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Incorporating domain knowledge into Medical NLI
using Knowledge Graphs

Anonymous EMNLP-IJCNLP submission

Abstract

Recently, models pretrained on medical text
such as BioElMo have shown state-of-the-art
results for the textual inference task in the
medical domain. In this paper, we explore how
to incorporate structured domain knowledge,
available in the form of knowledge graphs, for
the Medical NLI task. Specifically, we ex-
periment with fusing knowledge graph embed-
dings with the state-of-the-art approaches. We
also experiment with fusing the domain spe-
cific sentiment information for the task. Ex-
periments suggest that this strategy improves
the baseline BioELMo architecture for the
Medical NLI task.

1 Introduction

Natural language inference (NLI) is one of the
basic natural language understanding tasks which
deals with detecting inferential relationship such
as entailment or contradiction, between a given
premise and a hypothesis. In recent years, with
the availability of large annotated datasets like
SNLI (Bowman et al., 2015), MultiNLI (Williams
et al., 2018), researchers have come up with sev-
eral neural network based models which could
be trained with these large annotated datasets
and are able to produce state-of-the-art perfor-
mances (Bowman et al., 2015, 2016; Munkhdalai
and Yu, 2017; Sha et al., 2016; Chen et al., 2017;
Tay et al., 2017). Even though with these attempts
NLI in domains like fiction, travel etc. has pro-
gressed a lot, NLI in medical domain is yet to
be explored extensively. With the introduction of
MedNLI (Romanov and Shivade, 2018), an expert
annotated dataset for NLI in the clinical domain,
researchers attempt the problem of clinical NLI.

Recently, with the emergence of advanced con-
textual word embedding methods like ELMo (Pe-
ters et al., 2018) and BERT (Devlin et al., 2018),
performance of many NLP tasks have improved,

setting state-of-the-art performances. Following
this stream of literature, Lee et al. (2019) in-
troduce BioBERT, which is a BERT model pre-
trained on English Wikipedia, BooksCorpus and
fine-tuned on PubMed (7.8B tokens in total) cor-
pus, PMC full-text articles and Jin et al. (2019)
propose BioELMo which is a domain-specific
version of ELMo trained on 10M PubMed ab-
stracts, and attempt to solve medical NLI prob-
lem with these domain specific embeddings, lead-
ing to state-of-the-art performance. These two at-
tempts show a direction towards solving medical
NLI problem where the pretrained embeddings are
fine-tuned on medical corpus and are used in the
state-of-the-art NLI architecture. Another line of
solution tries to bring in the extra domain knowl-
edge from sources like Unified Medical Language
System (UMLS) (Bodenreider, 2004). One such
attempt is made by Lu et al. (2019) by incorporat-
ing domain knowledge in terms of the definitions
of medical concepts from UMLS with the state-
of-the-art NLI model ESIM (Chen et al., 2017)
and vanilla word embeddings of Glove (Penning-
ton et al., 2014) and fastText (Bojanowski et al.,
2017). Even though, the authors achieve sig-
nificant improvement by incorporating only con-
cept definitions from UMLS, the features of this
clinical knowledge graph are yet to be fully ex-
ploited. Motivated by the emerging trend of em-
bedding knowledge graphs to encode useful infor-
mation in a high dimensional vector space, we pro-
pose the idea of applying state-of-the-art knowl-
edge graph embedding algorithm on UMLS and
use these embeddings as a representative of addi-
tional domain knowledge with the state-of-the-art
medical NLI models like BioELMo, to investigate
the performance improvement on this task. Addi-
tionally, we also incorporate the sentiment infor-
mation for medical concepts given by MetaMap
(Aronson and Lang, 2010) leading to further im-
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provement of the performance. Note that, as state-
of-the-art baselines we use the models proposed
by Jin et al. (2019) and Lu et al. (2019) since both
of these studies consider ESIM as the core NLI
model which makes it more convenient for us to
incorporate extra domain knowledge and to have a
fair performance comparison with these state-of-
the-art models. Our contributions are two-fold.
• We incorporate domain knowledge via knowl-

edge graph embeddings applied on UMLS. We
propose an intelligent path-way to combine em-
beddings from two domains and feed them
to the state-of-the-art NLI models like ESIM
which is otherwise a difficult task to deal with.
This helps to improve the performance of the
base architecture.

• We further show the usefulness of the associated
sentiments per medical concept from UMLS in
boosting the performance further, which in a
way shows that if we can carefully use the do-
main knowledge present in sources like UMLS,
it can lead to promising results as far as the med-
ical NLI task is concerned.

2 Dataset

In this study, we use the MedNLI dataset (Ro-
manov and Shivade, 2018), a well-accepted
dataset for natural language inference in clinical
domain. The dataset is sampled from doctors’
notes in the clinical dataset MIMIC-III (Alistair
EW Johnson and Mark., 2016) and is arguably
the largest publicly available database of patient
records. The entire dataset consists of 14,049
premise-hypothesis pairs divided into 11,232 train
pairs, 1,395 validation pairs and 1,422 test pairs.
Each such pair consists of a gold label which could
be either entailment (true), contradiction (false), or
neutral (undetermined). The average (maximum)
sentence lengths of premises and hypotheses are
20 (202) and 5.8 (20), respectively.

