are said to be stable if these oc­
cur recurrently in different heterogeneous traces. The stability 
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Fig. 7. Combination of landmarks 
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of a landmark is now measured by the number of samples in 
which this landmark was encountered and is known as the 
confidence count of the landmark. We consider landmarks 
which appear in more than 50% of the samples as stable 
landmarks. 

G. Calibration of location of sensor data 

As we have discussed in the above section, simple dead 
reckoning based location estimation will lead to error. So, after 
a little bit of bootstrapping to find an initial set of landmarks 
with estimated location, we will bring them in the loop to 
estimate current sensor data location. We use the concept of 
Simultaneous Localization and Mapping (SLAM) [8] here to 



reduce the error in location. The correction is done by shifting 
the subsequent location points by the difference in the two 
(previous and current) estimates of the landmark location. Note 
that this assumption helps to make the system recursive and 
prevent advancement of location error. So, we can use them as 
location check points to fix the error. Moreover, this calibration 
step helps the system to converge to a stable set of landmarks 
with accurate location. 

IV. METRICS OF THE SYSTEM 

In order to discuss the results and core issues of the 
problem, we would like to introduce a few simple metrics to 
detect and characterize virtual landmarks. 

(a) Area threshold for landmark - This is defined as the 
area covered by a particular landmark. Default landmark 
area is chosen as 4 m 2, unless specified otherwise. 

(b) Feature Space Nearness - It is the measure to determine 
whether two points belong to the same cluster. That is, 
given a cluster which has been built considering some 
sensor features, all pairs of points in that cluster need to 
be less than the specified threshold - which is termed as 
Feature Space Nearness. The higher the value of feature 
space nearness, the closer the data points are in feature 
space. 

(c) Confidence count - It is the number of path traces in 
which a landmark is found, for example, if N traces are 
considered, confidence count NI2 means that the landmark 
has been detected in at least NI2 traces. The higher the 
value of the confidence count corresponding to a landmark, 
the higher its probability of being stable. 

V. EXPERIMENTAL SETUP 

We conduct our experiments by collecting human motion 
traces with smart phones in user's hands. We have used 
Samsung Galaxy S2 19100G and Samsung Galaxy S3 19300 
for our purposes. These phones provide us with sensors such as 
accelerometer, gravity, gyroscope, magnetometer, orientation, 
sound, light, Wi-Fi and GSM. Both of the phones are upgraded 
to android 4.1.2 (Jelly Bean). In our experiments, we collect 
these sensors' data while walking in the corridors with the 
phone held in the hand, facing upwards. We use RetailGuide 
app [9] with Landmarker service running in the background 
to conduct our experiments. 
The data recorded internally is sent to the RetailGuide server. 
The server side code is written using php and MATLAB, 
and implements the dead reckoning, clustering, and landmark 
signature-matching algorithms. We assume constant orienta­
tion of the phone for easy understanding of the setup [4]. 
In order to understand the stability of these sensor landmarks 
and usability of RetailGuide app, we performed experiments 
where the user traces the same path multiple times. We 
covered 500 m2 area in indoor environment (corridors of the 
Department), figure 8, as it best mimics the shopping mall 
scenario. To test the robustness of RetailGuide app and the 
backbone landmarks, data was collected multiple times on two 
devices, at two different times of the day - morning and night 
by four volunteers. 
The default values of landmark area threshold, feature space 
nearness value and confidence count are taken as 4 m2, 0.7, 
and NI2 ( where N is the number of traces ) respectively. 

VI. EXPERIMENTAL RESULTS 

In this section, we first evaluate the potential of discovering 
landmark using mobile phones and then check the efficiency 
of RetailGuide. 

Fig. 8. Landmark annotated Indoor area map. This is the map of 
Second Floor, Computer Science and Engineering Building, Indian 
Institute of Technology, Kharagpur. 

