
Exploiting Diversity in Android TLS Implementations for Mobile
App Traffic Classification

Satadal Sengupta
IIT Kharagpur, India

satadal.sengupta@iitkgp.ac.in

Niloy Ganguly
IIT Kharagpur, India
niloy@cse.iitkgp.ac.in

Pradipta De
Georgia Southern University, USA

pde@georgiasouthern.edu

Sandip Chakraborty
IIT Kharagpur, India

sandipc@cse.iitkgp.ac.in

ABSTRACT
Network traffic classification is an important tool for network ad-
ministrators in enabling monitoring and service provisioning. Tra-
ditional techniques employed in classifying traffic do not work
well for mobile app traffic due to lack of unique signatures. En-
cryption renders this task even more difficult since packet content
is no longer available to parse. More recent techniques based on
statistical analysis of parameters such as packet-size and arrival
time of packets have shown promise; such techniques have been
shown to classify traffic from a small number of applications with
a high degree of accuracy. However, we show that when employed
to a large number of applications, the performance falls short of
satisfactory. In this paper, we propose a novel set of bit-sequence
based features which exploit differences in randomness of data
generated by different applications. These differences originating
due to dissimilarities in encryption implementations by different
applications leave footprints on the data generated by them. We
validate that these features can differentiate data encrypted with
various ciphers (89% accuracy) and key-sizes (83% accuracy). Our
evaluation shows that such features can not only differentiate traffic
originating from different categories of mobile apps (90% accuracy),
but can also classify 175 individual applications with 95% accuracy.

CCS CONCEPTS
• Networks→ Packet classification; Network monitoring; • Se-
curity and privacy→ Cryptanalysis and other attacks.

KEYWORDS
traffic classification; randomness; bit-sequence

ACM Reference Format:
Satadal Sengupta, Niloy Ganguly, Pradipta De, and Sandip Chakraborty.
2019. Exploiting Diversity in Android TLS Implementations for Mobile App
Traffic Classification. In Proceedings of the 2019 World Wide Web Conference
(WWW’19), May 13–17, 2019, San Francisco, CA, USA. ACM, New York, NY,
USA, 12 pages. https://doi.org/10.1145/3308558.3313738

This paper is published under the Creative Commons Attribution 4.0 International
(CC-BY 4.0) license. Authors reserve their rights to disseminate the work on their
personal and corporate Web sites with the appropriate attribution.
WWW ’19, May 13–17, 2019, San Francisco, CA, USA
© 2019 IW3C2 (International World Wide Web Conference Committee), published
under Creative Commons CC-BY 4.0 License.
ACM ISBN 978-1-4503-6674-8/19/05.
https://doi.org/10.1145/3308558.3313738

1 INTRODUCTION
Global mobile data traffic has witnessed astonishing growth over
the last half-decade; having multiplied 18-fold since 2011, it is fore-
casted to account for 20% of all IP traffic by 2021 [1]. The sheer scale
and enormous diversity of this traffic has engendered exceptional
challenges for network administrators and service providers. One
major goal of network administrators is providing differentiated
quality of service (QoS) based on the traffic category (also known
as service differentiation). The decision of how much bandwidth
to provide where, may depend on either preferences of users in
the network, or the policies adopted by the enterprise served by
the administrator. The first step of such a solution is the classifi-
cation of traffic originating from various applications. This task,
however, has been rendered significantly difficult in case of mobile
applications, due to the lack of unique traffic signatures.

Unlike in the case of traditional web traffic, mobile app traffic
cannot be segregated based on the presence of obvious signatures
(e.g., server address, app port number, unique identifiers in packet
content, etc. [12]). In fact, the majority of mobile apps tunnel data
over HTTP andHTTPS [24, 28], which use the same port (80 and 443
for HTTP andHTTPS respectively) for all traffic. Also, in case of sub-
networks, all traffic is addressed to and from a common IP address
(that of the gateway device), rendering IP-based traffic classification
infeasible. The most difficult hurdle seems to be the increasing
adoption of encryption. Encrypted traffic renders DPI-based efforts
to identify signatures from packet content ineffective [26].

One popular way of circumventing this problem is using statisti-
cal analysis to classify application traffic [7, 27, 46]. Features such
as packet-size, inter-arrival time of packets, etc. have been known
to prove beneficial in classifying one type of traffic from another.
However, these approaches are under the scanner, and techniques
have already been proposed to thwart such attempts. For example,
a recent study proposed using packet-size and arrival time obfus-
cation to confuse a trained classifier [41]. The authors implement
their system as a proxy which can fragment and regulate packet
departure in a way such that one category of traffic looks exactly
like another. In the presence of such techniques, it is necessary to
devise strategies which are immune towards obfuscation attempts.

In this paper, we propose a novel set of bit-sequence similar-
ity based features, which leverage footprints left by encryption
implementations to achieve traffic classification. A recent study
reveals that in case of mobile platforms (and specifically the An-
droid OS), there exists significant diversity in the implementation
of TLS/SSL, with a vast majority of those implementations falling

https://doi.org/10.1145/3308558.3313738
https://doi.org/10.1145/3308558.3313738


short of the adequate security standards [41]. This phenomenon is
mainly due to the app storemodel adopted by major platforms such
as Google Android and Apple iOS, which enables developers with
little to no expertise to implement security in a host of applications.
TLS deployment requires configuring a complicated end-to-end
architecture, with numerous ‘knobs and buttons’; different permu-
tations of these options adopted by the developers result in a wide
array of cipher suites, key-sizes, and certificate management styles
getting associated with mobile applications. Additionally, security
implementations also depend extensively on the computational
capabilities of the mobile devices; while high-end smartphones
support the most secure standards, lower-end phones may only
support weaker cipher suites, or none at all.

We observe that the differences in encryption implementations
of mobile applications in the wild, leave footprints in the encrypted
data generated by them, which can be harnessed using a set of novel
bit-sequence based features. These features leverage the difference
in the randomness of bits, when data is encrypted using different
cipher algorithms and key-sizes. We argue that the tell-tale differ-
ences in randomness, although weak when data bits are assumed
to be in a temporal sequence, begin emerging strongly when the se-
quence is transformed to the frequency domain (using Fast Fourier
Transform). We substantiate this claim with a series of standard
randomness tests1 on 11 ciphers, the most noteworthy of which
is the Discrete Fourier Transform based ‘Spectral Test’ [36]. This
test exhibits the highest standard deviation in randomness scores
(∼ 0.38) across the ciphers, suggesting its suitability in classifying
data generated by different ciphers. We proceed to train a classifier
using the aforementioned features, on an offline dataset consisting
of data encrypted with 11 different ciphers, and 3 different key-sizes,
and obtain 89% (for different ciphers) and 83% (for different key
sizes) accuracy in the best case, respectively.

