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Abstract

Multilingual writers and speakers often al-
ternate between two languages in a sin-
gle discourse, a practice called “code-
switching”. Existing sentiment detection
methods are usually trained on sentiment-
labeled monolingual text. Manually la-
beled code-switched text, especially in-
volving minority languages, is extremely
rare. Consequently, the best monolingual
methods perform relatively poorly on code-
switched text. We present an effective
technique for synthesizing labeled code-
switched text from labeled monolingual
text, which is relatively readily available.
The idea is to replace carefully selected
subtrees of constituency parses of sentences
in the resource-rich language with suit-
able token spans selected from automatic
translations to the resource-poor language.
By augmenting the scarce labeled code-
switched text with plentiful synthetic la-
beled code-switched text, we achieve signif-
icant improvements in sentiment labeling
accuracy (1.5%, 5.11%, 7.20%) for three
different language pairs (English-Hindi,
English-Spanish and English-Bengali). We
also get significant gains for hate speech de-
tection: 4% improvement using only syn-
thetic and 6% if augmented with real text.

1 Introduction

Sentiment analysis on social media is critical
for commerce and governance. Multilingual
social media users often use code-switching,
particularly to express emotion (Rudra et al.,
2016). However, a basic requirement to train
any sentiment analysis (SA) system is the
availability of large sentiment-labeled corpora.
These are extremely challenging to obtain
(Chittaranjan et al., 2014; Vyas et al., 2014;
Barman et al., 2014), requiring volunteers flu-
ent in multiple languages.

We present CSGen, a system to synthe-
size unlimited sentiment-tagged code-switched
text, without involving human labelers of
code-switched text, or any linguistic the-
ory or grammar for code-switching. These
texts can then train state-of-the-art SA al-
gorithms which, until now, primarily worked
with monolingual text.

A common scenario in code-switching is that
a resource-rich source language is mixed with
a resource-poor target language. Given a
sentiment-labeled source corpus, we first cre-
ate a parallel corpus by translating to the
target language, using a standard translator.
Although existing neural machine translators
(NMTs) can translate a complete source sen-
tence to a target sentence with good quality, it
is difficult to translate only designated source
segments in isolation because of missing con-
text and lack of coherent semantics.

Among our key contributions is a suite of
approaches to automatic segment conversion.
Broadly, given a source segment selected for
code switching, we propose intuitive ways to
select a corresponding segment from the tar-
get sentence, based on maximum similarity
or minimum dissimilarity with the source seg-
ment, so that the segment blends naturally in
the outer source context. Finally, the gen-
erated synthetic sentence is tagged with the
same sentiment label as the source sentence.
The source segment is carefully chosen based
on an observation that apart form natural
switching points dictated by syntax, there is
a propensity to code-switch between highly
opinionated segments.

Extensive experiments show that augment-
ing scarce natural labeled code-switched text
with plentiful synthetic text associated with
‘borrowed’ source labels enriches the feature
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space, enhances its coverage, and improves
sentiment detection accuracy, compared to us-
ing only natural text. On four natural corpora
having gold sentiment tags, we demonstrate
that adding synthetic text can improve accu-
racy by 5.11% in English-Spanish, 7.20% in
English-Bengali and (1.5%, 0.97%) in English-
Hindi (Twitter, Facebook). The synthetic
code-switch text, even when used by itself to
train SA, performs almost as well as natural
text in several cases. Hate speech is an ex-
treme emotion expressed often on social me-
dia. On an English-Hindi gold-tagged hate
speech benchmark, we achieve 6% absolute F1
improvement with data augmentation, partly
because synthetic text mitigated label imbal-
ance present in scarce real text.

2 Related Work

Recent SA systems are trained on labeled text
(Sharma et al., 2015; Vilares et al., 2015; Joshi
et al., 2016). For European and Indian code-
switched sentiment analysis, several shared
tasks have been initiated (Barman et al., 2014;
Rosenthal et al., 2017; Patra et al., 2018; Se-
quiera et al., 2015; Solorio et al., 2014). Some
of these involve human annotations on code-
switched text. Vilares et al. (2015) have an-
notated the data set released for POS tag-
ging by Solorio and Liu (2008). Joshi et al.
(2016) had Hindi-English code-switched Face-
book text manually annotated and developed
a deep model for supervised prediction.

