
A Deep Generative Model for Code-Switched Text

Abstract
Code-switching, the interleaving of two or more
languages within a sentence or discourse is perva-
sive in multilingual societies. Accurate language
models for code-switched text are critical for NLP
tasks. State-of-the-art data-intensive neural lan-
guage models are difficult to train well from scarce
language-labeled code-switched text. A potential
solution is to use deep generative models to syn-
thesize large volumes of realistic code-switched
text. Although generative adversarial networks
and variational autoencoders can synthesize plausi-
ble monolingual text from continuous latent space,
they cannot adequately address code-switched text,
owing to their informal style and complex interplay
between the constituent languages. We introduce
VACS, a novel variational autoencoder architecture
specifically tailored to code-switching phenomena.
VACS encodes to and decodes from a two-level
hierarchical representation, which models syntac-
tic contextual signals in the lower level, and lan-
guage switching signals in the upper layer. Sam-
pling representations from the prior and decoding
them produced well-formed, diverse code-switched
sentences. Extensive experiments show that using
synthetic code-switched text with natural monolin-
gual data results in significant (33.32%) drop in
perplexity.

1 Introduction
Multilingual text is very common on social media platforms
like Twitter and Facebook. A prominent expression of multi-
lingualism in informal text and speech is code-switching: al-
ternating between two languages, often with one rendered in
the other’s character set. Many NLP tasks benefit from accu-
rate statistical language models. Therefore, extending mono-
lingual language models to code-switched text is important.

Many state-of-the-art monolingual models are based on
recurrent neural networks (RNNs) [Mikolov et al., 2010,
Chandu et al., 2018, Garg et al., 2018, Winata et al., 2018].
We call them RNN language models or RNNlms. RNNlm
decoders, conditioned on task-specific features, are heavily
used in machine translation [Sutskever et al., 2014, Bahdanau

et al., 2014], image captioning [Vinyals et al., 2015, Mao
et al., 2014, Donahue et al., 2015], textual entailment [Bow-
man et al., 2015a] and speech recognition [Chorowski et al.,
2015].

Training RNNlms is data-intensive. The paucity of
language-tagged code-switched text has been a major im-
pediment to training RNNlms well. This strongly motivates
the automatic generation of plausible synthetic code-switched
text to train state-of-the-art neural language models.

Synthetic but realistic monolingual text generation is it-
self a challenging problem, on which recent deep genera-
tive techniques have made considerable progress. Two gen-
erative architectures are predominantly used: (a) Generative
Adversarial Networks (GAN) [Goodfellow et al., 2014] and
(b) Variational AutoEncoders (VAE) [Kingma and Welling,
2013]. Several recent works have successfully extended
GANs [Zhang et al., 2017, Kannan and Vinyals, 2017, Zhang
et al., 2016, Maqsud, 2015] and VAEs [Bowman et al., 2015b]
to generate diverse and plausible synthetic monolingual texts.

Generating plausible code-switched text is an even more
delicate task than generating monolingual text. Linguistic
studies show that bilingual speakers switch languages by fol-
lowing various complex constraints [Myers-Scotton, 1997,
Muysken et al., 2000, Auer and Wei, 2007] which may even
include the intensity of sentiment expressed in various seg-
ments of text [Rudra et al., 2016]. Pratapa et al. [2018] syn-
thesized code-mixed sentences by leveraging linguistic con-
straints arising from Equivalence Constraint Theory. While
this works well for language pairs with good structural cor-
respondence (like English-Spanish), we observe performance
degrades with weaker correspondence (like English-Hindi).
Therefore, a code-switched text synthesizer needs to learn
overall syntax distributions of code-switched sentences, as
well as model complex switching patterns conditioned on the
context.

Owing to its great syntactic and switching diversity, large
volumes of language-labeled code-switched text is needed
to train monolingual deep generative models, which are not
available. The only alternative is to train monolingual mod-
els with parallel corpora of the two constituent languages
which may be relatively easily obtainable. However, train-
ing a GAN with aligned parallel corpora may not help, be-
cause it is designed to generate a sentence from a noise dis-
tribution instead of any learned latent embedding space. Us-
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ing a VAE RNNlm [Bowman et al., 2015b] is more promis-
ing. Aligned parallel corpora are expected to yield similar
representations for a source-target sentence pair. Therefore,
a VAE decoder conditioned on this embedding may gener-
ate some code-switch text without applying explicit external
force. However, it is unlikely to learn subtle connections
between context and switching decisions as well as a cus-
tomized VAE solution, which is our goal.

