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1 Introduction
In this paper, we develop an analytical framework to explain the appearance of bimodal degree distribution
in popular superpeer networks like Gnutella, KaZaA, where a large number of low degree peer nodes are
connected with small number of high degree, resourceful superpeer nodes [3]. The emergence of superpeer
networks is driven by (a) bootstrapping protocol which attaches incoming nodes towards ‘resourceful’ peers,
(b) peer churn and (c) link rewiring. We use rate equations and build up a formalism encompassing the three
processes which helps us to understand the emergence of superpeer networks. We model bootstrapping
protocols through node attachment rules where probability of attachment of the incoming peer to an online
node is proportional to the degree of the online node. We realistically assume that bandwidth of a node is
finite which restricts its maximum connectivity (cutoff degree). A node j, after reaching its cutoff degree
kc(j), rejects any further connection requests from the incoming peers. During churn, the departing node
disconnects all the connections with its neighboring nodes. During rewiring, a node disconnects itself from
any one of its neighboring nodes and preferentially reconnects to a high degree node in the network.

2 Development of growth model in face of peer churn and link rewiring
In this section, we intend to compute the degree distribution pk in face of joining and removal of nodes
in addition to the rewiring of links. We assume (simplistically) that all nodes have the same cutoff degree
kc (hence same bandwidth). The pk can be computed by observing the shift in the number of k (and
k − 1) degree nodes to k + 1 (and k) degree nodes at each timestep t. Since rewiring does not change
the total number of nodes and links in the network and addition & removal of the node is performed with
probability q and r respectively, therefore, the total number of k degree nodes at timestep t + 1 becomes
(n+ q − r)pk,t+1. Hence, assuming pk,t+1 = pk,t = pk in asymptotic case [1], the change in the number of
k degree nodes between the timesteps t and t+ 1 becomes

∆nk = (n+ q − r)pk,t+1 − npk,t = (q − r)pk (1)

Joining of a node: The probability that an online peer of degree k will receive a new link from the
incoming peer is given by

Ak = kpk(

kc−1∑
k1=0

k1pk1)
−1 = kpk(zf)

−1, k < kc; 0 otherwise (2)

where f =
(
1− kcpkc

z

)
is a parameter and

∑kc
k=0 kpk = z is the average degree of the network.

We assume that each new node joins with degree m, hence the mean number of nodes of degree k that gains
an edge from the incoming node and moves to degree k+1 can be expressed as δjok→(k+1) = m×Ak = mkpk

zf .
Therefore, the net change in the number of k degree nodes due to joining of a new node

δjok = δjo(k−1)→k − δjok→(k+1) = m ((k − 1)pk−1 − kpk) (zf)
−1 (3)

Removal of a node: Removal of a node affects the number of k degree nodes in three different ways;
(a) itself removal of a k degree node (b) reduction in the number of k degree nodes due to the removal
of their neighboring nodes (c) similarly increase in the number of k degree nodes due to removal of nodes
which are neighbors of k+1 degree nodes. Hence average number of k degree nodes that lose one link and
become a node of degree k − 1 is δrmk→(k−1) =

∑kc
j=0

jpjkpk
⟨k⟩ = kpk. Therefore, the net change in the number

of k degree nodes due to node removal

δrmk = (−pk + δrm(k+1)→k − δrmk→(k−1)) = (−pk + (k + 1)pk+1 − kpk) = (k + 1)[pk+1 − pk] (4)

Rewiring of a link: The rewiring leads to change in the number of nodes of degree k in two different
ways; (a) link disconnection and (b) link reconnection. Due to the random disconnection of the old link, a
fraction of (k+1) (and k) degree nodes lose one link and move in to degree k (and (k−1)). The probability
of landing at a k degree node following a randomly chosen link (that is going to be disconnected) is kpk

z .
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(a) Degree distribution of the
emerging network in face of peer
churn and link rewiring where
kc = 10 and m = 2. Inset shows
that churn reduces pkc .
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(b) The change in the LCC with
respect to churn rate r for differ-
ent rewiring probability w. In-
set shows the change in the LCC
with respect to the w.
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(c) Comparative study between
the real world Gnutella network
and our theoretical model. The
inset shows the cutoff degree dis-
tribution qkc(j).

Figure 1: Various impacts resulting from bootstrapping, churn and rewiring.

Hence mean reduction in the k degree to (k − 1) degree nodes becomes δdisk→(k−1) =
kpk
z . Similarly, during

reconnection the mean number of k degree nodes that (preferentially) accepts a new link and moves from
degree k to k + 1 becomes δk→(k+1) =

kpk
zf . Hence

δdisk = δdisk→(k−1) − δdis(k+1)→k = (kpk − (k + 1)pk+1)z
−1 (5)

δreconk = δrecon(k−1)→k − δreconk→k+1 = ((k − 1)pk−1 − kpk)(zf)
−1 (6)

δrelinkk = (δreconk − δdisk ) (7)

Using Eqs. (3)–(7) we can write rate equations to formulate the change in the number of k degree nodes
in the network which at each timestep attaches a new node of degree m with probability q, removes a
node with probability r and rewires links with probability w. Four pertinent degree ranges k = 0, k = m,
k ̸= 0,m, kc and k = kc need to be taken into consideration.