In a different direction, synthetic mono-
lingual text has been created by Genera-
tive Adversarial Networks (GAN) (Kannan
and Vinyals, 2017; Zhang et al., 2016, 2017;
Maqsud, 2015), or Variational Auto Encoders
(VAE) (Bowman et al., 2015). Some of these
models can be used to generate sentiment-
tagged synthetic text. However, they are
not directly suitable for generating bilingual
code-mixed text, due to the unavailability of
sufficient volume of gold-tagged code-mixed
text. Recently, Pratapa et al. (2018) used
linguistic constraints arising from Equivalence
Constraint Theory to design a code-switching
grammar that guides text synthesis. Earlier,
Bhat et al. (2016) presented similar ideas, but
without empirical results. In contrast, CS-
Gen uses a data-driven combination of word

alignment weights, similarity of word embed-
dings between source and target, and attention
(Bahdanau et al., 2015).

3 Generation of code-switched text

CSGen takes a sentiment-labeled source sen-
tence s and translates it into a target lan-
guage sentence t. Then it generates text with
language switches on particular constituent
boundaries. This involves two sub-steps: se-
lect a segment in s (§3.1), and then select text
from t that can replace it (§3.2–§3.3). This
generation process is sketched in Algorithm 1.

3.1 Sentiment-oriented source
segment selection

In this step, our goal is to select a contiguous
segment from the source sentence that could
potentially be replaced by some segment in
the target sentence. (Allowing non-contiguous
target segments usually led to unnatural sen-
tences.) Code switching tends to occur at
constituent boundaries (Sankoff and Poplack,
1981), an observation that holds even for social
media texts (Begum et al., 2016). Therefore,
we apply a constituency parser to the source
sentence. Specifically, we use the Stanford
CoreNLP shift-reduce parser (Zhu et al., 2013)
to generate a parse tree1. Then we select seg-
ments under non-terminals, i.e., subtrees, hav-
ing certain properties, chosen using heuristics
informed by patterns observed in real code-
switched text.

NP and VP. We allow as candidates all sub-
trees rooted at NP (noun phrase) and VP
(verb phrase) nonterminals, which may cover
multiple words. Translating single-word spans
is more likely to result in ungrammatical out-
put (Sankoff and Poplack, 1981).

SBAR. Bilingual writers often use a clause
to provide a sentiment-neutral part and
then switch to another language in another
sentence-piece to express an opinion or vice-
versa. An example is “Ramdhanu ended with
tears kintu sesh ta besh onho rokom etar”
(Ramdhanu ended with tears but the ending
was quite different). Here the constituent “but
the ending was quite different” comes under
the subtree of SBAR.

1http://stanfordnlp.github.io/CoreNLP/
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Algorithm 1 CSGen overview.

1: Input: Sentiment-labeled source sentences S =
{(sn, yn)}

2: Output: Synthetic code-switched sentences C =
{(c, y)}

3: tn ← Translate(sn) ∀sn ∈ S /* Make parallel
corpus */

4: C ← ∅
5: for each parallel sentence pair s, t do
6: /* Collect word alignment signals */
7: a← AttentionScore(s, t), g ← GizaScore(s, t)
8: /* Source segment selection */
9: P ← SentimentOrientedSegmentSelection(s)

10: for each segment ps ∈ P to replace do
11: /* Target segment selection */
12: q1, q2 ← MaxSimTargetSeg(s, ps, t, a, g)
13: q3, q4←MinDissimTargetSeg(s, ps, t, 1−a, 1−g)

14: /* Code-switched text generation */
15: Ck ← Project(s, t, ps, q

k) where k ∈
{1, . . . , 4}

16: C ← C ∪ SelectBest({Ck : k ∈ {1, . . . , 4}})
17: end for
18: end for
19: C ← Threshold(C) /* Retain only best

replacements */

Highly opinionated segments. We also
include segments which have a strong opin-
ion polarity, as detected by a (monolingual)
sentiment analyzer (Gilbert, 2014). E.g., the
tweet “badiyan badiyan . . . kuch bhi ho humare
teacher made us” translates to “Great great
. . . whatever we are, our teacher made us”.