Here we present VACS, a new deep generator of code-
switched text, based on a hierarchical VAE augmented with
language- and syntax-informed switching components.

• Observed language-labeled code-switched text is encoded
to a two-layer compressed representation. The lower layer
encodes sequential word context. Conditioned on this
lower layer, the encoder models the switching behavior in
the higher layer. This contrasts with existing dual-RNNlm
architectures [Garg et al., 2018] that do not have any ex-
plicit gadget to model the switching behavior. Our encoder
learns the two-layer representation via variational infer-
ence so that the resulting encoded representations enable
our decoder to readily generate new code-mixed sentences.

• Our decoder is designed to sample a context sequence,
given a switching pattern. Unlike previous RNNlms
[Chandu et al., 2018] which consider context and tag gen-
eration as independent processes, the decoder of VACS first
decodes a switching pattern from the switching embedding
and then uses this switching pattern memory as well as the
lower-layer compressed encoding, to generate a context se-
quence. The restricted word sequence sampling space im-
proves output quality.

• During the decoding process, VACS (trivially) generates
the language labels for each word in the sentence. Thus,
VACS lets us synthesize unlimited amounts of labeled
code-switched text, starting with modest-sized samples.

Owing to the asymmetry between word and label sequences,
our encoder and decoder layers show some asymmetries tai-
lored to code-switching, which distinguishes VACS from a
regular RNN-based VAE.

Through extensive experiments reported here, we estab-
lish that augmenting scarce natural labeled code-switched
text with plentiful synthetic code-switched text generated by
VACS significantly improves the perplexity of state-of-the-art
language models. The perplexity of the models on held-out
natural Hindi-English text drops by 33.32% compared to us-
ing only natural training data. Manual inspection also shows
that VACS generates sentences with diverse mixing patterns.

We will release Tensorflow code for VACS along with suit-
able data sets.

2 Background on VAEs
VAEs [Kingma and Welling, 2013] are among the most pop-
ular deep generative models. They define a decoding prob-
ability distribution pθ(x|z) to generate observation x, given
latent variables z, which are sampled from a simple prior
distribution pπ(z). The objective of the VAE is to learn an
approximate probabilistic inference model qφ(z|x) that en-

codes latent factors or features z of the variation in the ob-
served data x.

Distributions p and q are often parameterized using deep
neural networks. We use the maximum likelihood principle
to train a VAE, i.e., maximize the expected lower bound of
the likelihood on observed data x ∼ D:

max
φ

max
θ

ED
[
Eqφ(z|x) log pθ(x|z)− KL

(
qφ(z|x)||pπ(z)

)]
To represent more complex features in the latent space, mul-
tiple VAEs are stacked hierarchically [Rezende et al., 2014,
Sønderby et al., 2016]. The stack of latent variables Z are de-
signed to learn a “feature hierarchy”. For a hierarchical VAE
with Λ layers, the prior, encoding and decoding probability
distributions are modeled as below:

Encoder: qφ(Z|x) = qφ(z1|x)
∏Λ
λ=2 qφ(zλ|zλ−1)

Prior: pπ(Z) = p(zΛ)
∏Λ−1
λ=1 pθ(zλ|zλ+1) (1)

Decoder: pθ(x|Z) = pθ(x|z1)

The performance of the above scheme is sensitive to the de-
sign of the layers. Layers λ � 1 may fail to capture extra
information. Excessively deep hierarchies with large Λ may
lead to training difficulties [Sønderby et al., 2016].

3 VACS: A VAE for code-switched text
This section gives a high-level overview of VACS, followed
by details of the building blocks, highlighting key advances
beyond prior art. Our focus will be on components that im-
plement a context-based switching distribution. Later, we de-
scribe the training process and other implementation details.

