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Recently, much attention has been paid in analyzing and modeling bi-
partite network (BNW) due to its importance in many fields like informa-
tion science, biology, social science, economics. Here we have emphasized
on growth of a special type of BNW where the number of nodes in one set
is almost fixed. This type of systems can be represented as an Alphabetic
Bipartite Network (α-BiN) where there are two kinds of nodes representing
the elementary units and their combinations, respectively [5]. There is an
edge between a node corresponding to an elementary unit u and a node
corresponding to a particular combination v if u is present in v. The par-
tition consisting of the nodes representing elementary units is fixed, while
the other partition is allowed to grow unboundedly. In this paper we reveal
some characterizations of α-BiN growth and give a real world example of
α-BiN. We have done extensive experiments by means of computer simula-
tions of different growth models of α-BiN to characterize them. We present
a practical example of this type of networks, i.e. protein protein complex
network where set of proteins are fixed and set of complexes are growing.

PACS numbers: 89.75.–k, 89.75.Fb, 02.10.Ox

1. Introduction

The Bipartite Networks (BNWs) are a special class of networks whose
nodes can be divided into two sets, “top” and “bottom”, and edges only
connect two nodes from different sets [13]. Formally, a bipartite network
or bipartite graph G is a 3-tuple 〈U, V,E〉, where U and V are mutually
exclusive finite sets of nodes (also known as the two partitions) and E ⊆
U×V is the set of edges that run between these partitions [12]. Without loss
of generality, we denote partition V as the top set of nodes while partition
U as bottom set.
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Considerable number of real world systems can be naturally modeled
as BNW: The article-author networks [4, 14] have two sets of nodes as the
article set and author set, the human sexual network [15] consists of men and
women, etc. Bipartite network or bipartite graph has been a well studied
subject in graph theory and discrete mathematics from the early twentieth
century, the studies mainly deal with the static properties of comparatively
small graphs. However with the advent of Internet and accessibility to the
huge data, researches are directed towards understanding the properties of
large real life BNWs. This is done following the overall framework of the
complex network theory [2,7,18], a new technology that has emerged at the
beginning of the current century and helps in analyzing these complex and
vast network data.

Considerable amount of research have been done to explain the dynamics
of the BNWs. Growth is the most significant dynamics that takes place in
BNWs. Most of the studies of growth model in the past assume that both the
partitions of the BNW grow with time. Several models have been proposed
to synthesize the structure of these BNWs, i.e., when both the partitions
grow unboundedly [1, 4, 20, 22]. It has been found that for such growth
models, when each incoming top node preferentially attaches itself to the
bottom nodes, the emergent degree distribution of the bottom nodes follows
a power-law [22]. This result is reminiscent of unipartite networks where
preferential attachment results in power law degree distributions [3].

On the other hand, α-BiN where one of the partitions remains fixed
(i.e., the number of bottom nodes are constant) over time have received
comparatively much less attention. However, on inspection, it is found that
in many of the BNWs one set of nodes is almost fixed compared to the
other much faster growing set. For example, it is reasonable to assume
that for the city-people network [11], the city growth rate (emergence of
new cities) is close to zero compared with the population growth rate. In
biology Codon–Gene network is a very suitable example because the number
of codons is fixed to 64 while new genes appear in the network over time.
Another example of this type could be the phoneme-language network [6,17],
in linguistics. The initial systematic and analytical study of α-BiN has been
presented by us in [5, 21], a review of which is presented here.

The organization of this paper is as follows. Sec. 2 gives a short de-
scription of the basic growth models of α-BiN with various model parame-
ters. Sec. 2.4 and 2.5 present detail experiments carried out to characterize
the growth models. We have enlisted several interesting observations which
eventually reveal insights of α-BiN growth and consequently characterize
the growth process. We present the protein–protein complex network as our
case study in Sec. 3. In the last section we conclude and point to possible
future works.
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2. Growth of α-BiN

2.1. Growth model

Basic growth model of α-BiN is as follows: At each time step, one top
node v is introduced with µ number of edges to attach with the fixed set of
bottom nodes. Here if the top nodes bring single edge (µ = 1), then the model
is termed as sequential attachment model. If the top nodes bring multiple
edges (µ > 1), then the corresponding model is named as parallel attachment
model. Every bottom node u ∈ U has some attachment probability to get
attached to the incoming µ edges. According to the probability distribution,
the µ edges will attach to the chosen bottom nodes.