Armed with this set of discriminative features, we propose a
mechanism based on machine learning, which can enable classifi-
cation of mobile network data into source applications. We achieve
71% accuracy in classifying packets from 175 Android apps us-
ing only these features, which improves to 95% when augmented
with previously defined packet-level features. In comparison, a
classifier trained only on baseline features, is able to exhibit only
62% accuracy. Additionally, this technique is not only resistant to-
wards obfuscation, but is also simple to implement, since it requires
computing the Fast Fourier Transform of a bit-stream (specialized
hardware is available for such tasks [6]), and some additional com-
putation.

The key contributions of this paper include:
(1) We propose and validate a set of novel bit-sequence based

features, which enable classification among data encrypted
with 11 ciphers and 3 different key-sizes, with 89% and 83%
accuracy (best case), respectively (§2).

(2) We substantiate the efficacy of the bit-sequence based fea-
tures in discriminating among diverse security implemen-
tations, by performing multi-class classification of network
traffic originating from 175 mobile apps. While previously

1Recommended by the National Institute of Standards and Technology (NIST), US
Department of Commerce for evaluating suitability of a random bit generator in
cryptographic applications [4].

studied packet-level features (which serve as our baseline)
account for only 62% accuracy, our proposed bit-sequence
based features alone achieve 71% accuracy, which is boosted
significantly (95% in the best case) in conjunctionwith packet-
level features (§3).

2 BIT-SEQUENCE BASED FEATURES
In this section, we substantiate the notion that data encrypted with
different cryptographic system configurations yield different de-
grees of randomness. We show that it is possible to harness these
differences in randomness, and construct “features” (in machine
learning parlance) which are useful in extracting sensitive informa-
tion from encrypted data, e.g., the cipher algorithm or the key-size.

2.1 Background
Secure cryptographic systems are characterized with certain desir-
able properties, namely (1) the avalanche effect, and (2) the complete-
ness property. The avalanche effect mandates that a small change
(even a bit) in the plaintext should create significant changes (alter
a large number of bits) in the ciphertext [25]. The completeness
property demands that all bits in the plaintext should affect each bit
in the ciphertext [34]. The broader intent behind these properties
is the generation of sufficient randomness in the encrypted data,
such that an attacker is unable to exploit any patterns useful in
deciphering the plaintext or the encryption key.

However, cipher implementations are seldom perfectly random;
existing literature shows that different cipher implementations are
characterizedwith different degrees of randomness [8, 23, 35, 44, 52].
An important measure of the strength of a cipher is therefore the
amount of randomness it can induce in the data encrypted with it.
While a large number of statistical tests are available to determine
randomness, the National Institute of Standards and Technology
(NIST), USA recommends a specific set of 15. A candidate cipher
is evaluated based on whether the randomness (as determined by
these tests) in bits generated due to encryption with it, is sufficiently
high to be suitable for cryptographic applications [4]. In this section,
we perform these 15 tests on data generated by different ciphers,
and validate that the degrees of randomness are indeed different.

2.2 Randomness Analysis of Ciphers
We evaluate the randomness induced by different ciphers on data
encrypted by them, by subjecting the data to a set of 15 recom-
mended statistical tests, as mentioned before.
Randomness tests:We perform the following randomness tests:
(1) Monobit test, (2) Block frequency test, (3) Independent runs
test, (4) Longest runs test, (5) Spectral test, (6) Non-overlapping
patterns test, (7) Overlapping patterns test, (8) Universal test, (9)
Serial test, (10) Approximate entropy test, (11) Cumulative sums
test, (12) Random excursions test, (13) Random excursions variant
test, (14) Matrix rank test, and the (15) Linear complexity test. These
tests have been defined and standardized in the NIST standard SP
800-22 [4] 2. The tests evaluate different properties of the test data
which may indicate presence of patterns in the data (e.g., high
frequency of specific bit-strings, too many zeros or too many ones,
etc.). The score reported for each test is the test statistic p-value
2The descriptions of these tests have been omitted for the sake of brevity.



Table 1 Results of 15 randomness (recommended by NIST [4]) tests on data encrypted with 11 ciphers. The green row represents the randomness scores for the
Spectral Test, which is touted as the most powerful test of randomness [36] and also shows the higest std. deviation across tests.

Ciphers/Tests AES ARC2 ARC4 Blow-
fish

CAST DES DES3 PKCS#1
OAEP

PKCS#1
v1.5

XOR Unenc-
rypted

Standard
Deviation

Monobit Test 0.3563 0.8495 0.4129 0.7034 0.7001 0.6347 0.6617 0.0000 0.0000 0.0000 0.0000 0.3232
Block Frequency Test 0.6120 0.6700 0.8508 0.8717 0.6739 0.4795 0.0982 0.7956 0.6285 0.0000 1.0000 0.2973
Independent Runs Test 0.2928 0.2092 0.5690 0.9011 0.1275 0.5922 0.0351 0.0000 0.0000 0.0000 0.0000 0.2950
Longest Runs Test 0.3735 0.5508 0.2576 0.2018 0.3929 0.5349 0.4236 0.5016 0.2965 0.0000 0.0000 0.1845
Spectral Test 0.9641 0.9768 0.7489 0.3135 0.9367 0.5588 0.3628 0.1748 0.9982 0.0000 0.0000 0.3791
Non Overlapping Patterns Test 0.3824 0.8874 0.5719 0.7193 0.0479 0.7668 0.1335 0.7917 0.5233 0.0000 0.0000 0.3263
Overlapping Patterns Test 0.0123 0.0821 0.2920 0.3004 0.1922 0.8939 0.2518 0.1550 0.1712 0.0000 0.0000 0.2398
Universal Test 0.3101 0.2031 0.7855 0.4042 0.8567 0.8574 0.8058 0.3027 0.5298 0.0000 0.0000 0.3141
Serial Test 0.2937 0.1751 0.6898 0.8080 0.3829 0.6550 0.0151 0.5689 0.0489 0.0000 0.0000 0.2931
Approximate Entropy Test 0.3202 0.0553 0.5882 0.5285 0.2862 0.0851 0.3340 0.2450 0.1651 0.0000 0.0000 0.1909
Cumulative Sums Test 0.3824 0.9320 0.5635 0.6605 0.8950 0.3800 0.6888 0.0000 0.0000 0.0000 0.0000 0.3498
Random Excursions Test 0.8251 0.4261 0.4576 0.9930 0.8197 0.3436 0.4022 0.2735 0.5566 0.7000 0.7000 0.2208
Random Excursions Variant Test 0.6991 0.8571 0.3518 0.2654 0.8173 0.2099 0.3670 0.0811 0.4618 1.0000 0.3865 0.2839
Matrix Rank Test 0.5624 0.9083 0.5359 0.9268 0.7473 0.5678 0.3579 0.1282 0.8707 0.0000 0.0000 0.3323
Linear Complexity Test 0.9053 0.8132 0.8263 0.2563 0.7104 0.0709 0.8156 0.2682 0.8527 0.2072 0.3292 0.3047