An example sentence, its parse tree, and its
candidate replacement segments are shown in
Figure 1. In Algorithm 1, ps ∈ P denotes the
set of candidate replacement subtrees, which
correspond to segments. For each candidate
segment, we generate a code-switched version
of the source sentence, as described next.

3.2 Target segment selection

Given a source sentence s, corresponding tar-
get t, and one (contiguous) source segment
ps = {wi

s · · ·wi+x
s }, the goal is to identify

the best possible a contiguous target segment
qt = {wj

t · · ·w
j+y
t } that could be used to re-

place ps to create a realistic code-switched sen-
tence. We adopt two approaches to achieve
this goal: (a) selecting a target segment that
has maximum similarity with ps, and (b) se-
lecting a target segment having minimum dis-
similarity with ps, for various definitions of
similarity and dissimilarity. Below, we de-
scribe several methods that achieve this goal
after describing several alignment scores which
will be used in these methods. Overall, these

A  coalition  with  the  Lib  Dems     is  what  the  electorate  want.

DT      NN    IN    DT   NNP   NNPS   VBZ   WP  DT      NN     VBP
.

NP NP NP VP

S

WHNP

SBAR
VP

PP

NP

S

A  coalition  with  the  Lib  Dems     is matadaata chaahata hai.

lib dems ke saath ek gathabandhan matadaata chaahata hai.

EN:

HI:
CS:

Figure 1: A phrase-structure tree for a sample syn-
thesis. Dotted-boxes around constituents indicate
that they are candidates for replacement on the
source side (§3.1). EN: English source sentence,
HI: Hindi target sentence, CS: code-switched sen-
tence. The italicized segment is the target seg-
ment to replace the source segment under the non-
terminal SBAR.

lead to target segments q1t , q
2
t , . . . shown in Al-

gorithm 1, with t removed for clarity.

3.2.1 Word alignment signals

Signals based on word alignment methods are
part of the recipe in choosing the best possible
qt given the sentence pair and ps.

GIZA score. The standard machine transla-
tion word alignment tool Giza++ (Och and
Ney, 2003) uses IBM statistical word align-
ment models 1–5 (Fernández, 2008; Schoen-
emann, 2010; Brown et al., 1993; Riley and
Gildea, 2012). This tool incorporates prin-
cipled probabilistic formulations of the IBM
models and gives a correspondence score
G[wi

t, w
j
s] between target and source words for

a given sentence pair. This word-pair score is
used as a signal to find the best qt.

NMT attention score. Given an attention-
guided trained sequence-to-sequence neural
machine translation (NMT) model (Bahdanau
et al., 2015; Luong et al., 2015) and sentence
pair s, t, we use the attention score matrix
A[wi

t, w
j
s] as an alignment signal.

Inverse document frequency (rarity).
The inverse document frequency (IDF) of a
word in a corpus signifies its importance in
the sentence (van Rijsbergen, 1979). We de-
fine I(w) = σ(a IDF(w) − b) as a shifted,
squashed IDF that normalizes the raw corpus-
level score. Parameters a and b are empirically
determined. This IDF-based signal is option-
ally incorporated while choosing qt.
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3.2.2 Target segment with maximum
similarity

Given word-pair scores derived from either
Giza++ or NMT attention described in §3.2.1,
we formulate two methods for identifying tar-
get segments. First, we identify the best tar-
get segment given Giza++ scores, G[·, ·], as
follows:

q̂1t ← argmax
qt

∏
wt∈qt

∑
ws∈ps

G[wt, ws] (1)

For each word in qt, we compute the total at-
tention score concentrated in ps and then mul-
tiply them as if they are independent.

Second, we use the attention score learned
by the NMT system of Luong et al. (2017)
(a bidirectional LSTM model with attention).
Essentially, given the attention score A[·, ·] be-
tween target and source words, we intend to
select the target segment qt whose maximum
attention is concentrated in the given ps.