3 Proposed Approach

The task is to classify the given premise (p)
and hypothesis (h) sentence pair into one of
the three classes: entailment, contradiction and
neutral. As a core architecture, we reuse the
model BioELMo (Jin et al., 2019) where authors
bring in contextual information in terms of
embeddings obtained via applying ELMo trained
on 10M PubMed abstracts, and use these with
the ESIM model (Chen et al., 2017) for the NLI

(a) Our pipeline to align embeddings from
two sources. Here ew and ed signify word

embeddings and distmult embeddings
respectively. s signifies the sentiment vector.

(b) Sentence Aligner. Takes as input unaligned NLTK
Tokenization and UMLS Concepts gotten from

MetaMap and outputs aligned tokenizations for both

Figure 1: ELMo w/ KG pipeline

task. ESIM (Chen et al., 2017) is a state-of-the-art
model for the NLI task. The architecture includes
two sentence encoders each of which takes in as
input the word embeddings of p and h. The inputs
are run through a bi-directional LSTM encoder
layer. Pairwise attention matrix is computed
between p and h, which forms the attention layer
followed by a second bi-directional LSTM layer.
Max and average pooling are performed over the
outputs of LSTM layers and the output of pooling
operations is run through a softmax model.
We feed this architecture an additional domain
knowledge from UMLS as vector representations
obtained via knowledge graph embeddings, the
details of which are described below.

UMLS: Unified Medical Language System
(UMLS) is a compendium which includes many
health and biomedical vocabularies and standards.
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It provides a mapping structure between these
vocabularies and is a comprehensive thesaurus
and ontology of biomedical concepts. UMLS
contains 3 knowledge sources: Metathesaurus,
Semantic Network, and Specialist Lexicon and
Lexical Tools. We use two of these sources:
the Metathesaurus and the Semantic Network.
The Metathesaurus comprises of over 1 million
biomedical concepts and 5 million concept names.
Each concept has numerous relationships with
each other. Each concept in the Metathesaurus
is assigned one or more Semantic Type linked to
other Semantic Types through a semantic relation-
ship. This information is provided in the Semantic
Network of UMLS. There are 127 semantic
types and 54 relationships in total. Semantic
types include “disease”, “symptom”, “laboratory
test” and semantic relationships include “is-a”,
“part-of”, “affects”.
MetaMap: MetaMap is a tool for effec-
tive mapping of biomedical text to the UMLS
Metathesaurus. On feeding a sentence to
MetaMap, it divides the sentence into phrases
based on medical concepts found in the sentence
and for each medical concept it provides its ID in
Metathesaurus, its position in the sentence, the list
of semantic types the concept is mapped to, the
preferred medical name and ID for the preferred
concept (such as “chest pain” would be “angina”).
We also get a boolean value denoting whether the
medical concept occurs in a negative sentiment
(1) or not (0). For example, in the sentence, “The
patient showed no signs of pain”, medical concept
‘pain’ would appear with a negative sentiment.
Note that, for each extracted phrase, there may
be more than one related medical concepts and
each concept may have more than one possible
mapping. For our study, we only consider the
mapping with the highest MetaMap Indexing
(MMI) score, a metric provided by MetaMap. As
a result, every word has zero or one corresponding
medical concept.
Constructing the appropriate knowledge
graph: We use the Metamap tool to process the
complete MedNLI dataset and extract the relevant
information from UMLS into a smaller knowledge
graph. First, we use Metamap to extract medical
concepts from p and h, and map them to the
standard terminology in UMLS. We choose to
map each medical concept to its preferred medical
term. E.g., “blood clots” would map to “throm-

bus”. This helps us to map different synonymous
surface forms to the same concept. This results
in 7,496 unique medical concepts from UMLS
matched to various words and phrases in the
MedNLI dataset. Each unique concept in UMLS
becomes a node in our knowledge graph. The
relations in our knowledge graph come from two
sources: The Metathesaurus and the Semantic
Network of UMLS. Using relations extracted
from these two sources, we connect the filtered
medical concepts from UMLS to build a smaller
Knowledge Graph (subgraph of UMLS). We
get 117,467 triples from the Metathesaurus and
23,824,105 triples from the Semantic Network,
which constitute the edgelists in the prepared
knowledge graph.

Knolwedge Graph Embeddings: To obtain
the embedding from this graph, we use state-of-
the-art Distmult model (Bishan Yang and Deng,
2015). The choice is inspired by Kadlec et al.
(2017), which reports that an appropriately tuned
DistMult model can produce similar or better
performance while compared with the competing
knowledge graph embedding models.