which is a function of the observed (encrypted) data. The p-value
indicates the probability that a perfect random number generator
would have produced a sequence (in terms of the property assessed
by a particular test) less random than the tested sequence. If p-
value = 1 for a test then the tested sequence is deemed to have
perfect randomness, while if p-value = 0 then the sequence may be
adjudged as completely non-random.
Ciphers: As candidates for the randomness tests, we consider 7
symmetric-key ciphers (e.g., AES, ARC2, ARC4, Blowfish, CAST,
DES, and DES3), 2 asymmetric ciphers (e.g., PKCS#1 OAEP and
PKCS#1 v1.5), and the XOR cipher. The variety in types of ciphers
ensures generalizability. We also consider unencrypted data as the
11th category for these tests (we refer to this as a cipher here onward
for ease of explanation).6 The implementations of the considered
ciphers are as available in the Python library PyCrypto [3].
Setup:We synthesize random data blocks of 1504 bytes each, which
is approximately the MTU (maximum transmission unit) of a net-
work packet. We use the random.SystemRandom class provided by
Python for this purpose. We generate and encrypt 1000 such data
blocks (or packets) for each cipher mentioned above. In case of
the symmetric ciphers, we use a fixed key sized 128 bits. We use
the Cipher-Block Chaining (CBC) encryption mode in all cases (of
symmetric ciphers). For the asymmetric ones, we generate a 1024
bit RSA public/private key pair using OpenSSL, and then extract
the public key; this public key is then used for encryption. The
encrypted data generated by each cipher is converted into a sep-
arate bit-stream and fed as input to the randomness testers. We
implement the randomness testers based on the Python library
r4nd0m provided by NIST [2].
Results: The results of the randomness tests are provided in Table 1.
We report scores, which are p-values (as mentioned before), with a
precision of only up to 4 places after the decimal point. Therefore,
a score of 0.0000 may not indicate a p-value of exactly zero, but
a value which is lesser than 0.00005 (since we round up). Most
tests find unencrypted data and data encrypted with XOR less than
satisfactory (very low p-value) for usage in practical cryptographic
systems, as expected. More importantly, we observe that there are
discernible differences in the randomness values for data generated
by the 11 ciphers considered, with respect to most of the tests. It is
meaningful to ask therefore: which test should one focus on if she

intends to classify data based on the cipher used to encrypt it? We
attempt to answer this question next.
Towards identification of classification features: Of the 15
tests considered in the aforementioned experiment, the test known
as the Spectral Test (also called the Discrete Fourier Transform
(DFT) Test) is of special significance both in the literature and in
this work. The roots of this test lie in a work by Coveyou et al.
which suggested employing Fourier analysis to analyze the quality
of random number generators [19]. Donald Knuth formalized the
Spectral Test based on this idea and touted the test as “by far the
most powerful test known”, since certain weak ciphers which pass
all other tests have been known to invariably fail this particular
test [36]. We also observe that this test (highlighted with green in
Table 1) shows the highest standard deviation in scores across all
ciphers, which is indicative of high variability. Buoyed by these
observations, we choose the DFT-based Spectral Test as the basis of
defining classification features for traffic encrypted with different
encryption parameters.

2.3 Defining Bit-Sequence Based Features
Having zeroed in on the basis of feature extraction, i.e., the DFT-
based Spectral Test, we proceed to examine how we can define
features which can effectively classify encrypted data based on
encryption parameters.
Role of Fast Fourier Transform (FFT): FFT is an efficient algo-
rithm for computing the DFT of a signal (or sequence). FFT trans-
forms the input sequence (a bit sequence in our case) from the
temporal domain to the frequency domain; the result is a vector
containing the intensities of each frequency component in the origi-
nal sequence. Based on our observations in the previous subsection,
we already know that analyzing the FFT vectors generated from
encrypted data (as done in the Spectral Test) is beneficial in gleaning
out the randomness present in encrypted data. However, how does
one use FFT effectively to leverage this property and subsequently
enable classification?
The case for packet pairs: Randomness is likely to be induced in
an individual app packet from two sources: (1) the content encap-
sulated in the packet, and (2) encryption. Our aim in this work is to
capture the randomness due to encryption only. This requirement
drives us to consider a pair of packets instead of individual packets;
the idea is to eliminate the randomness due to differences in content,



Figure 1 Feature Extraction: Pictorial description of the methodology used to extract the 6 defined bit-sequence based features

as far as possible. Content similarity is likely to be the maximum
in consecutive packets generated by an application, rather than any
random pair of packets. For example, in the case of a video app,
consecutive packets are likely to carry two consecutive frames of a
video. Therefore, in this work, we consider consecutive packets for
defining our features. We discuss possible scenarios arising out of
this requirement from an implementation perspective, and ways to
address those, in § 3.2.
Bit-sequence based features: We posit that the randomness due to
encryption can be best leveraged by comparing the FFTs of two
consecutive packets from a source app. In other words, we deter-
mine how similar or dissimilar the FFT vectors of two consecutive
app packets are. The similarity (or lack thereof) in randomness
is captured using 2 standard metrics employed in measuring the
similarity between 2 distributions: (1) Pearson’s Correlation Coef-
ficient (PCC), and (2) Kullback-Leibler Divergence (KLD). In our
case, these distributions are the Fourier transformed bit-sequences
of encrypted packets generated by a cryptosystem.

In terms of implementation, we first convert the bit-sequence
of each network packet into its corresponding bit-sequence in the
frequency domain, by performing FFT. Thereafter, we compute the
PCC and KLD of such bit-sequences of 2 consecutive packets. In
order to not get restricted by sudden changes in PCC and KLD
values, we also consider the moving average and moving variance
of these values, which are smoother and more consistent. The entire
mechanism is illustrated in Fig. 1.

Specifically, we define the following features to quantify bit-
sequence similarity (or difference) between packets originating
from a cryptosystem:

(1) Pearson’s Correlation Coefficient (PCC) between the Fast Fourier
Transform (FFT) of bit-sequences of 2 consecutive packets.

(2) Pearson’s Correlation Coefficient Average (PCCA), which is
the moving average of the PCC values obtained.

(3) Pearson’s Correlation Coefficient Variance (PCCV), which is
the moving variance of the PCC values obtained.

(4) Kullback-Leibler Divergence (KLD) between the FFTs of bit-
sequences of 2 consecutive packets.

(5) Kullback-Leibler Divergence Average (KLDA), which is the
moving average of the KLD values obtained.