3.1 Overview
We aim to design a VAE for code-switched text, which, once
trained on a collection of tagged code-mixed text should be
able to generate new code-mixed text from the same vocabu-
lary. We represent a code-switched sentence S as {(wi, yi) :
i = 1, . . . , |S|}, where (wi, yi) is a pair comprised of a word
wi at position i and the corresponding language label yi to
which it belongs. Here we consider the simple case of switch-
ing between two languages, a source language s and a target
language t. Let SOS, EOS denote start and end of sentence
markers. Generation of output stops when label EOS is gen-
erated. We let yi take values from {s, t,EOS}. When discrete
values like wi, yi are input to networks, they are one-hot en-
coded. VACS is characterized VACS by these components:

Prior: pπ(Z)

Inference model (encoder): qφ(Z|W ,Y )

Generative model (decoder): pθ(W ,Y |Z)

In our formulation, Z will consist of two latent encoded
representations zl and zc. Here zl is the representation of
language-switching behavior, which is generated conditioned
on the context representation zc, which captures syntactic
and structural properties of a sentence. W is the observed
sequence of words and Y is the corresponding label se-
quence. Given our objective, a hierarchical VAE architecture
is adapted for the basic formulation with suitable departures
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Figure 1: The encoder and decoder in VACS. (a) Graphical model and the recurrent architecture of the encoder. (b) Graphical model and
recurrent architecture of the decoder.

whenever required. The next subsections will cover in details
the inference model, generative model and prior.

3.2 Encoder
Given observed labeled sentence (W ,Y ), our inference
model qφ defines a hierarchical probabilistic encoding Z =
(zc, zl) by first learning the content, structural embedding zc
of the entire sentence. Using this embedding zc along with
sequentially learned language label information the inference
model qφ encodes the latent switching pattern embedding zl.
Figure 1 (a) illustrates the encoder. We use two distinct RNN
(LSTM) cells in the encoder, rq,c and rq,l. Their correspond-
ing recurrent states are denoted h(q,c) and h(q,l). Input token
positions are indexed as i = 0, 1, . . . , I . The recurrence to
estimate zc goes like this.

We initialize h
(q,c)
0 = ~0 (2)

For i = 1, . . . , I: h
(q,c)
i = rq,c(wi, h

(q,c)
i−1 ) (3)

Finally, [µq,c, σq,c] = fq,c(h
(q,c)
I ) (4)

and then zc ∼ qφ(zc|W ) = N (µq,c,diag(σ2
q,c)) (5)

Next we estimate the encoding zl.

We initialize h
(q,l)
0 = zc (6)

For i = 1, . . . , I: h
(q,l)
i = rq,l(yi, h

(q,l)
i−1 ) (7)

Finally, [µq,l, σq,l] = fq,l(h
(q,l)
I ) (8)

and then zl ∼ qφ(zl|zc,Y ) = N (µq,l,diag(σ2
q,l)). (9)

Overall, qφ(Z|W ,Y ) = qφ(zc|W )qφ(zl|zc,Y )

Here, µq,c, σq,c are the mean and standard deviation for the
context encoding and µq,l, σq,l are the mean and standard
deviation for the switching behavior encoding distribution.
diag(·) represents a diagonal covariance matrix. fq,c, fq,l are
modeled as feed forward stages, rq,c, rq,l are designed as re-
current units. We use the subscript q (or p) to highlight if it
belongs to encoder (or decoder).

Summarizing the distinction from traditional hierarchical
VAE, VACS’s inference module accepts inputs in both encod-
ing layers: word sequence at the ground layer and language
label sequence at the upper layer. Learning a sequence model
over language labels becomes difficult (even with hierarchi-
cal encoding) if we provide both the inputs only in the lowest

level, possibly by concatenating suitable embeddings [Winata
et al., 2018].

3.3 Decoder
Starting from Z = (zl, zc), our probabilistic decoder gener-
ates synthetic code-switched text with per-token language ID
labels, using a two-level hierarchy of latent encoding. How-
ever, unlike the conventional hierarchical variational decoder,
VACS decodes a switching pattern given zl at the upper level,
then conditioned on zl and the decoded tag history it gener-
ates a content distribution zc. Here we need to design a spe-
cific decoupling mechanism of zc from zl, which is not just
the reverse of encoding technique. As zl has the switching in-
formation as well as the context information, we use both zl
and h(y) which is the history of label decoding to decode the
distribution of zc. We design the loss in such a way that tries
to minimize the difference between encoding and decoding
distribution of zc.