Combining Knolwedge Graph Embeddings
with BioELMo: As explained in Figure 1b, each
sentence (p or h) is tokenized using NLTK as well
as processed using MetaMap to get UMLS con-
cepts. To align these, we copy the UMLS concept
for a phrase to all the constituent words. Once we
have aligned the tokens obtained via NLTK and
MetaMap, we apply ELMo and Distmult to get
the embedding vectors, eELMo,w and edistmult,w

for each word w. We concatenate these vectors as
ew = eELMo,w ⊕ edistmult,w to obtain the word
representation for w. We call the proposed model
which uses these embeddings as BioELMo w/ KG.

Combining Sentiment Information: We fur-
ther enhance the domain knowledge by incorpo-
rating sentiment information for a concept sepa-
rately. For that purpose, we use the sentiment
boolean provided by MetaMap and create a 1-d
vector (sentw) containing 0 for positive medical
concepts or non-medical concept and 1 for nega-
tive concept. We concatenate this single dimen-
sion with our concatenated resultant embeddings.
Thus ew = eELMo,w ⊕ edistmult,w ⊕ sentw. We
call the proposed model which uses these embed-
dings as BioELMo w/ KG + Sentiment.

We use the vanilla ESIM model (Chen et al.,
2017) and feed the model the obtained concate-
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Model Accuracy
BL1 (Jin et al., 2019) 78.2%
BL2 (Lu et al., 2019) 77.8%
BioELMo w/ KG 78.76%
BioELMo w/ KG+Sentiment 79.04%

Table 1: Performance of our models along with the
state-of-the-art baseline models

nated embeddings for each word in the premise
and hypothesis, to be trained for the inference task
(see Figure 1a).

4 Experimental Results and Analysis

As discussed earlier, we mainly consider the mod-
els presented by Jin et al. (2019) [BL1] and Lu
et al. (2019) [BL2] as our baselines. We report ac-
curacy as the performance metric. Table 1 repre-
sents the performance comparison of our proposed
models and the baselines, which shows that incor-
poration of knowledge graph embeddings helps to
improve the model performance. Further, incorpo-
rating sentiment of medical concepts gives further
improvements, achieving an overall 1% improve-
ment over the baseline model.

We also see from (Jin et al., 2019) that BERT
and BioBERT show an accuracy of 77.8% and
81.7%, respectively. However, they also showcase
through a probing task that BioELMo is a better
feature extractor than BioBERT, even though the
latter has higher performance when fine tuned on
MedNLI. Due to this reason, we take BioELMo
as our base architecture and use our enhancements
over BioELMo instead of BioBERT.

We also experimented with replacing contextual
embeddings (BioELMo) with non-contexualized
word embeddings (Glove, fastText). However,
the accuracies for fastText (73.67%) and Glove
(74.46%) were much lower than that for ELMo.
Training Details: For DistMult, we use word em-
beddings dimensions to be 100. SGD was used for
optimization with an initial learning rate of 10−4.
The batch size was set to be 100. For ESIM, we
take the dimension of hidden states of BiLSTMs
to be 500. We set the dropout to be 0.5 and choose
an initial learning rate of 10−3. We choose a batch
size of 32 and run for a maximum of 64 epochs.
The training is stopped when the development loss
does not decrease after 5 subsequent epochs.
Qualitative Analysis: We explain the efficacy of
our model with the help of a few examples. Con-

sider the sentence pair, p: “History of CVA” and h:
“patient has history of stroke”. In medical terms,
‘CVA’ means ‘Cerebrovascular accident’ which is
another term for ‘stroke’. By Using MetaMap,
we are able to find that the preferred term for
‘stroke’ is ‘Cerebrovascular accident’ and hence
our model classified the sample pair correctly as
entailment. To take another example, consider the
pair p: “Blood Glucose 626” and h: “Patient has
normal A1c”. The level of blood glucose indicated
is higher than normal. ‘A1c’ is a common blood
test used to diagnose type 1 and type 2 diabetes.
Since the patient has higher blood glucose level,
the patient having normal ‘A1c’ would be a con-
tradiction and is thus classified as such.

Even though our model produces a decent per-
formance, there are cases which our model is not
able to capture. For example, for the sentence pair
p: “She was speaking normally at that time” and h:
“The patient has no known normal time where she
was speaking normally,” contradicting each other,
our model predicts this to be entailment. The prob-
able reason could be that the ESIM model fails
to capture the inverse relationship in the hypoth-
esis. In another example case, p: “He had no EKG
changes and first set of enzymes were negative.”
and h: “the patient has negative enzymes,” our
model classifies this pair as entailment while the
gold label is neutral. While the premise says that
the first set of enzymes was negative, it gives no
information about the current state. This leads us
to believe that a sense of timeline is extremely im-
portant for examples like this which is not already
being captured by our model. Taking care of these
cases would be our immediate future work.

5 Conclusion

In this paper, we showed that knowledge graph
embeddings obtained through applying state-of-
the-art model like Distmult from UMLS could
be a promising way towards incorporating do-
main knowledge leading to improved state-of-the-
art performance for the medical NLI task. We fur-
ther showed that sentiments of medical concepts
can contribute to medical NLI task as well, open-
ing a new direction to be explored further. With
the emergence of knowledge graphs in different
domains, the proposed approach can be tried out
in other domains as well for future exploration.
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