(6) Kullback-Leibler Divergence Variance (KLDV), which is the
moving variance of the KLD values obtained.

Table 2 Classification results (precision (P), recall (R), f1-score (F ), accuracy
(𝒜)) obtained using 3 different classifiers for 3 variations of packet-sizes, for
packets originating from 11 sources (10 encrypted using different ciphers, and
1 unencrypted). Best classification performance is achieved using the Ran-
dom Forest Classifier (highlighted in green).

Classifier / Packet-size All Equal Equal for Source All Different
Metrics P, R, F ,𝒜 P, R, F ,𝒜 P, R, F ,𝒜

Random Forest 0.89, 0.89, 0.89, 0.89 0.96, 0.96, 0.96, 0.96 0.90, 0.89, 0.89, 0.89
Decision Tree 0.88, 0.87, 0.87, 0.87 0.93, 0.93, 0.93, 0.93 0.87, 0.86, 0.86, 0.86

K Nearest Neighbors 0.81, 0.81, 0.81, 0.81 0.93, 0.93, 0.93, 0.93 0.72, 0.72, 0.72, 0.72
Gaussian Naive Bayes 0.73, 0.61, 0.60, 0.61 0.88, 0.84, 0.82, 0.84 0.75, 0.71, 0.70, 0.71

M‘layer Perceptron (Deep) 0.65, 0.69, 0.66, 0.69 0.89, 0.89, 0.89, 0.89 0.57, 0.61, 0.58, 0.61
Logistic Regression 0.58, 0.62, 0.57, 0.62 0.69, 0.66, 0.63, 0.66 0.53, 0.53, 0.50, 0.53

Support Vector Machine 0.50, 0.46, 0.41, 0.46 0.77, 0.71, 0.66, 0.71 0.46, 0.44, 0.39, 0.44
AdaBoost 0.24, 0.28, 0.21, 0.28 0.36, 0.29, 0.22, 0.29 0.34, 0.36, 0.31, 0.36

Let us denote the FFT vectors corresponding to the nth packet
and (n − 1)th packet as pn and pn−1 respectively. Pearson’s corre-
lation coefficient (PCC) between the FFTs corresponding to the nth
and the (n − 1)th packets is defined as:

PCCn =
∑
i (pni − p

n ).(pn−1i − pn−1 )√∑
i (pni − p

n )2 .
∑
i (pn−1i − pn−1 )2

(1)

The features derived from PCC, i.e. PCCA and PCCV, corresponding
to the nth packet in sequence, are defined as follows:

PCCAn =
1
n

i=n∑
i=0

PCCi (2) PCCVn =
1
n

i=n∑
i=0

(PCCi − PCCAi )2 (3)

Kullback-Leibler divergence between the FFTs corresponding to
the nth and the (n − 1)th packets, is defined as follows:

KLDn =
∑
i

pni . loд
pni
pn−1i

(4)

The features derived from KLD, i.e. KLDA and KLDV, corresponding
to the nth packet in the traffic flow, are defined as follows:

KLDAn =
1
n

i=n∑
i=0

KLDi (5) KLDVn =
1
n

i=n∑
i=0

(KLDi − KLDAi )2 (6)

2.4 Cipher and Key-Size Classification
In this subsection, we present two validation experiments, i.e., ci-
pher classification (expt. 1) and key-size classification (expt. 2), to
establish the efficacy of the aforementioned bit-sequence based
features.
Ciphers: For expt. 1, we consider the same sources as in § 2.2, i.e.,
7 symmetric-key ciphers (e.g., AES, ARC2, ARC4, Blowfish, CAST,



(a) Kullback-Leibler Divergence (KLD) (b) Moving Avg. of KLD (KLDA) (c) Moving Var. of KLD (KLDV)

(d) Pearson’s Correlation Coeff. (PCC) (e) Moving Avg. of PCC (PCCA) (f) Moving Var. of PCC (PCCV)

Figure 2 Distribution (CDF) of bit-sequence based features: All 6 features – KL divergence (KLD), moving average of KL divergence (KLDA), moving variance of
KL divergence (KLDV), Pearson’s correlation coefficient (PCC), moving average of Pearson’s correlation coefficient (PCCA), and moving variance of Pearson’s
correlation coefficient (PCCV) – are defined on the FFTs of the bit-sequences of packet payloads. These features capture the similarities (or dissimilarities) among
bit-sequences of packet payloads generated using different ciphers (note that PKCS#1 v1.5 and PKCS#1 OAEP are represented as PKCS1_v1_5 and PKCS1_OAEP,
respectively, in the plots).

(a) Moving Avg. of PCC (PCCA) (b) Moving Avg. of KLD (KLDA) (c) Moving Var. of KLD (KLDV)

Figure 3 Distribution (CDF) of bit-sequence based features PCCA, KLDA, and KLDV for 7 encryption algorithms, namely AES, ARC2, ARC4, Blowfish, CAST, DES,
DES3. It can be observed that the packets generated for one encryption algorithm can be differentiated from others, on the basis of these 3 features.

DES, and DES3), 2 asymmetric ciphers (e.g., PKCS#1 OAEP and
PKCS#1 v1.5), the XOR cipher, and unencrypted data acting as the
11th source. We consider only the strongest cipher, i.e., AES, for
expt. 2.
Key-sizes: In expt. 1, we use a fixed 128 bit key for symmetric ci-
phers, and a RSA public key extracted from a 1024 bit public/private
key pair for asymmetric ciphers, as described in § 2.2. For expt. 2,
we consider 3 different key-sizes of AES, i.e., 128 bits, 192 bits,
and 256 bits. The keys are randomly generated using the Python
random.SystemRandom class.
Setup:As in § 2.2, we used the Python package PyCrypto to encrypt
each synthesized packet [3]. For both expts. 1 and 2, we generated
10, 000 packets from each aforementioned source. In case of expt. 1,
we repeated the experiments for 3 variations in terms of packet-size:
(1) equal packet-size for all 11 sources, (2) equal packet-size for each

source (different for different sources), and (3) random packet-size
for each packet, irrespective of the packet source.
Results for cipher classification: We present the classification
results for 8 different classifiers in Table 2. Multi-class (11 classes)
classification is performed, all 6 features based on bit-sequence
similarity are used, and 10-fold cross validation is employed to
guard against over-fitting. We observe that the Random Forest
Classifier (RFC) achieves best classification performance, with a
worst-case accuracy of 89%. We also observe that the distribution of
packet-sizes has an impact on classification, i.e., the packets can be
more easily distinguished (96% in the best case) when packet-sizes
are same across the packets from one source but different from the
packets of other sources.
Results for key-size classification: Best performance is once
again achieved by RFC, with an accuracy of 83% (with precision,



Figure 4 In-laboratory testbed setup for data collection: An ASUS RT-3200AC
router connected to the Internet, acts as the gateway device. Bandwidth
throttling is performed by setting router configuration parameters appropri-
ately. A Moto X 2nd generation Android smartphone running on Android 6.0
(Marshmallow) is connected to the router over WiFi. Mobile applications are
executed on this phone, and data is collected using the tcpdump tool.

recall, and F1-score all at 0.83). We omit rest of the results (which
are similar as for expt. 1) for brevity.