The growth model of [5, 21] incorporates preferential attachment along
with a tunable randomness parameter. Suppose that the bottom partition
U has fixed N nodes labeled as u1 to uN . At each time step, a new node
is introduced in the top set V which connects to µ nodes in U by means
of µ edges based on a predefined attachment rule. The theoretical analysis
assumes that µ is a constant greater than 0. The next task is to derive the
attachment probability of each bottom node for attaching itself with µ new
incoming edges.

2.2. Attachment probability

Let Ã(kti) be the probability of attaching a new edge to a node ui, where
kti refers to the degree of the node ui at time t. So Ã(kti) defines the attach-
ment kernel that takes the form:

Ã(kti) =
γkti + 1∑N

j=1(γk
t
j + 1)

, (1)

γ is a tunable parameter which specifies the relative weight of preferential
to random attachment. The higher value of γ indicate the low randomness
in the system and vice versa.

We are mainly interested to evaluate the degree distribution of the nodes
in the bottom set (U). Degree distribution of U is denoted by pk,t in the
rest of the paper. Essentially, pk,t is the probability that a randomly chosen
bottom node has degree k after t time steps.

2.3. Characterizing parameters

The parameters which are important to characterize bipartite networks
are number of bottom nodes (N), number of top nodes which is equal to
the time (t) because at each time step one top node is introduced, number
of parallel edges (µ) attached at a time (assumed to be equal in every time
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step) and the preferentiality parameter (γ). We have also identified two
most prominent measuring parameters in evolved degree distribution which
can be used to characterize the growth of α-BiN. These are as follows:
Mode: Mode of a distribution means the degree where the distribution
reaches its maximum value. Note that mode zero signifies that the number
of nodes with zero degree is maximum. Therefore, first occurrence of mode
as zero is itself a pointer to the critical transition of the growth process.
Critical γ (γc): In our model γ signifies the relative magnitude of random-
ness and preferentiality, so we term the minimum value of γ at which the
distribution shows its mode at k = 0 as critical γ or γc.

Here we try to observe the behavior of mode and the γc of the α-BiN with
respect to the model parameters. From these experiments we have obtained
many interesting observations. We report two such prominent observations.

1. In the case of µ� N , bottom node degree distribution shows γc = 1.
2. For larger µ, the value of γc is normally greater than one. When the

value of µ is quite large (µ > N or µ is in the order of N), then
degree distribution shows two local maxima. Note that the higher one
is actually the mode of the distribution.

2.4. Case 1: µ� N

In [21] it has been shown that pk,t can be approximated for µ� N and
small values of γ by integrating:

pk,t+1 = (1−Ap(k, t))pk,t +Ap(k − 1, t)pk−1,t , (2)

where Ap(k, t) is defined as

Ap(k, t) =


(γk + 1)µ
γµt+N

, for 0 ≤ k ≤ µt ,

0 , otherwise .
(3)

for t > 0 while for t = 0, Ap(k, t) = (µ/N)δk,0. The solution of Eq. (2) with
the attachment kernel given by Eq. (3) reads:

pk,t =
(

t
k

) ∏k−1
i=0 (γi+ 1)

∏t−1−k
j=0

(
N
µ − 1 + γj

)
∏t−1
m=0

(
γm+ N

µ

) . (4)