Initial exploration of the above method re-
vealed that the attention of a target word may
spread out over several related but less appro-
priate source words, and accrue better over-
all similarity than a single more appropriate
word. Here IDF can come to the rescue, the
intuition being that words wi

t and wj
s with very

different IDFs are less likely to align, because
(barring polysemy and synonymy) rare (com-
mon) words in one language tend to translate
to rare (common) words in another. This intu-
ition is embodied in the improved formulation:

q̂2t ← argmax
qt

∏
wt∈qt

I(wt)
∑

ws∈ps
I(ws)A[wt, ws]

(2)
Informally, if a source segment contains many
rare words, the target segment should also
have a similar number of rare words from the
target domain, and vice-versa.

3.2.3 Target segment with minimum
dissimilarity

We examine an alternative method for identi-
fying target segments that leverage the Earth
Mover’s Distance (EMD) (Vaserštĕın, 1969).
Kusner et al. (2015) extended EMD to the
Word Mover Distance to measure the dissim-
ilarity between documents by ‘transporting’
word vectors from one document to the vec-
tors of the other. In the same spirit, we define
a dissimilarity measure between ps and candi-
date target segments using EMD. We present

here EMD as a minimization over fractional
transportation matrix F ∈ R|qt|×|ps| as below:

EMD(qt, ps) = min
F

|qt|∑
i=1

|ps|∑
j=1

Fi,jdi,j (3)

where
∑

i Fi,j = 1
|qt| and

∑
j Fi,j = 1

|ps| and
di,j is a distance metric between a target and
a source word pair, given suitable representa-
tions. Finally, we choose the target segment
which is least dissimilar to a given source seg-
ment defined by the EMD. We compute di,j in
two ways, described below.

Attention-based distance. Here the dis-
tance between the embeddings is defined as:

dAi,j = 1−A[wi
t, w

j
s] (4)

Giza-based distance. Similarly we can com-
pute the distance using Giza score as:

dGi,j = 1−G[wi
t, w

j
s] (5)

Given the two types of distances in Eq. (4)–(5)
and the definition of EMD in Eq. (3) we can
formulate two methods for identifying target
segments:

q̂kt ← argmin
qt

min
F

|qt|∑
i=1

|ps|∑
j=1

Fi,jd
k
i,j (6)

where k ∈ {3, 4} and d3i,j ≡ dAi,j and d4i,j ≡ dGi,j .
We can also use Euclidean distance as di,j .

However, this method requires multilingual
word embeddings for every word to calculate
the distance. The volume of labeled source
text we can use is usually smaller than the
vocabulary size, making it difficult to learn re-
liable word embeddings. Also, if these corpora
contains informal social media text like the
ones described in §4.1, then publicly available
pretrained word embeddings exclude a signifi-
cant percentage of them.

3.3 Projecting target segments

Given a source sentence s with designated seg-
ment ps to replace, and target sentence t, we
have by now identified four possible target seg-
ments q̂kt where k ∈ {1, . . . , 4} as described
in §3.2.2–§3.2.3. We now project the tar-
get segment to the source sentence, meaning,
(a) replace the source segment with the tar-
get segment and (b) transliterate the replace-
ment using the Google Transliteration API to
the source script2. This creates four possible

2http://www.google.com/transliterate?
langpair=hi|en&text=<text>
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synthetic code-switched sentences for each in-
stance of (s, ps, t). Finally, we transfer the la-
bels of the original monolingual corpora to the
generated synthetic text corpora.

3.4 Best candidate via reverse
translation

From these four code-switched sentences
c1, . . . , c4, we wish to retain the one that re-
tains most of the syntactic structures of the
source sentence. Each code-switched sentence
ck has an associated score as defined in §3.2.
We use two empirically tuned thresholds: a
lower cut-off for the similarity score of c1, c2
and an upper cut-off for the dissimilarity score
of c3, c4, to improve the quality of candidates
retained. These scores are not normalized and
cannot be compared across different methods.
Therefore, we perform a reverse translation of
each candidate back to the source language us-
ing the Google translation API to obtain s̃.
We retain the candidate whose retranslated
version s̃ has the highest BLEU score (Pap-
ineni et al., 2002) wrt s. In case of a tie, we
select the candidate with maximum word over-
lap with s.