We use two distinct RNN (LSTM) cells in the decoder,
rp,l and rp,c. Their corresponding recurrent states are de-
noted h(p,l) and h(p,c). Output token positions are indexed
o = 1, . . . , O. The feedforward network to convert h(p,l)

o to a
multinomial distribution over yo is called fp,l.

We initialize h
(p,l)
0 = zl and y0 = SOS (10)

For o = 1, . . . , O: h(p,l)
o = rp,l(yo−1, h

(p,l)
o−1 ) (11)

yo ∼ Multi(fp,l(h(p,l)
o )) (12)

Decoding continues until some yO = EOS is sampled at some
O, and then stops. Effectively this amounts to sampling from
pθ(Y |zl). Once all labels Y = y1, . . . , yO are generated,
we start generating words w1, . . . , wO as follows. fp,c de-
notes the feedforward network to convert h(p,c)

o to a multino-
mial distribution over words from the languages indicated by
y1, . . . , yO,

We initialize h
(p,c)
0 = zc and w0 = SOS (13)

For o = 1, . . . , O: h(p,c)
o = rp,c(wo−1, h

(p,c)
o−1 ) (14)

wo ∼ Multi(fp,c(h(p,c)
o , yo)) (15)

If yo = s, fp,c returns a multinomial distribution over the
source vocabulary, and if yo = t, fp,c returns a multino-
mial distribution over the target vocabulary. Effectively, we
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have sampled W from the distribution pθ(W |Y , zc). Over-
all, decoding amounts to sampling from pθ(Y ,W |Z) =
pθ(Y |zl) pθ(W |Y , zc).

Figure 1 (b) illustrates the decoder architecture. VACS de-
parts from existing dual RNN architectures [Garg et al., 2018]
(two RNNs dedicates to s and t) in the following two ways:
• Instead of using a softmax output of two decoding RNNs

corresponding to two language generators, VACS learns to
decode language labels explicitly from a latent space.

• By using tightly-coupled decoding RNNs, parameter learn-
ing in VACS becomes more effective.

This way the decoder can generate word sequence in a more
controlled fashion. The recursive word decoding unit gener-
ates a word given the predicted label from the language ID
decoding layer.

3.4 Prior
The latent variable zl can be sampled from the standard nor-
mal distribution:

pπ(zl) ∼ N (0, I) (16)

and then reuse pθ(zc|zl) to define

pπ(Z) = pπ(zl) pθ(zc|zl) (17)

3.5 Training
Given a collection of M code-switched text
S(m) = (W (m),Y (m)) : m = 1, . . . ,M , we train our
model by maximizing the evidence lower bound (ELBO),
as described in Section 2. In our case, after taking into
consideration the dependence between zc and zl, the ELBO
can be simplified to:

max
φ,θ

∑
m∈[M ]

[
Eqφ(Z(m)|W (m),Y (m) log pθ(W

(m),Y (m)|Z(m))

− Eqφ(zc|W (m))KL(qφ(zl|zc,Y (m))||pπ(zl))

− Eqφ(zc|W (m)),pθ(zc|zl)KL(qφ(zc)||pθ(zc|zl))
]

(18)

Because human-labeled code-mixed text is scarce, we first
train VACS with the parallel corpora specified in Section 4.1,
with aligned word embeddings. Then we further tune model
parameters using real code-switched data, also specified in
Section 4.1. We used Adam optimiser and KL cost annealing
technique as described Bowman et al. [2015b] to train VACS.

4 Experimental setup
Here, we describe the labeled data sets, baseline paradigms,
and evaluation criteria, followed by the description of lan-
guage models used to evaluate the utility of the synthesized
text.