Note that, for µ = 1, i.e. for sequential attachment, Eq. (4) is the ex-
act solution of the process. Interestingly, for γ > 0, Eq. (4) approaches,
asymptotically with time, a beta-distribution as follows:

pk,t ' C−1

(
k

t

)γ−1−1(
1− k

t

)η−γ−1−1

. (5)
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Here, C is the normalization constant and η = N/(γµ). By making use of
the properties of beta distributions, it is clear that depending on the value
of γ, pk,t can take one of the following distinctive functional forms:
(a) γ = 0, a binomial distribution whose mode shifts with time,
(b) 0 < γ < 1, a skewed (normal) distribution which exhibits a mode that
shifts with time,
(c) 1 ≤ γ ≤ (N/µ) − 1, a monotonically decreasing (near exponential)
distribution with the mode frozen at k = 0, and
(d) γ > (N/µ)− 1, a u-shaped distribution with peaks at k = 0 and k = t.

Fig. 1 illustrates these possible four regimes. Note that in regimes (a)
and (b), mode of the distribution is greater than zero. At γ = 1, distribution
becomes monotonically decreasing with mode at zero, i.e. γc = 1.
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Fig. 1. The four possible degree distributions depending on γ for parallel attach-
ment. Symbols represent average over 5000, in (a)–(c), and 50000, in (d), stochas-
tic simulations. The solid curve is the theory given by Eq. (4). From (a) to (c),
t = 1000, N = 1000 and µ = 20. (a) at γ = 0, p(k, t) becomes a binomial distri-
bution. (b) γ = 0.5, the distribution exhibits a maximum which shifts with time
for 0 ≤ γ < 1. (c) γ = 1, p(k, t) does no longer exhibit a shifting maximum and it
is a monotonically decreasing function of k for 1 ≤ γ ≤ (N/µ) − 1. (d) γ = 2500,
t = 100, N = 1000 and µ = 1. p(k, t) becomes a u-shaped curve for γ > (N/µ)−1.

2.5. Case 2: µ > N or µ ≈ N
In the case of µ� N , derivation of degree distribution of bottom nodes

assumes that at each time step one bottom node can be attached with at
most one edge. But if µ > N or µ is in order of N then there is very high
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chance that one bottom node gets multiple edges. To address this issue we
extended the work of [21] and introduced the correct expression for the
degree distribution of bottom nodes [5]. In any time step t, a bottom node
can get any number of edges between zero and µ from the incoming top
node. Hence, the correct expression for the evolution of pk,t has the form:

pk,t+1 =

(
1−

µ∑
i=1

Â(k, i, t)

)
pk,t +

µ∑
i=1

Â(k − i, i, t)pk−i,t , (6)

where Â(k, i, t) represents the probability at time t of a node of degree k
of receiving i new edges in the next time step. The term

∑µ
i=1 Â(k, i, t)pk,t

describes the number of nodes of degree k at time t that change their degree
due to the attachment of 1, 2, . . . , or µ edges.

On the other hand, nodes of degree k will be formed at time t+1 by the
nodes of degree k − 1 at time t that receive 1 edge, nodes of degree k − 2
at time t that receive 2 edges, and so on. This process is described by the
term

∑µ
i=1 Â(k − i, i, t)pk−i,t. The expression for Â(k, i, t) is derived as

Â(k, i, t) =
(
µ
i

)(
γk + 1
µγt+N

)i(
1− γk + 1

µγt+N

)µ−i
. (7)

The evolution formula of Eq. (6) can be expressed as

pk,t+1 =
µ∑
i=0

(
µ
i

)(
γ (k − i) + 1
µγt+N

)i(
1− γ (k − i) + 1

µγt+N

)µ−i
pk−i,t . (8)

Interestingly, we can solve the recurrence relation of Eq. (8) for a closed form
expression for pk,t when γ = 0 as

pk,t =
(
µt
k

)(
1
N

)k (
1− 1

N

)µt−k
. (9)

We use Eq. (8) to synthesize the bottom node degree distributions of
α-BiN and then analyze those to understand the various characters of α-BiN.
We perform exhaustive experiments on synthesis of α-BiN using Eq. (8) for
several combinations of values of γ, µ, N and t. We report two distinct
observations which are quite interesting.
1. For larger µ, the value of γc is normally greater than one. In this case
at every time step, a top node comes with almost N number of edges. We
observe that when the value of µ is close to N , for γ = 1, the distribution
is still being a skewed (normal) distribution. Fig. 2(a) shows the change in
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the pattern of distribution curve over various value of γ for a typical case of
µ = N . So in this case γc is greater than 1 which departs from the boundary
prediction stated in Sec. 2.4.