3.5 Thresholding and stratified
sampling

In addition to retaining only the best among
code-switched candidates c1,...,4, we discard
the winner if its BLEU score is below a tuned
threshold. Further, we sample source sen-
tences such that the surviving populations
of sentiment labels of the code-switched sen-
tences match the populations in the low-
resource evaluation corpus. Another tuned
system parameter is the amount of synthetic
text to generate to supplement the gold text.

We do not depend on any domain coherence
between the source corpus used to synthesize
text and the gold ‘payload’ corpus — this is
the more realistic situation. Our expectation,
therefore, is that adding some amount of syn-
thetic text should improve sentiment predic-
tion, but excessive amounts of off-domain syn-
thetic text may hurt it. In our experiments
we grid search the synthetic:gold ratio between
1/4 and 2 using 3-fold cross validation.

4 Experiments

We demonstrate the effectiveness of augment-
ing gold code-switched text with synthetic
code-switched text. We also measure the use-
fulness of synthetic text without gold text. In
this section, we will first describe the data
sets used to generate the synthetic text and
then the resource-poor labeled code-switched
text used for evaluation. Next, we will present
the method used for sentiment detection, base-
line performance, and finally our performance,
along with a detailed comparative analysis.

4.1 Source corpora for text synthesis

We use publicly available monolingual
sentiment-tagged (positive, negative or
neutral) gold corpora in the source language.

ACL. Dong et al. (2014) released about 6000
manually labeled English tweets.

Election. Wang et al. (2017) published about
5000 human-labeled English tweets.

Mukherjee. This data set contains about
8000 human-labeled English tweets (Mukher-
jee and Bhattacharyya, 2012; Mukherjee et al.,
2012).

Semeval shared task. This provides about
10000 human-labeled English tweets (Rosen-
thal et al., 2017).

Union. This is the union of above mentioned
different data sets.

Hate speech. We collected 15K tagged En-
glish tweets from (Founta et al., 2018) which
consists of 4.7K abusive, 1.7K hateful and 4K
normal tweets.

We picked Spanish, which is homologous to
English, and Hindi and Bengali, which are
comparatively dissimilar to English, for our
experiments. We translated these monolingual
tweets to Spanish, Hindi and Bengali using
Google Translation API3 and used as parallel
corpus to train attention-based NMT models
and statistical MT model (GIZA) to learn the
word alignment signals as described in §3.2.1.

4.2 Preliminary qualitative analysis

Analysis of texts synthesized by various mech-
anisms proposed in §3.2 shows that similarity
based methods contribute 82–85% of the best

3https://translation.googleapis.com
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candidates and the rest come from dissimilar-
ity based methods. Similarity-based methods
using NMT attention and Giza perform well
because the segments selected for replacement
often constitute nouns and entity mentions,
which have a very strong alignment in the cor-
responding target segment. NMT attention
and Giza-EMD perform well when segments
contract or expand in translation.

4.3 Low-resource evaluation corpora

Each data set below was divided into 70%
training, 10% validation and 20% testing folds.
The training fold was (or was not) augmented
with synthetic labeled text to train sentiment
classifiers, which were then applied on the test
fold judge the quality of synthesis.

ES-EN (English-Spanish). We collected
2883 labeled tweets specified by Vilares et al.
(2015).

HI-EN,FB (Hindi-English, Facebook).
Joshi et al. (2016) released around 4000 la-
beled code-switched sentences from the Face-
book timeline of Narendra Modi (Indian Prime
Minister) and Salman Khan (Bollywood ac-
tor).

HI-EN,TW (Hindi-English, Twitter).
This is a shared task from ICON 2017 (Patra
et al., 2018) with 15575 instances.

BN-EN (Bengali-English). This is another
shared task from ICON 2017 (Patra et al.,
2018) with 2499 instances.