2.5 Bit-Sequence Features: Detailed Analysis
Having established that our proposed features are able to distin-
guish among data encrypted with different ciphers and different
key-sizes, we perform a deeper analysis of those features. We plot
the CDF for all 6 features for packets generated using each of the
11 sources in Fig. 2 (case (2), i.e., equal packet-size for each source
is considered; the observations are similar in the other 2 cases). We
observe that the distributions for PKCS#1 OAEP, PKCS#1 v1.5, XOR,
and unencrypted can be easily differentiated from the rest of the
cases (KLDV and PCCA showing the most prominent distinguisha-
bility). In order to analyze the other 7 encryption algorithms more
closely, we normalize for those and plot the CDF of PCCA, PCCV,
and KLDV in Fig. 3. We observe that even these 7 algorithms can
be easily distinguished from each other with a classifier of higher
arithmetic precision, on the basis of these 3 features.

So far, we have analyzed the effectiveness of our proposed set of
features in classifying data encrypted with multiple ciphers/key-
sizes. However, this ability is not merely limited to varying ciphers
and key-sizes, but generalizes to any customizable parameter in a
cryptosystem implementation that may give rise to a discernible
difference in the randomness of the encrypted data. Other parame-
ters (besides cipher and key-size) include the default OS library, the
TLS library and its version being used, etc. In the following sections,
we illustrate how these bit-sequence based features may be used to
classify encrypted data generated from a large number of mobile
apps, based on their ability to leverage variability in cryptosystem
implementations.

3 EXPERIMENTAL SETUP AND DATASET
In this section, we explain our experimental setup for performing
large-scale app traffic classification, and also describe the dataset
collected using this setup.

3.1 Experimental Setup
We describe the experimental setup adopted by us, and the driving
factors behind it, in this subsection.
Setup considerations: In order to generalize our results on mobile
app traffic, we collected traffic traces under controlled operating
conditions. Important control parameters included background traf-
fic, channel conditions, and traffic from advertisements embedded

in the traffic of the intended application. Even if all possible care is
taken to avoid background traffic, it can still occur from services that
the OS runs for optimizations and communications with the server.
Also, variation in channel conditions may lead to differences in the
way certain apps behave, e.g., video streaming apps may adapt to a
different bit-rate when bandwidth varies. Similarly, advertisements
running within the app may contaminate data collected from it.
Keeping these factors in mind, we implemented an in-laboratory
testbed to enable controlled collection of packet traces from a large
number of mobile applications.
Testbed setup: The testbed setup is shown in Fig. 4. The end device
connects to the ISP’s network through a wireless router. The wire-
less router is instrumented such that we can control the bandwidth
between the router and the end device. We used a Motorola Moto
X 2nd generation Android smartphone as the end device where we
execute each mobile app separately. This device is rooted to allow
trace collection using tcpdump. Android Terminal Emulator app
provides the interface to execute tcpdump. The router is an ASUS
RT-3200AC router with IEEE 802.11ac Wi-Fi standard. This router
provides the Adaptive QoS feature, which allows manual config-
uration of the Download Bandwidth field to specify a controlled
download rate.
Bandwidth scenarios:We collect data for each app under 4 band-
width scenarios (by throttling at the router) – 0.5 Mbps, 1 Mbps, 4
Mbps, and 16 Mbps – to capture changes in app behaviour, if any,
under varying bandwidth conditions.
Logs maintained during trace collection:We log the following
information during data collection:

• Log 1: IPs for all client devices used in our experiments, and
the corresponding app playing on each IP.
• Log 2: Start and end time for embedded advertisements,
during execution of the app.

The aforementioned information enables us to discard noisy data
from the accumulated traffic, in the manner described next.
Packet labeling: In order to associate each packet with a distinct
label for our experiments, we first differentiate the video traffic
flows based on 5-tuple information <source IP, source port, destina-
tion IP, destination port, transport protocol>, present in the header
of each packet. Based on our knowledge of client IP addresses from
Log 1, we selectively preserve flows which correspond to download
traffic, i.e., from the content server to the client app. We ensure
that network control packets are eliminated from our dataset –
such packets include ARP, DNS, IGMP, ICMP, NTP, DB-LSP-DISC
(Dropbox Lan Sync Protocol), SYN, ACK (non-piggybacked), etc. –
these packets do not carry any useful content, but appear in large
numbers in the traces. Furthermore, we utilize the logged timing
information in Log 2 to discard packets which do not correspond to
the actual app content, but to associated events (such as ads). Sub-
sequently, we tag each packet with its source application, based on
our knowledge of the client IP-app correspondence – cumulatively,
this forms our dataset.

3.2 Android Application Dataset
In this subsection, we describe the dataset collected by us using the
setup introduced in § 3.1.



Figure 5 Distribution of cipher suites used by applications in our dataset.

Android app selection:We select 175 Android applications based
on the Top Free in Android Apps selection in the Google Play Store3.
The apps comprise a variety of categories, including but not limited
to, video, audio, games, messaging, social networking, news, health,
and static content-based apps.
Diversity in cipher suites: Razaghpanah et al. established in their
analysis that different applications in the Android app store use
different cipher suites, TLS libraries, OS defaults, etc. [41]. We per-
form a similar analysis of our dataset in terms of ciphers suites used
and supported. We segregate out the Server Hello and Client
Hello TLS handshake messages from our dataset, and parse them
to find out cipher suites used by different applications. Fig. 5 shows
the distribution of cipher suites used for encrypting traffic during
the course of data collection. Fig. 6 on the other hand, shows the
distribution of cipher suites which are supported by the application
and may be used depending upon platform support, preference, or
random choice. We observe from the figures that there is signifi-
cant diversity in the cipher suites used for different mobile apps,
which corroborates with the analysis in [41]. Furthermore, it is also
important to note that cipher suites are not the only encryption pa-
rameters which affect randomness induced in the data; OS and TLS
libraries, various configurable parameters on the client and server
sides, etc. also impacts it. Our features are designed to leverage any
such randomness occuring due to any combination of parameters
in the cryptographic implementation of an application.
Choosing pairs of packets: We mentioned in § 2.3 that the ideal
way of choosing pairs of packets in order to compute our proposed
bit-sequence based features is to choose consecutive packets in a
flow. We employ this idea (of consecutive packets) in the experi-
ments conducted in this paper. The rationale is that in a real system,
even if the client port is common (80 for HTTP and 443 for HTTPS)
and the IPs are unrecognized for multiple simultaneously running
applications, it would still be possible to segregate a flow based on
its 5-tuple combination in most situations. There may be two excep-
tions, however: (1) when the first packet in a flow is encountered
and it cannot be readily attributed to an application, and (2) when
simultaneous flows end up with the same 5-tuple combination (e.g.,
when using a proxy). In both cases, we propose storing and using

3This list changes frequently based on Google’s app ranking system. Our selection
was based on the status of this list on 15-April-2018.

recent reference packets from all candidate applications, and using
those for computation of the bit-sequence based features. The ap-
plication for which the values correlate most closely (as returned
by a trained classifier), is the likely target application.