Fig. 2(b) shows the movement of the values of modes over different γ
with N = 50, µ = 50 and t = 100. Note that when γ ≤ 1.05, modes of the
distributions are greater than zero and decrease over γ but after that, mode
becomes zero suddenly at γ = 1.05 and stays here thereafter. As can be
seen from Fig. 2(b), there is a sharp fall in the value of mode at the critical
junction. This behavior clearly shows that higher value of µ brings some
inherent randomness in the model. Hence higher preferentiality is needed to
bring in monotonicity.
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Fig. 2. (a) For the case of µ = N : six distributions given by Eq. (8) for N = 50,
µ = 50 and t = 100 with different values of the γ where corresponding curve for
γ = 1 does not show monotonically decreasing pattern. (b) Mode of the distribution
for various γ ranging from 0.99 to 1 with 0.01 increment.

2. When the value of µ is quite large, then degree distribution shows two
local maxima. In some real life system, each element enters the system with
µ ( > N) links. For example, in Codon–Gene bipartite network usually
number of codons in a gene is of the order of hundred to thousand but the
number of codons is only 64. In Fig. 3(a), we have depicted six different
distributions to show the change in the nature of the degree distribution as
γ is increased (N , µ and t are constant). It is seen that the distribution
violates the conclusion of [21] i.e. at γ = 1 it will show monotonically
decreasing nature. Another interesting observation is that at some values of
γ higher than 1 (in Fig. 3(a) at γ = 1.2) it shows another local maxima. We
have examined the nature of this second maxima and found that it persists
even after considerable large value of time (Fig. 3(b)).
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In the next section we apply our growth models to understand real world
systems. We have taken one important α-BiN from biology, i.e. protein–
protein complex network. We present a comparative study of real bottom
node degree distribution of protein–(protein complex) network with the sim-
ulated one obtained from our models.
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Fig. 3. (a) For the case of µ > N : Six distributions given by Eq. (8) for N = 10,
µ = 15 and t = 100 with different values of γ where corresponding curve for γ = 1
does not show monotonically decreasing pattern. At higher γ curves show another
mode other than k = 0. (b) For µ = 15 and γ = 1.2 the second mode persists for
large t. Here times are taken from 500 to 5000 with the interval of 500. Plots are
drawn in log–log scale to fit in the same screen.

3. Protein–(protein complex) network (ProComp)

A protein complex (or multimeric protein) is a group of two or more
proteins. Protein complexes are a form of quaternary structure1. Although
basic set of proteins is fixed, the complexes arising from them are continu-
ously evolved. The protein complex set of a particular organism shows an
instance of ongoing evolution process. Hence we model the data set of an
organism into α-BiN and try to infer the nature of the evolution process.

The first eukaryote2 organism whose genome has been completely se-
quenced is budding yeast (Saccharomyces cerevisiae). It is also the first
eukaryotic cell whose proteome (the set of all proteins) and interactome
(the network of all mutual interactions between proteins) have been well es-
tablished. Lots of research work on yeast genome has been done in the field
of system biology and molecular biology. The genome of yeast is well un-
derstood from biological point of view. That is why we have chosen yeast as
our model organism to build protein–protein complex network or ProComp.

1 In biochemistry, quaternary structure is the arrangement of multiple folded protein
molecules in a multi-subunit complex.