HI-EN, Hate speech. Bohra et al.
(2018) published 4000 manually-labeled code-
switched Hindi-English tweets: 1500 exhibit-
ing hate speech and 2500 normal. We also
found a significant number of abusive tweets
marked hate speech. For uniformity, we
merged hate speech tweets and abusive tweets.

4.4 Sentiment classifier

We adopt the sub-word-LSTM system of Joshi
et al. (2016). We prefer this over feature-based
methods because (a) feature extraction for
code-switched text is very difficult, and varies
widely across language pairs, and (b) the vo-
cabulary is large and informal, with many to-
kens outside standard (full-) word embedding
vocabularies.

Loss functions. If the sentiment labels

{−1, 0,+1} are regarded as categorical, cross-
entropy loss is standard. However, predic-
tion errors between the extreme polarities
{−1,+1} need to be penalized more than er-
rors between {-1,0} or {0,+1}. Hence, we use
ordinal cross-entropy loss (Niu et al., 2016), in-
troducing a weight factor proportional to the
order of intended penalty multiplied with the
cross entropy loss. On the test fold, we report
0/1 accuracy and per class micro-averaged F1
score.

Baseline and prior art. Our baseline sce-
nario is a self-contained train-dev-test split of
the gold corpus. The primary prior art is the
work of Pratapa et al. (2018).

Feature space coherence. Our source cor-
pora are quite unrelated to the gold corpora.
Table 1 shows that the average Euclidean dis-
tance between feature space of gold training
and testing texts is much lower than that be-
tween gold and synthetic texts. While this
may be inescapable in a low-resource situation,
the gold baseline does not pay for such deco-
herence, which can lead to misleading conclu-
sions.

HI EN,TW HI EN,FB ES EN BN EN

Mukherjee 2.47 (2.33) 3.82 (2.26) 1.64 (1.64) 5.18 (2.50)

ACL 2.21 (2.13) 3.72 (2.24) 2.09 (1.73) 4.11 (2.67)

Semeval 2.23 (2.11) 4.04 (2.26) 1.69 (1.67) 3.63 (2.59)

Election 2.40 (2.12) 6.27 (2.67) 1.58 (1.49) 5.23 (2.43)

Union 2.55 (2.15) 3.80(2.65) 1.65 (1.53) 5.48 (2.56)

Gold 2.05 1.87 1.64 1.83

Table 1: Average pairwise Euclidean distance
between training data and test data features.
Rows correspond to standalone (respectively, aug-
mented) text for training. Gray: reference distance
of gold test from gold train. Red: largest distance
observed.

Training regimes. Absence of coherent
tagged gold text may lead to substantial per-
formance loss. Hence, along with demonstrat-
ing the usefulness of augmenting natural with
synthetic text, we also measure the efficacy of
synthetic text on its own. We train the SA
classifier with three labeled corpora: (a) lim-
ited gold code-switched text, (b) gold code-
switched text augmented with synthetic text
and (c) only synthetic text. Then we evalu-
ate the resulting models on labeled gold code-
switched test fold.
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Train
Test HI EN

(TW)
HI EN
(FB)

ES EN BN EN
HI EN
(TW)

HI EN
(FB)

ES EN BN EN

Categorical cross entropy training loss Ordinal cross entropy training loss

Mukherjee 53.76 (54.69) 64.82 (65.85) 47.06 (46.36) 49.79 (57.40) 53.79 (53.53) 59.66 (64.57) 44.85 (43.07) 51.00 (49.40)

ACL 51.80 (52.59) 62.59 (65.33) 44.80 (48.84) 52.59 (59.81) 52.68 (53.76) 62.72 (64.22) 45.69 (50.31) 50.08 (51.60)

Semeval 52.99 (54.19) 65.33 (65.46) 47.36 (44.69) 53.40 (59.99) 52.99 (53.83) 63.26 (64.66) 47.36 (44.64) 53.14 (57.59)

Election 52.84 (54.59) 65.59 (66.80) 43.07 (43.07) 57.99 (59.00) 52.89 (54.64) 64.88 (65.26) 45.21 (45.80) 53.40 (55.60)