In order to illustrate the frequency of case 1 (first packet of a
flow) in our dataset, we plot the number of packets per flow for
each application in Fig. 7. We observe that most (above 90%) of
apps send atleast 100 packets in a flow, while around 50% send at
least 1, 000 packets. Around 15% of applications send upward of
10, 000 packets in a single flow. This illustrates that in case of most
applications the computation of bit-sequence based features does
not incur any additional overhead, i.e., first packet instances are
few and far between.

4 EVALUATION
In this section, we evaluate the efficiency of our proposed bit-
sequence based features in classifying traffic from a large number
of applications.

4.1 Baseline (Packet-Level) Features
We introduce packet-level features in this subsection, such as those
based on packet-size and packet inter-arrival time, which have been
widely used in the literature for app-traffic classification [7, 27, 42,
46]. These features serve as baselines in our study. Along with the
raw packet-size and inter-arrival time, we also consider the moving
average and moving variance of these features. This is to account
for sudden changes in the raw values, e.g., when the last packet in a
burst is sent, it may be of an uncharacteristically lower size, or the
first packet in a burst may have a significantly higher inter-arrival
time. Moving average and variance values, which are more regular
and smoothened, better capture the characteristic nature of app
traffic.
Packet-Size Based Features: We use the following packet-size
based features:

(1) Packet-size (PS), which is directly the packet-size observed
at the network (IP) layer.

(2) Packet-size Moving Average (PSMA), which is the moving
average of PS values for a traffic flow.

(3) Packet-size Moving Variance (PSMV), which is the moving
variance of PS values for a specific traffic flow.

PSMA and PSMV corresponding to the nth packet in sequence of
traffic flow, are formulated as follows:

PSMAn =
1
n

i=n∑
i=0

PSi (7) PSMVn =
1
n

i=n∑
i=0

(PSi − PSMAi )2 (8)

Packet Inter-Arrival Time Based Features:We use the follow-
ing parameters based on temporal traffic behavior:

(1) Inter-arrival time (IAT), which is merely the difference be-
tween arrival time of two consecutive packets belonging to
the same flow.

(2) Inter-packet timing average (IPTA), which is the moving av-
erage of IAT values for a traffic flow.

(3) Inter-packet timing variance (IPTV), which is the moving
variance of IAT values for a particular traffic flow.

The features identified above, i.e., IAT, IPTA, and IPTV, of the nth
packet in sequence within the flow, are formulated as follows:



Figure 6 Distribution of cipher suites supported by applications in our dataset.

Figure 7 Distribution of number of packets per flow for applications

Table 3 Classification performance (precision (P), recall (R), f1-score (F ), ac-
curacy (𝒜)) for classification of traffic from 175 mobile apps. Bit-sequence
based features perform better than the baselines in terms of both F1-score
and accuracy. The scores boost significantly when our proposed features are
used in conjunction with baseline packet-level features.

Features / Classifier Random Forest Decision Tree
Metrics P, R, F ,𝒜 P, R, F ,𝒜
Packet-Size Features (PSF) 0.32, 0.27, 0.27, 0.27 0.35, 0.29, 0.29, 0.29
Inter-Arrival Time Features (ITF) 0.33, 0.10, 0.12, 0.10 0.37, 0.11, 0.13, 0.11
Packet-Level Features (PSF+ITF) 0.76, 0.62, 0.65, 0.62 0.78, 0.60, 0.64, 0.60
Bit-Sequence Features (BSF) 0.68, 0.71, 0.69, 0.71 0.66, 0.69, 0.67, 0.69
Bit-Sequence + Packet-Level Features
(PSF+ITF+BSF)

0.97, 0.96, 0.96, 0.96 0.95, 0.95, 0.95, 0.95

IATn = tn − tn−1 (9) I PTAn =
1
n

i=n∑
i=0

IATi (10)

I PTVn =
1
n

i=n∑
i=0

(IATi − I PTAi )2 (11)

where tn and tn−1 are arrival time instances for the nth and
(n − 1)th packets respectively.

4.2 Classification Methodology
We discuss the classification methodology employed for classifica-
tion of packets from 175 mobile apps, followed by results.
Overcoming class imbalance: We train our classifiers on 10, 000
packets from each app. In order to avoid bias due to class imbalance,
we random-sample an equal number of packets (10, 000) from the

data collected for all those apps, where the total number of pack-
ets is higher than 10, 000. In the few cases (5 apps) where lesser
than 10, 000 packets are available, we employ SMOTE [14] and
oversample the datasets, so as to balance them.
Guarding against overfitting: In order to minimize the chances
of over-fitting the data, we employ k-fold cross validation (we set
k = 10 in our experiments).

4.3 Classification Results
Overall classification: The classification results for data collected
from 175 apps are presented in Table 3. We present results for the
following baselines: (1) Packet-size based features only (PS, PSMA,
PSMV), (2) Inter-arrival time based features only (IAT, IPTA, IPTV),
(3) Bit-sequence based features only (PCC, PCCA, PCCV, KLD,
KLDA, KLDV), and (3) All packet-level features, i.e., a combination
of packet-size based features and inter-arrival time based features
(PS, PSMA, PCCV, IAT, IPTA, IPTV). Results for only the two best
performing classifiers (Random Forest and Decision Tree) have been
reported. We observe that using only packet-size based features
results in an accuracy score of 0.29, while only inter-arrival time
based features result in an ever lower accuracy of 0.11 (in the
best cases, i.e., using the Decision Tree classifier). When combined,
however, the packet-level features together result in a much higher
accuracy of 0.60, which is still, however, not satisfactorily high.