A. Feature Combination 

In order to discover landmarks, as mentioned in Section 
II, sensor data from nine sensors are collected. For each 
sensor, several statistical measures like mean, standard devi­
ation, kurtosis etc. are collected. Therefore each location is 
characterized by f (= no. of sensors x statistical measures) 
number of features. A group of points may get clustered based 
on a subset of features - therefore in order to find the best 
clustering condition one has to exhaustively look into all the 
subsets which would be 2f - 1. This would explode the feature 
space and hence optimal clustering may not be feasible. But, 
interestingly we have found that we do not have to consider 
all the subsets. If we consider only two or three features in 
the combination, it will suffice our purpose. Both the count 
of clusters as well as landmarks (co-located clusters) decrease 
with the increase of combination counts, as shown in figure 9 
and figure 10. 

30�-------�==�----� 

(J) 25 .... Feature Nearness < 0.1 .$ · ... Feature Nearness < 0.3 
� 20 "e" Feature Nearness < 0.7 

I:� 
°1 2 � 

Number of features combined 

Fig. 9. Average number of clusters in our experiments. The increase in 
the number of clusters for parameter nearness 0.1,  is due to too much 
relaxation of the constraint. We are taking too many insignificant 
clusters into account. 

For experiment purpose we have taken only the mean of 
all the sensor data and combined different sensor's data to 
discover clusters. In figure 9 it is seen that the number 
of clusters formed decrease with the increase in the number 
of features combined for clustering. This is counter-intuitive 
because there are more number of possibilities for clustering, 
for example, for ten features, forty five (e�) for two sensor 

data combination, one hunderd and twenty (e�) for three 
combinations. Moreover, we also see similar trend in the case 
of stable landmarks, as shown in figure 10. Most importantly, 



we see a dramatic decrease in the number of landmarks when 
we combine two or three features. This means that there is 
no need to explore the combinations which comprise of more 
number of features. 
Thus, we have considered only one, two and three feature 
combinations of the ten features given in table I with their 
corresponding statistical measures (mean or variance). 
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Fig. 10. Average number of landmarks in our experiments 

B. Effect of landmark area threshold on system design 

While testing with suitable area threshold for stable land­
marks, we have observed an interesting phenomenon. Differ­
ent set of sensor features are, in general, producing widely 
varying average landmark cluster area. For example, a Wi­
Fi landmark cluster might cover an area of close to 30 m2 
whereas a light landmark will cover only a couple of square 
meters. Therefore, while choosing a sensor-spatial cluster as a 
candidate for a landmark, this threshold should ideally depend 
on which feature(s) it was clustered about. The cdf graph in 
figure 11 shows that various sensor features are clustered 
around different areas in the location space. The reason of this 
variation may be due each sensors different level of sensitivity 
to environment. Hence, instead of constant threshold, threshold 
need to be customized for each individual sensors. 
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Fig. 11. CDF of landmark cluster area for different sensors 

C. Effect of Heterogeneity in the System 

50 

We investigate the effect of heterogeneity on the stability 
of landmarks in this section. By stability of landmark in face 
of heterogeneity, we mean that landmarks are invariant in 
spite of changing the devices, the time frames or persons 
carrying the devices in different experiments. 

(a) Person Heterogeneity: We felt that the vanatlOn 
of the walking style, movement speed of different persons can 
have an impact on the stability of landmarks. Therefore, we 
have conducted a small-scale experiment to collect traces with 
four persons. Figure 12 shows that the number of landmarks 
obtained by different users decreases as the confidence count 
of the landmarks increases. However, most of the users obtain 
roughly same number of landmarks. The number of landmarks 

obtained at confidence count NI2 is reasonable and on manual 
inspection are found to be of 'optimal' size (not too large 
or almost invisible). Hence NI2 is considered as default 
confidence count. The graph shown in inset of figure 12 
shows that we are getting around 12 stable landmarks, which 
is considerably high for such a small indoor space. Each 
individual users besides discovering these stable landmarks 
also identify several 'unstable' landmarks . 