Union 53.28 (54.64) 65.50 (65.99) 44.24 (45.32) 57.23 (59.89) 53.65 (53.69) 64.30 (67.65) 44.04 (46.00) 53.40 (57.40)

MSR 54.50 65.58 48.14 59.79 53.69 62.80 47.50 52.8

Gold 52.26 65.37 42.6 55.19 52.34 64.29 45.20 50.39

Table 2: Accuracy (%) on 20% test data after training with augmented and only gold text. Rows
correspond to sources of augmentation. In most cells we show (A) no thresholding or stratification and
(B) with thresholding and stratification (within brackets). Gray: reference accuracy with only gold
training. Blue: A or B or MSR outperforms gold. Green: B performs best. Row ‘MSR’ uses text
synthesized by Pratapa et al. (2018).

4.5 Sentiment detection accuracy

Table 2 shows the benefits of augmenting
natural with synthetic text. Test accu-
racy increases further (shown in brackets) if
thresholding and stratified sampling are used.
Gains for HI EN,TW, HI EN,FB, ES EN and
BN EN are 1.5% (2.43%), 0.23% (1.43%),
4.76% (6.24%), and 2.8% (4.8%) respectively.
Categorical cross-entropy loss was used here.
Similar improvements in accuracy of are ob-
served after training with ordinal loss func-
tion. Our conclusion is that careful augmenta-
tion with synthetic data can lead to useful gain
in accuracy. Moreover, by selecting synthetic
text which is syntactically more natural, even
larger gains can be achieved. Notably, the dis-
tance between training and test features (Ta-
ble 1) is negatively correlated with accuracy
gain (Pearson correlation coefficient of −0.48).

Comparison with Pratapa et al. (2018).
They depend on finding correspondences be-
tween constituency parses of the source and
target sentences. However, the common case
is that a constituency parser is unavailable or
ineffective for the target language, particularly
for informal social media. They are thus re-
stricted to synthesizing text from only a sub-
set of monolingual data. Training SA with
natural text augmented with their synthesized
text leads to poorer accuracy, albeit by a small
amount, than using CSGen. The performance
is worse for target languages that are more
resource-poor.

Ordinal vs. categorical loss. Table 2 shows
that ordinal loss helps when the neutral label
dominates. However, neither is a clear winner
and the gains are small. Therefore, we use
categorical loss henceforth.

Choice of monolingual corpus. Across
all monolingual corpora, Election performs
consistently well. Best test performance
on HI EN,TW was obtained by synthesizing
from the Mukherjee corpus. Text synthesized
from Election provides the best results for
HI EN,FB for both setups. The performance
of Union is also good but not the best. This is
because although a larger and diverse amount
of data is available which ensures its quality,
the Euclidean distance between test data and
some individual corpora is still large.

Categorical Cross
Entropy training

Ordinal Cross
Entropy training

Pos Neu Neg Pos Neu Neg
HI EN,TW

CSGen 0.52 0.62 0.38 0.55 0.63 0.34
Gold 0.48 0.63 0.24 0.50 0.62 0.35

HI EN,FB

CSGen 0.59 0.73 0.56 0.62 0.71 0.55
Gold 0.60 0.74 0.54 0.60 0.71 0.44

ES EN

CSGen 0.38 0.53 0.37 0.48 0.50 0.42
Gold 0.47 0.44 0.41 0.40 0.53 0.43

BN EN

CSGen 0.63 0.49 0.58 0.55 0.47 0.59
Gold 0.55 0.51 0.65 0.37 0.49 0.61

Table 3: F1 score for each class prediction. Blue:
CSGen is better than Gold.

4.6 Sentiment detection F1 score

Beyond 0/1 accuracy, Table 3 shows F1 score
gains. Election yields consistently good re-
sults. We have reported the F1 score gain
for different sentiment classes only for Election
in Table 3 for brevity. Augmenting synthetic
data with gold data yields better F1 score than
training only with gold tagged data. Also, it
is interesting to observe that there is a sharp
drop of F1 score for HI EN,FB and BN EN
data sets for Gold data while training with or-
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dinal cross entropy function across all the sen-
timent labels. As described in §4.5, this is due
to non-discriminative features. However, mix-
ing them with synthetic data helps in achiev-
ing better results.