Our proposed bit-sequence based features perform significantly
better than either packet-size based or inter-arrival time based fea-
tures, in terms of both F1-score and accuracy. In fact, they perform
even better than all packet-level features combined (69% vs. 65% in
terms of F1-score, and 71% vs. 62% in terms of accuracy). Consid-
ering that we perform multi-class classification with 175 classes,
this is a significant result, and substantiates the effectiveness of our
proposed features in differentiating apps based on differences in
TLS implementations. The classification results are boosted heav-
ily – in fact to 95% F1-score as well as accuracy, in the best case –
when packet-level features are employed in conjunction with bit-
sequence based features, which is our recommended strategy for
mobile app traffic classification. A classifier performing with such



accuracy may be used by a network administrator in fingerprinting
and monitoring heterogenous traffic from a vast number of apps.
Category-wise evaluation:We evaluate our proposed features for
another important practical use-case. Instead of aggregate traffic, a
network administrator may only be interested in identifying traffic
from a specific category. For example, in an enterprise setting, she
may try to enforce a policy where all video traffic is allocated lesser
bandwidth to avoid overburdening critical applications. In this vein,
we divide the entire dataset of apps into 5 categories, namely, video,
audio, browsing, gaming, and messaging. The browsing category
consists of apps used for email, download, sync, etc. apart from
web browsing; the other 4 category names are self-explanatory. We
then attempt to perform inter-category classification (i.e., classify
among the 5 categories), as well as intra-category classification
(i.e., classify among apps belonging to one particular category). The
classification results are presented in Table 4.

We observe that we can achieve 90% accuracy (using only bit-
pattern based features) in classifying heterogenous traffic into cate-
gories (row 1). Classification performance further improves when
traffic from apps within a particular category are classified; mini-
mum accuracy (using RFC) is 93%, which once again is a significant
results considering the scale of classification.
Classification running time: Since the classifier needs to run as
part of a live system, it is also important to evaluate the running
time for per-packet classification. We executed a separate batch
of experiments, where we trained the classifiers with 90% of the
data, and tested with the remaining 10%. This enabled fine-grained
time-keeping, which we achieved using the Python timeitmodule.
These experiments were executed in a Ubuntu 16.04 workstation,
with 64 GB RAM, and a 3.0 GHz Intel Core i5 processor. We ob-
serve that while RFC consumed 14.16 microseconds per packet, the
Decision Tree classifier consumed only 0.84 microsecond. We note
that these time quanta are well within the bounds of the RTT of
packets arriving from a distant content server, which implies that
our classification strategy can be employed in a real-life setting,
such as in a smart-QoS enabled modern home router.

5 DISCUSSION
In this section, we discuss some of the major learnings from and
limitations of this work, as well as the potential impact it may have
in inducing further research in the area.
Real-time implementation: We show in § 4.3 that classification
at per-packet granularity is compliant with the timing requirements
of a live networked system. However, we do not comment on the
time consumed in the training process, when either training fre-
quency is high, or training data volume is extremely large. For
example, network administrators intent on classifying and blocking
malicious apps may need to avail frequent rounds of training, since
new apps crop up everyday on the app store. Optimizations such
as implementing FFT in hardware could be availed to speed up
computations in such scenarios [6].
Attacks around bit-sequence based features: While our use-
cases in this paper revolve around the opportunities bit-sequence
based features could provide network administrators, the flip-side of
the coin is that the same opportunitiesmay be exploited by attackers.
For example, these features could be leveraged to infer user actions

from mobile phone traffic, which could lead to severe breach of
privacy for users [18, 37, 49]. Applications which authenticate users
based on their app activity history [21, 30], may also be fooled if
app activities could be gleaned out using our proposed features.
Protection against obfuscation: Some works have pointed out
the privacy risks involved when statistical analysis of packet-level
features is used to differentiate traffic [32, 51]. These studies, in-
cluding a recent work [13] propose obfuscating such features so
that classifiers may not be able to extract useful information out
of application traffic. The obfuscation is implemented in a proxy,
which fragments incoming packets and regulates arrival rate to
make one class of traffic look like another. Our classification mecha-
nism based on randomness of security implementations, is however,
immune to such packet-level obfuscation.
Tool for side-channel attacks: It follows from the previous dis-
cussion, therefore, that alongwith packet-level and trafficmeta-data
(e.g., direction of traffic) based features [17, 45, 48], bit-sequence
based features can also pose threats via side-channel attacks. It is
important therefore, to further the research agenda in this direction,
and devise methods to either exploit or alleviate such attacks, as
necessary for the application.
Impact of app updates:App updates may include updates to their
encryption implementations as well. While such updates can affect
classification performance of our trained model, as long as there
exist differences in such implementations, it is possible to retrain
the classifier to recover performance.We argue that such differences
will continue to exist due to the non-standard nature of app stores,
and deficiencies in computational capabilities of low-end devices.

6 RELATEDWORK
Classifying traffic from mobile applications has spurred active re-
search recently due to its practical necessity, as well as, the chal-
lenges arising from lack of features suitable for traffic classification.
First, we look at classification strategies which have addressed
generic web traffic. Next, we present studies specific to mobile
traffic, and discuss their advantages and limitations.

6.1 Generic Web Traffic Classification
A large body of work has addressed traffic classification on the
Internet over a number of years. Continuously changing landscapes
in the way data is delivered to the end-users (e.g., content delivery
networks (CDNs), cloud), have prompted researchers to revisit old
techniques, and invent newer approaches more commensurate with
the trends prevalent during the time of their studies.
Deep Packet Inspection (DPI) based Techniques: Several ap-
proaches have been suggested for web traffic classification using
packet-inspection based methods. Finsterbusch et al. compiled a
comprehensive survey of these techniques – however, they note,
likemany others, that DPI based approaches either perform abysmally,
or fail entirely when traffic is encrypted [26].
Statistical Information based Techniques: Most studies which
do not rely on packet-inspection, suggest exploiting side-channel
information, and statistical properties of traffic, which remain un-
affected by encryption. An MIT tech review article highlighted the
importance of statistical tricks in extracting user footprints from
encrypted communications [5]. Some statistical approaches rely on



Table 4 Classification results (precision (P), recall (R), f1-score (F ), accuracy (𝒜)) using only bit-sequence based features for 2 classification tasks: (1) classification
of aggregate traffic into app categories (shown in thefirst row), and (2) classification of category traffic into constituent applications. Best classification performance
is achieved using the Random Forest Classifier (highlighted in green).