2 A eukaryote is an organism whose cells contain complex structures enclosed within
membranes including nucleus.
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Researchers from diverse fields have been studying protein complex as
protein–protein interaction network where nodes are proteins and edges rep-
resent occurrence of two proteins in the same protein complex [9,10,16,19].
Contrary to that, in this section we analyze protein interactions from bi-
partite network point of view. Here we study the structure of the yeast
protein–(protein complex) network in which edges between a protein com-
plex and a protein represent the involvement of the protein in that complex.

3.1. Construction of ProComp

Protein–(protein complex) network or ProComp is a bipartite network
where the nodes in U correspond to distinct proteins and those in V corre-
spond to unique protein complexes. There is an edge (u, v) ∈ E if a protein
u is a part of a protein complex v.

In order to construct ProComp of yeast (Saccharomyces cerevisiae) we
collected data from http://yeast-complexes.embl.de/complexview.
pl?rm=home that contains information about the protein–protein interac-
tions and protein complexes found in the yeast Saccharomyces cerevisiae [8].
There are 959 distinct proteins and 488 unique protein complexes in this
database. We construct ProComp from this data where | U |= 959 and
| V |= 488. The total number of edges running between the partitions U
and V is 3653.

3.2. Experiments

From the protein complex data we can see that every protein complex is
a compound of several proteins or every top node is connected with multiple
edges. So, definitely ProComp is an instance of parallel attachment growth
model. In simulation we use attachment kernel specified by Eq. (1).

For our simulations, we assume that t is the number of protein complexes
and µ is the average number of proteins that a protein complex usually
contains. We explore various values of γ and for each individual γ the
results are averaged over 100 simulation runs. In experiments, the values of
γ are varied in steps of 0.01. The best fitted value of γ will be associated
with the closest distributions obtained from the simulation to the empirical
data of yeast ProComp.

As a general technique to estimate good fits, we measured the mean
square errors between the degree distributions of the real networks and those
produced by the models. The closeness of the simulated distributions is
determined by this error, E, and defined as follows.

E =
∞∑
k=0

(pk(γ)− p∗k)2 , (10)

where p∗k represents the empirical distribution.
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3.3. Results

In this case, the initial settings for the simulation are as follows: N = 959,
t = 488 and µ = 9. We find that good fits emerge in the range γ ∈ [0.55,
0.66] (in steps of 0.01) with the best being at γ = 0.58 (see Fig. 4). The
plots in Fig. 4 clearly indicate that our growth model explains the degree
distribution of ProComp quite accurately.
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Fig. 4. Protein distribution in ProComp with N = 959, t = 488 and µ = 9. Dashed
black line shows the distribution related to the empirical data, blue circles are for
the best fitted simulated degree distribution of our growth model.

4. Conclusion and future works

In this paper we have considered attachment probability as linearly de-
pendent on the node’s degree while analysing the growth of the α-BiN. An
exhaustive study with various model parameters has been done. Interest-
ing observations about the effect of various parameters on the final shape of
α-BiN has been reported. We have extended the parallel attachment growth
analysis presented in our earlier works [5, 21] and introduced a real world
example of α-BiN.

Detail simulation results have been presented to validate our model. The
analytical models mostly consist of recurrence expression of evolution of
bottom node degree distribution. Developing the corresponding closed form
solution of those recurrence expressions are rather very tough. Nevertheless,
the closed form solution may give more accurate and clear explanations
of all of our observations. The main difficulty in developing closed form
equations arises from the fact that the nature of the solution is different
from most of the previous works. Most of the previous works on network
growth gave the closed form solution in asymptotic region. Here asymptotic
degree distribution of these models does not converge because the number
of bottom nodes is fixed. However, we have performed extensive simulations
to understand the growth of α-BiN.
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We have also identified many new problems. For example ,considerable
untouched part is the superlinear attachment growth. Another interesting
topic regarding α-BiN study is its one mode projection. One mode projection
of a α-BiN is the network of any one set of nodes of the α-BiN where two
nodes are connected if they are both neighbors of same node from other
set of that α-BiN. One mode projection analysis is a common study in
collaboration network research. A part of any future work will be directed
towards understanding the one mode projection.
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