4.1 Data sets to train generative models
To train the generative models, we use a subset of the (real)
Hindi-English tweets collected by Patro et al. [2017] and au-
tomatically language-tagged by Rijhwani et al. [2017] with
reasonable accuracy. From this set we sample 6K tweets
where code-switching is present, which we collect into folds

rCS-train, rCS-valid and rCS-test. 5K tweets are found la-
beled with only one language. These monolingual instances
are converted into parallel corpora by translating Hindi sen-
tences to English and vise versa using Google Translation
API1, generating 10K instances. The word embeddings of
the two languages are aligned.

4.2 Baseline generative models
Deep generative models. To understand the difficulties
of extending existing monolingual text generators to code-
switched text, we design four baselines from two state-of-
the-art generative models. Bowman et al. [2015b] showed
impressive results at generating monolingual sentences from
a continuous latent space. They extended RNNlms with a
variational inference mechanism. However, their model does
not allow inclusion of hand crafted features like language ID,
POS tag etc. Meanwhile, Zhang et al. [2017] proposed a
GAN model to generate a diverse set of sentences. Based
on these, our baseline approaches are:

pVAE: We train the network of Bowman et al. [2015b] with
the parallel corpora. The probability of generating a word
is designed as a softmax over the union vocabulary. As
both of the corpora are mapped to the same latent space
due to aligned embeddings, we expect the model to switch
language whenever it finds a word from the other language
more probable than a word in the same language as the cur-
rent word.

rVAE: To further make the model learn specific switching
behaviors we train the model with the real code mixed text
along with the parallel data.

pGAN: Similar to pVAE, we train the network proposed by
Zhang et al. [2017] with the parallel text corpora.

rGAN: GAN trained with the real code-switched data along
with the parallel corpora.

RNNlm based generative models. Though language mod-
els are built primarily to estimate the likelihood of a given
sentence, they can also be used as a generative tool. Re-
cently, RNN based language models have been used to gen-
erate code-switched text as well, giving significant perplex-
ity reduction compared to generic language models that do
not consider features specific to code-switching. We compare
VACS against the following code-switched LMs:

aLM: We train the system proposed by Winata et al. [2018]
using the real code-switched text and then use a word de-
coder and language decoder to generate synthetic texts.

bLM: After training the system proposed by Chandu et al.
[2018] with the real code-mixed text, we use their LSTM
decoder to generate synthetic text.

4.3 Direct/intrinsic evaluation
Here we analyse the features like length distribution and di-
versity of code-switching of generated synthetic texts. We
also use the following CMI metric to report how different

1https://translation.googleapis.com

4



 <=5 5-10  10-15  15-20  20-25  >25

Length of generated sentences

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

F
ra

c
. 

o
f 

g
e
n

e
ra

te
d

 s
e
n

te
n

c
e
s

aLM

bLM

pVAE

rVAE

rGAN

VACS

real

Figure 2: Length distribution of the generated sentences from differ-
ent methods. VACS generated sentences are closest to real sentences
in length.

the generated texts are from the training corpus in terms of
switching. Gambäck and Das [2016] defined the code mixing
index (CMI) of sentence S as

CMI(S) =
|S| −maxy∈{s,t} |Sy|+ sw(S)

|S|
, (19)

where Sy are the tokens in language y and sw(S) is the num-
ber of code switching points in S. Higher values of CMI
indicate higher intensity of code-switching and milder domi-
nation by one language.

4.4 Indirect/extrinsic evaluation
We will use prior methods and VACS to generate large vol-
umes of code-switched text. These will be used to train a pay-
load language model (as distinct from the generative model
of VACS and baselines) — specifically, the character-level
LSTM proposed by Kim et al. [2016]. Each training corpus
will result in a trained payload model. The various payload
models will then be used to calculate perplexity [Brown et al.,
1992] scores on a held-out natural code-switched corpus. The
assumption is that the payload model with the smallest per-
plexity was trained by the ‘best’ synthetic text.

Training curricula: Baheti et al. [2017] show that lan-
guage models perform better when trained with an interleaved
curriculum of monolingual text from both the participating
languages, then ending with code-switched (CS) text, rather
than randomly mixing them. We build the curriculum from
the following corpora:
Mono: 2K monolingual Hindi and 2K monolingual English

tweets were sampled from the dataset. We translated Hindi
to English and vice versa and make a set of 8K tweets.