Train
Test HI EN

(TW)
HI EN
(FB)

ES EN BN EN

Mukherjee 46.22 48.98 39.76 44.42

ACL 40.33 49.96 38.40 47.81

Semeval 45.80 48.38 39.18 45.99

Election 47.22 48.78 31.20 42.44

Union 43.50 49.80 41.9 41.2

Gold 52.26 65.37 42.6 55.19

Table 4: Percent accuracy on 20% test data af-
ter training on only synthetic and only gold text.
Each row corresponds to a source. Red: Accuracy
achieved with only gold training. Blue: The closest
accuracy achieved to best.

4.7 Performance of standalone
synthetic data

The accuracy of using only synthetic data as
training is reported in Table 4. We can see
that for EN HI,TW and EN ES the synthetic
data is very close to the gold data performance
(lagging by 5.04% and 2.84%). However, it
performed poorly for HI EN,FB and BN EN
dataset. This is because there is heavy mis-
match between the synthetic text set gener-
ated and the test data distribution (Table 1) in
these two dataset. The Pearson rank correla-
tion coefficient between the distance (between
test and training set) measures and relative
accuracy gain is highly negative, −0.66.

To further establish the importance of do-
main coherence, we report on an experiment
performed with HI EN,FB gold dataset. This
dataset has texts corresponding to two dif-
ferent entities namely Narendra Modi and
Salman Khan. Training SA with natural text
corresponding to one entity and testing on
the rest leads to a steep accuracy drop from
65.37% to 52.32%.

Failure
category Example sentence G

o
ld

P
re

d
.

Different
polarity
keywords

• twin brothers lost in fair reunited in
adulthood amidst dramatic circumstances
ei themer movie akhon ar viewers der
attract kore na

0 +1

• kon se duniya hai muslim bhai jo
kafir hai usko acha oor great bol ray hai

−1 +1

Ambiguous
meaning

• elizaibq ellen quiere entrevistar julianna
margulies clooney says she is hard one
to crack

−1 0

• hum kam se kam fight ker haaray lekin
tum loog zillat ki maut maaray gaye

+1 −1

Table 5: Sample sentiment prediction failures.
Red, green: Negative, positive polarity words.

4.8 Error analysis

We found two dominant error modes where
synthetic augmentation confuses the system.
Table 5 shows a few examples. The first er-
ror mode can be triggered by the presence of
words of different polarities, one polarity more
common than the other, and the gold label be-
ing the minority polarity. The second error
mode is prevalent when the emotion is weak
or mixed. Either there is no strong opinion, or
there are two agents, one regarded positively
and the other negatively.

4.9 Hate speech detection results

Table 6 shows hate speech detection results.
Training with only synthetic text after thresh-
olding and stratified sampling outperforms
training with only gold-tagged text by 4% F1,
and using both gold and synthetic text gives
a F1 boost of 6% beyond using gold alone.
Remarkably, synthetic text alone outperforms
gold text, because gold text has high class im-
balance, leading to poorer prediction. Because
we can create arbitrary amounts of synthetic
text, we can balance the labels to achieve bet-
ter prediction.

Prec Recall F-score
Only synthetic 0.58 (0.63) 0.60 (0.63) 0.51 (0.52)
Synthetic +Gold 0.59 (0.60) 0.63 (0.63) 0.53 (0.54)
Gold 0.40 0.62 0.48

Table 6: Hate speech results (3-fold cross val.). In
most cells we show performance without threshold-
ing and stratification (within bracket with thresh-
olding and stratification). Green: Best perfor-
mance in each column.

5 Conclusion

Code-mixing is an important and rapidly
evolving mechanism of expression among mul-
tilingual populations on social media. Mono-
lingual sentiment analysis techniques perform
poorly on code-mixed text, partly because
code-mixed text often involves resource-poor
languages. Starting from sentiment-labeled
text in resource-rich source languages, we pro-
pose an effective method to synthesize labeled
code-mixed text without designing switching
grammars. Augmenting scarce natural text
with synthetic text improves sentiment detec-
tion accuracy.
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