∆nk = (q − r)pk =


qδjok + rδrmk + wδrelinkk ; 0 < k < kc, k ̸= m

q(1 + δjom ) + rδrmm + wδrelinkm ; k = m

qδjo(k−1)→k + r(−pk − δrmk→(k−1)) + w(δrecon(k−1)→k − δdisk→(k−1)); k = kc

r(−pk + δrm(k+1)→k) + wδdis(k+1)→k; k = 0

(8)

The rate equations for k = m, kc and 0 are special cases for the following reasons. For k = m, beyond the
normal increase, the entrance of the node itself with degree m adds an additional member in the m-degree
node family. Since the nodes having degree kc are not allowed to take any incoming link, nodes only
accumulate at degree k = kc. Nodes having degree k = 0 do not lose any link. The degree distribution pk
of the emerging networks can be found by recursively solving the Eq. (8).

Validation
In order to validate theory, we consider two different (q, w, r) cases; (a) (1.0, 0.0, 0.4) (b) (1.0, 0.6, 0.4). We
simulate a network with 5000 nodes following the rules of bootstrapping, churn and rewiring and perform
500 individual realizations. Fig. 1(a) shows that the agreement between the theoretical (Eq. (8)) and
simulation results is exact in terms of average degree distribution which validates the correctness of the
theoretical model (dashed lines show theoretical results whereas symbols depict simulation results).

3 Impact of peer churn and rewiring
In this section, we investigate the influence of peer churn and link rewiring on the topological properties
like (a) superpeer fraction and (b) the largest connected component (LCC). In both the cases, initially we
examine the impact of churn in absence of rewiring. Next, we include rewiring in our analysis to understand
their combined effect.

Impact on superpeer fraction

Peer churn: Fig. 1(a) shows that in the absence of peer churn, a spike appears at around degree kc
which means the accumulation of superpeer nodes in the network. In theory also, substituting r = w = 0 in
Eq. (8), we find pkc > pkc−1 since kc >> 1. However, we find that the increase in r results in a sharp fall in
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pkc . As churn probability r gets higher than the threshold rc, the spike at k = kc disappears (pkc ≤ pkc−1).
Therefore, using Eq. (8) (substituting w = 0 for k = kc), we find

pkc = (qm(kc − 1)(zf)−1)(q + rkc)
−1pkc−1 ⇒ rc ≥ q(m(zf)−1 − kc

−1) (9)

From the above expression, it becomes directly evident that higher kc and m make the spike more robust.
Rewiring: We find that assuming r = 0 and 0 < w < 1, Eq. (8) results pkc > pkc−1 which confirms that
rewiring preserves bimodality in the absence of churn. However, in face of churn, the spike disappears (i.e.
pkc ≤ pkc−1) if the threshold churn

rc > (q(m(kc − 1)− zf) + w((kc − 1)− fkc))(kczf)
−1 (10)

Interestingly, rewiring (w) lowers the value of rc if (kc − 1)− fkc < 0 ⇒ z > k2cpkc . Hence, for a given kc,
the value of pkc needs to be above some threshold to make rewiring useful.

Impact on largest connected component (LCC)

Peer churn: Churn reduces the amount of superpeer nodes in the network and in effect weakens the
connectivity among the nodes within the LCC. The dissolution of the largest component happens due to
the sudden percolation of ‘holes’ in the networks at r ≈ 0.2 which disintegrates the network into a large
number of small disconnected components. Interestingly, r remains largely independent of network size.
Rewiring: Moderate rewiring gives benefit. In presence of proper rewiring, p2p network shows graceful
degradation in face of churn; the nodes largely remain connected, however, the diameter of the network
increases. Rewiring produces ‘bridging links’ between the ‘moderate size’ components (Fig 1(b)). Heavy
rewiring is not cost effective, sometimes detrimental. Inset of Fig. 1(b) indicates that if the churn rate is
lower than some threshold value (r < 0.073), rewiring itself may be detrimental as disconnection of links
removes smaller components from the network. On the other extreme, beyond a threshold level, the impact
of rewiring saturates and further increase does not improve the network connectivity.

4 Multiple cutoff degrees and Gnutella network
In reality, nodes join the network with various bandwidth connections like dial up, ISDN, ADSL, leased
line etc. Subsequently, the cutoff degrees of individual nodes become different from one another. Similar
to [2], we derive the degree distribution for the case where qkc(j) fraction of nodes join with cutoff degree
kc(j) (inset of Fig. 1(c)). The derivation is not shown here, however it can almost accurately replicate the
degree distribution of Gnutella1 (Fig. 1(c)). We describe the evolution of Gnutella network due to joining,
removal of nodes and rewiring of links by the tuple (q, r, w,m). We set q = 1.0 and m = 2. To obtain r
and w, we fit the calculated degree distribution with Gnutella snapshot, obtaining an excellent match at
r = 0.474 (47.4% churn) and w = 0.249 (24.9% nodes rewire). This theoretical result is reinforced by the
measurement study of [4] on the dynamics of Gnutella network which also reports heavy churn.

5 Conclusion
The development of this analytical framework actually facilitates in discovering various non-intuitive facts,
helps us to understand the intricate relationship existing among various parameters (churn, rewiring, pkc
etc.), which network engineers can exploit to design better robust and efficient p2p system. The best part,
however lies in almost accurately mimicking the complex degree distribution of Gnutella network.
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1We simulate Gnutella network following the snapshot obtained from the Multimedia & Internetworking Research Group,
University of Oregon, USA (http://mirage.cs.uoregon.edu/P2P/info.cgi). The snapshot is collected by the research group
during September 2004 and the size of the network simulated from the snapshot is of 1, 31, 869 nodes.
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