(b) Time Heterogeneity : In this case, we have studied the 
effect of time of a day on the stability of landmarks. We have 
taken two time periods, i.e. day period (10 a.m. - 1 a.m.) and 
night period (8 p.m. - 11 p.m.), for collecting the traces using 
mobile devices. The intuition behind this experiment is that 
the signatures like light, sound etc. change with the time of 
the day, e.g., a busy shop becomes silent at night. 
Although the count of the landmarks does not vary much; 
unlike previous case, the comparison for actual landmarks in 
figure 13(a) reveals that approximately 33% of the landmarks 
are stable. It is lower than the case of different users. 
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Fig. 12. Number of landmarks for different users. Here, N is the 
number of traces. That means each of the user has moved N number 
of times in the designated area. Inset figure shows the comparison of 
number of stable landmarks and user specific unstable landmarks 

(c) Device Heterogeneity: We have repeated the experiments 
of collecting traces with two devices, namely Galaxy S3 
and Galaxy S2, to test the effect of change of device on 
the stability of a landmark. Figure 13(b) shows that we 
get around 3 stable landmarks in this indoor space, which 
is considerably less than the earlier two cases. So, we can 
conclude that the effect of device heterogeneity has the most 
impact on the stability of landmarks. 
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Fig. 13. (a). Comparison of number of stable landmarks and time 
specific unstable landmarks (b). Comparison of number of stable 
landmarks and device specific unstable landmarks 

It is interesting to note that even though both of the devices 
are from the same manufacturer and same series, there have 
been a considerable difference of the hardware, subsequently, 
the landmarks. So, the inherent difference of sensitivity and 



preCISIOn of different sensors has a telling impact on the 
stability of landmarks. On the other hand, the effects of change 
of time and persons, are significantly lower than the case of 
devices. Therefore, if we want to create a corpus of stable 
landmarks to augment the location based services, we have to 
organize it with respect to different class of devices or a set 
of sensors, as hinted by [10]. 

D. Analytics from RetailGuide 

The task of RetailGuide is to properly identify retail space 
by running the background Landmarker service. We perform 
an experiment to test its performance. In the experiment, users 
roam around with smart phones running RetailGuide app in the 
department corridor, which mimics a shopping mall situation 
in a controlled manner. Corridor corners are named as different 
sections of a shopping mall like food, clothing, utensils, and 
cosmetics. Users also comment while moving and get relevant 
offers cum recOlmnendations. In this experiment, we have 
considered around 10 landmarks, which we use as dropboxes 
of comments. 
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Fig. 14. Users' movement heat map found from RetailGuide Appli­
cation. 

A user's trail is inferred from his movement from the 
latest landmark. Figure 14 shows the heat map of users' 
movements in the corridor inferred from nearest landmark 
locations. Clearly, it contains some error as most of the users' 
movements are rectangular. From the estimation of the position 
of an user so derived, any comment she posts is tagged with 
that location by the cloud service. The service also accordingly 
attach this comment to the nearest landmark. The efficiency 
of the Landmarker algorithm would be measured in terms of 
the number of times it is attached to the correct landmark. 
Figure 15 illustrates example of comments posted by users 
at different locations. The circle shaped dots in the figure 15 
denote correct location tagged comments and star shaped dots 
denote erroneous location tagged comments. In general, we get 
around 75% accuracy in attaching a comment to the correct 
landmark. 
In both of the cases, we found considerable amount of error 
to predict the actual user trails or COlmnent locations, due to 
variance of landmark formation from different smart phones. 
In order to understand the variance we need to study the nature 
of localization error occuring due to heterogeneity. 

Localization Error due to Heterogeneity: We have created 
a stable landmark database using a specific triplet of < Device, 
Person, Time >. In order to understand the impact of an 
individual, the time and device, we change any one of these 
three parameters and test the deviation from ground truth 
(identified landmark), i.e. localization error. In figure 16, 
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Fig. 15. Comments of different users through RetailGuide Applica­
tion. 

we can see that if we change device, person or time, the 
localization error will increase. However, the effect of device 
change on error is the most significant, which is in line with 
our previous findings. 
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Fig. 16. Localization Error in Indoor Space 

VII. LIMITATIONS AND FUTURE WORK 
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We note down some of the limitations of the system which 
need to be tackled to make the system deployable. 