X-gCS: This is the generated synthetic data. We sampled 5K
generated synthetic code-switched text from various genera-
tive models. Here X denotes the generative method, which is
one of {pVAE, rVAE, pGAN, rGAN, aLM, bLM, VACS}.

The specific curricula we use are:
Mono, which uses no synthetic data.

gCS |Mono, first synthetic then parallel monolingual.

Mono | gCS, first parallel monolingual, then synthetic.
Here C1|C2 denotes the sequence of corpora used to train the
language model. Designing multi-task losses to guard against
catastrophic forgetting is left for future work.

Dataset #HI token #EN token Avg CMI
rCS-train 57746 20096 0.56
rCS-valid 63904 20346 0.53
rCS-test 62854 20074 0.54
pVAE-gCS 12227 8653 0.46
rVAE-gCS 22109 6501 0.57
VACS-gCS 42007 14822 0.64
aLM-gCS 29230 15002 0.68
bLM-gCS 42402 27520 0.70
rGAN-gCS 13815 13703 0.73

Table 1: CMI of real and generated code-switched text.

Validation and testing: We sample 7K instances from
the original real code-switched pool for validation and 7K for
testing. These are considered as scare evaluation resources
and not used in payload training.

5 Results and analysis
In Section 5.1 we compare intrinsic properties of synthetic
texts generated from various models. In Section 5.2 we
compare perplexities of payload language models prepared
from text synthesized by various generators. Finally, in Sec-
tion 5.3, we present anecdotes about generated text and its
quality. pGAN fails to generate any appreciable rate of code-
switching. Therefore, we refrain from considering pGAN any
further.

5.1 Intrinsic properties of synthesized text
Based on 5000 synthetic sentences sampled from different
generative methods, we report the followings properties.

Length: We investigate the quality of generation meth-
ods in terms of variation in length and diversity. Figure 2
depicts that VACS can generate sentences of different sizes,
unlike the other generative models which can only produce
short texts. Other than bLM, all baselines tend to produce
sentences shorter than 15 words. But Figure 2 shows that real
sentences have average length ∼16 and may be as long as 25
words. rGAN generates very short sentences, at most 5 words
long, and pVAE and rVAE generate sentences with an average
length of ∼10. For aLM and bLM average lengths are ∼10
and ∼12 respectively. VACS has a mean of ∼17 and follows
the distribution of real code-switched data most closely.

CMI: We report average CMI of synthesized texts in Ta-
ble 1. GAN generates the highest CMI, followed by aLM and
bLM. Compared to rGAN, aLM produces smaller sentences,
indicating more frequent switching. On the other hand, pVAE
produces lowest CMI, indicating that the generated sentences
are “almost monolingual”. rVAE produces CMI very close
to real and less diverse in terms of both switching and length
distribution. VACS produces a larger CMI because it pro-
duces sentences of different lengths; however, its CMI is still
smaller than GAN, aLM, and bLM.
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Training Curricula Valid PPL Test PPL
1 Mono 3816.179 3832.473
2a aLM-gCS | Mono 4769.655 4863.534

bLM-gCS | Mono 6385.586 6390.534
rGAN-gCS | Mono 7487.096 7588.953
pVAE-gCS | Mono 3624.731 3784.521
rVAE-gCS | Mono 5409.764 5514.923
VACS-gCS | Mono 2537.245 2555.342

2b Mono | aLM-gCS 4724.687 4729.345
Mono | bLM-gCS 4610.850 4902.687

Mono | rGAN-gCS 7006.220 7214.532
Mono | pVAE-gCS 4001.868 4021.900
Mono | rVAE-gCS 4796.352 4632.231
Mono | VACS-gCS 2689.234 2673.267

Table 2: Perplexity of payload language model using different train-
ing curricula. VACS achieves the lowest perplexity. Green: lower
perplexity than Mono baseline; yellow and red: larger perplexity
than Mono baseline (gray).

5.2 Extrinsic perplexity
Table 2 provides a comparative study on the perplexity
achieved on real validation and test CS text, after training
a payload language model with different curricula spanning
parallel monolingual (Mono) and synthetically generated CS
(gCS) text.

Obviously, a payload language model that has seen only
monolingual text when training will have large perplexity on
held-out real CS text, which shows a diversity of switching
behavior, in terms of both syntax structure near switches and
the distribution of words used in switched segments. Our ex-
pectation is that, in the absence of real CS text adequate to
train the payload model, large volumes of synthetic text will
help.

Surprisingly, this does not happen for aLM-gCS, bLM-
gCS, and rGAN-gCS. Adding these texts to the monolingual
baseline makes payload perplexity generally worse and much
worse in some cases, in particular, rGAN-gCS. VAE has bet-
ter success. For the gCS|Mono curriculum, pVAE-gCS im-
proves upon the baseline, but rVAE-gCS does worse. On
further investigation we found that, pVAE generates ∼80%
monolingual data, this contributes to the monolingual cor-
pus which makes the training more coherent than mixing with
code-switched data with low quality. For the Mono|gCS cur-
riculum, both pVAE and rVAE perform worse than the Mono
baseline.

In sharp contrast, VACS-gCS achieves the best (smallest)
perplexity in both curricula, and much smaller than the Mono
baseline. This shows that synthetic text from VACS can be
used effectively to supplement parallel monolingual corpora.
pVAE is the second best choice.

GAN-based synthetic text performs poorly. pGAN fails
to generate any plausible code-switched text as it does not
get any real code-switch samples from the parallel corpora.
rGAN performance is also worse than other generative mod-
els. Though Zhang et al. [2017] avoided mode collapsing
problems common in GANs, we observed that the problem
prevailed for longer sentences (>10 words) when trying to
train with small amounts of code-switched text. The problem

Sentences

a

hara gaya pakistan hamen logon ke tweet rato karane
(Pakistan defeats us to stop people from tweeting)
apane logon ko batting upalabdh series ke
(Batting series available to our people)
cricket run banaake kiya SA ke haar
(Defeated SA by making runs in cricket)

b

ladakiyon 20 assembly pratishat se
(Girls from 20 assembly percent)
vichaar bhee bikree that is 25 guna assembly ka
(Justice is also sold, that is 25 times assembly)
assembly against asia pradesh irfaan teesree har breaking
(Assembly against asia irfaan’s third deafeat was breaking)

c

sarkar kee sthaapana jawaharlal achchhee ki
(Government’s establishment was done well by Jawaharlal)
normal bikree vaalee ek tha smartphone
(One smartphone was for normal sale)
modi aye ke break it in 54 wheels
(Modi came and break it in 54 wheels)

Table 3: Sentences synthesized by VACS. Each row corresponds to
sentences sampled from a fixed context representation. The Blue
segments are in Hindi. Green sentences represent the English trans-
lation of the code-switched text.

persists because CS text is much more syntactically diverse
than monolingual corpus, so training a GAN with a small
number of real samples produces sub-optimal results.

The performance of aLM and bLM, while better than
GANs, is far from VACS. These LMs are designed explic-
itly for code-switched languages and require language-tagged
data. Hence the generative power of such models strongly de-
pends on the size and quality of tagged training data available
for them.

5.3 Sample synthetic sentences
Table 3 shows sentences generated by VACS. All sentences
in a row block are sampled from the same context embedding
zc, and each row corresponds to a different zl. Note that the
generated sentences seem to be able to produce a similar con-
text. Like row (a) corresponds to cricket, row (b) to assembly
and row (c) is mixed. It learns to produce meaningful phrases
most of the cases which seem reasonable syntactically; how-
ever, semantics and pragmatics are not realistic, just like in
monolingual synthesis.

6 Conclusion
We proposed VACS, a novel variational autoencoder to syn-
thesize unlimited volumes of language-tagged code-switched
text starting with modest real code-switched and abundant
monolingual text. We showed that VACS generates text of
various lengths and switching pattern. We also showed that
synthetic code-switched text produced by VACS can help
train a language model that then has low perplexity on real
code-switched text. We further demonstrated that we can
generate reasonable syntactically valid sentences. As VACS
can generate plausible language-tagged code-switched sen-
tences, these can be used for various downstream applications
like language labeling, part-of-speech tagging, named entity
recognition, and sentiment detection.
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