(a) Experiment with more devices would help : One may 
ask we could have taken more devices to conduct an elaborate 
set of experiments. But, in this small scale experiment, we 
have considered the best case for devices by choosing same 
generation devices from same manufacturer. Even then, we 
have found that the device is the most prominent parameter 
affecting the stability of landmarks. A recent work [10] has 
shown that there are clusters in the sensors of different devices 
such as nokia, htc, iphone, 19 handsets. As the effect of device 
is the most, we can have a set of landmarks belonging to each 
device class. 
(b) Phone orientation : Since our study was limited to 
identify the impact of changing devices, time and user, we have 
neglected the impact of the phone's orientation as held by the 
user. This assumption is fine if we assume the user's mobility 
pattern is unaffected by the phone's orientation. However for 
example, a user might walk faster if his phone is in his pocket 
rather than held in his hand. But, we did not proceed further in 
this direction because a work by [4] has taken this into account 
to correct the dead-reckoning based on the phone's orientation 
as well. 
(c) Ensuring privacy of users : This kind of pervasive 
applications generally suffer from privacy issues. In future, we 
would like to explore to address the zero sum game of privacy 
and usefulness of an application. 

VIII. RELATED WORK 

The idea of landmark for navigation or localization is 
pretty ancient. From the pole star guiding the sailors to 



helping out today's busy teens to find the common meeting 
place, landmarks have always been integral to our daily life. 
Moreover, migratory birds find their winter abode [11], desert 
ants find their food [12], or honey bee tracks back their way 
back to home [13] using spatio-temporal landmarks. Even 
human minds keep track of some route or places in terms 
of landmark maps [14]. But, most of the implementations of 
current Localization based services (LBS) rely heavily on a 
GPS sensor to give the exact position of the mobile device the 
user is operating. However, the low accuracy (rv 10m) and high 
power consumption of GPS are serious drawbacks given that 
we require high level of accuracy at low energy cost. On the 
other hand, for the indoor situation, GPS is almost completely 
unavailable. 
Interestingly, this forced researchers to revisit the idea of land­
marks for localization. We can find the essence of landmarks 
in recent ambience signature based localization works. Some 
of the recent localization or place recognition systems have 
been EZ localization [15], GSM signal fingerprinting [16], 
Surroundsense [17], RF based techniques [IS] or Wi-Fi based 
schemes [19]. RF based or Wi-Fi based schemes either suffer 
from infrastructure dependence or high calibration time, while 
localizing places. On the other hand, a few works augment 
urban dead-reckoning [20] to improve indoor localization 
using mechanical sensors like accelerometer and gyroscope. 
However, these works mainly concentrate on the indoor lo­
calization, some recent works [21], [22] also use sensors in 
smartphone as an ally for outdoor localization also. These 
systems although depend upon the signature of surroundings, 
they do not explicitly bring the concept of landmark on board. 
Although distinguishing signature is the core of any landmark, 
landmark can be more than a vector of signatures. This idea of 
landmark for simultaneously localizing object is first explored 
by robotics conununity through the works of SLAM [S]. 
However, they are concerned about finding visible landmarks 
through costly sensors. Their goal was appeased easily as 
the mechanical movement of robots help them to do precise 
dead reckoning. However, the concept of invisible landmarks 
through the cheap smartphone sensors are brought forward 
by the authors of U nLoc [1]. They, like us, use different 
sensor signature to form landmarks to provide regular location 
fixes. But, they are only confined to the localization for their 
experiments and also silent about the impact of heterogeneity 
on this kind of system. This work has broadened the horizon 
by exploring different interesting implementation avenues like 
retail, and showed through a set of experiments that we can 
find a set of stable of landmarks in spite of the heterogeneity. 

IX. CONCLUSION 

We have identified the factors that might affect the stability 
of landmarks namely device, time and the phone's user. An 
extensive study has shown us that even though they affect 
the stability of landmarks, their level of impact is varied. 
Device heterogeneity, being the major factor (even though the 
phones are from the same manufacturer's same series). Time 
heterogeneity exists, which is expected as the surroundings 
change from time to time. User level heterogeneity is being 
the least of them. This result is assuring because modeling 
the heterogenity of device is easiest and one can build 
separate virtual landmark database pertaining to each class 
of device. On the other hand, if the result would have 

varied across users, identifying similar class of users and 
building database corresponding to each class would have 
been impossible. The stability of landmarks make RetailGuide 
application more robust and real-world ready. This application, 
if deployed, will open the new horizon in smart retail analytics. 
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