Clf. task / Classifier Random Forest Decision Tree K-Nearest Neighbors Naive Bayes M’layer Perceptron (Deep) Logistic Regression Support Vector
Metrics P, R, F ,𝒜 P, R, F ,𝒜 P, R, F ,𝒜 P, R, F ,𝒜 P, R, F ,𝒜 P, R, F ,𝒜 P, R, F ,𝒜

App categories (5) 0.90, 0.90, 0.90, 0.90 0.88, 0.88, 0.88, 0.88 0.77, 0.77, 0.77, 0.77 0.47, 0.46, 0.41, 0.46 0.42, 0.47, 0.42, 0.47 0.38, 0.42, 0.36, 0.42 0.37, 0.40, 0.37, 0.40
Video 0.95, 0.95, 0.95, 0.95 0.95, 0.95, 0.95, 0.95 0.72, 0.72, 0.72, 0.72 0.33, 0.30, 0.27, 0.30 0.27, 0.29, 0.27, 0.29 0.22, 0.19, 0.15, 0.19 0.37, 0.40, 0.37, 0.40
Audio 0.99, 0.99, 0.99, 0.99 0.98, 0.98, 0.98, 0.98 0.91, 0.90, 0.90, 0.90 0.39, 0.35, 0.32, 0.35 0.46, 0.43, 0.42, 0.43 0.41, 0.38, 0.36, 0.38 0.22, 0.20, 0.12, 0.20

Browsing 0.94, 0.93, 0.93, 0.93 0.92, 0.92, 0.92, 0.92 0.68, 0.69, 0.68, 0.69 0.20, 0.19, 0.16, 0.19 0.13, 0.19, 0.13, 0.19 0.16, 0.16, 0.13, 0.16 0.22, 0.21, 0.22, 0.21
Gaming 0.96, 0.96, 0.96, 0.96 0.94, 0.94, 0.94, 0.94 0.61, 0.62, 0.60, 0.62 0.14, 0.15, 0.12, 0.15 0.11, 0.12, 0.10, 0.12 0.13, 0.14, 0.12, 0.14 0.11, 0.10, 0.11, 0.12

Messaging 0.99, 0.99, 0.99, 0.99 0.98, 0.98, 0.98, 0.98 0.91, 0.91, 0.91, 0.91 0.65, 0.52, 0.52, 0.52 0.39, 0.41, 0.35, 0.41 0.48, 0.42, 0.38, 0.42 0.46, 0.41, 0.38, 0.41

carefully constructed rules for classification, while others employ
machine learning – we report these cases separately.

Rule based Approaches: Sun et al. presented a method for sta-
tistical identification of browsed web applications, by studying the
various unique web objects (e.g., images, stylesheets, etc.) fetched
during the launch of a webpage [47]. This approach is clearly out-
dated, since most websites serve dynamic content nowadays, where
fetched objects would continually change, sometimes even within
seconds. Gong et al. proposed using side-channel attacks to de-
termine round-trip times (RTTs), and then clustering traffic with
similar RTTs [29]. A similar approach was adopted by Chen et al.,
where side-channel leaks in terms of packet-size, arrival time, and
stateful interactions between servers and clients of web applications,
were exploited [15]. Piskac et al. suggested protocol detection from
web traffic, again using packet-size and arrival time values [40].
Detection of Domain Generation Algorithm (DGA) based botnets
was proposed using DNS traffic analysis in a recent work by Wang
et al. [50]. Another recent work studied privacy vulnerabilities in a
IoT based smart home system, made possible by traffic analysis [9].

Machine Learning based Approaches: Traffic classification us-
ing supervised learning has been a popular approach – the major
task in such an approach is to identify discriminative features from
encrypted network traffic. Some of the earlier works can be found in
a survey by Nguyen et al. in [39], and references therein. Jesudasan
et al. identified generic features (based on packet-size and arrival
time) across different versions of Skype that could be used to clas-
sify Skype flows [33]. Bujlow et al. proposed a learning model with
features based on individual and aggregate payload sizes, along
with IP and port no. based rules [11]. Recently, Shi et al. have also
shown that encrypted, and even tunneled (using a Virtual Private
Network (VPN)) video sources, can be identified by analyzing sim-
ple features derived from packet-sizes and temporal patterns of
packet arrival [10, 43]. As an application of network traffic analysis,
a recent work by Das et al. proposed privacy-aware localization
using a supervised learning approach [22].

While some statistical observations for generic web traffic may
still hold true in case of mobile traffic, there are differences due
to buffer and bandwidth constraints on a mobile device, and how
service providers tend to optimize traffic for mobile accordingly.
We leverage upon the common statistical properties by identifying
those (with careful analysis of mobile app traffic), and address the
differences by defining novel features that can aid in classification.

6.2 Mobile Traffic Classification
Studies on mobile traffic classification can be broadly divided based
on whether those targeted unencrypted or encrypted traffic.

Unencrypted Traffic: Approaches that assume unencrypted traf-
fic rely on inspection of fields in the HTTP header. Hur et al. ex-
ploited the user agent field, and other common strings found in the
HTTP headers of packets generated by the same application [31].
Dai et al. showed that by executing different apps in an emulator
and gathering corresponding network traces, it is possible to build
signatures for identifying specific traffic sources [20]. Yao et al. re-
duced the overhead of building signatures where they used context
of signatures to improve identification accuracy and scalability [54].
Automatic generation of classifiers for traffic identification has been
presented in [16, 53]. AppPrint also uses extensive traffic observa-
tions to build signatures based on header fields [38]. Since these
works rely on information that must be read from the packets, they
are ill-suited for classifying encrypted traffic.
Encrypted Traffic: Stöber et al. proposed classification of back-
ground traffic generated from a smartphone, by studying patterns in
packet level features (e.g., packet-size and packet arrival instances),
and burst level features (e.g., mean, median, etc. of packet level
features) [46]. Alan et al. limited their study to using only launch
time traffic for building supervised classifiers for Android app iden-
tification [7]. Mobile messaging apps were studied by Fu et al., and
a machine learning based solution was provided using packet-level
features [27]. Another work defined an end-to-end system to en-
able fine-grained bandwidth provisioning for video app traffic in
absence of background traffic [42].

7 CONCLUSION
Mobile traffic classification is an important task for network ad-
ministrators in order to achieve policy enforcement and service
provisioning. However, due to lack of unique signatures and espe-
cially due to encryption, mobile app traffic classification is rendered
difficult. While statistical analysis based on packet-size and arrival
time of packets has shown a lot of promise, existing techniques
do not scale well to traffic from a large number of applications. In
this paper, we worked on the notion of exploiting encryption itself
(more specifically, TLS implementations) to classify mobile app traf-
fic at a large scale. We proposed a set of novel bit-sequence based
features, which can classify data encrypted with different ciphers
and key-sizes, with 89% and 83% accuracy (best case), respectively.
We show that using these features in conjunction with existing
packet-level based features, it is possible to classify traffic from 175
Android applications with a best case accuracy of 95% (as opposed
to a baseline accuracy of 62%). The features also perform well in
achieving inter-category (90% accuracy) and intra-category traffic
classification (min. accuracy of 93%), using only bit-sequence based
features.



REFERENCES
[1] [n. d.]. Cisco Visual Networking Index White Paper. https://www.cisco.com/

c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/
mobile-white-paper-c11-520862.html

[2] [n. d.]. Github Library: r4nd0m. https://github.com/StuartGordonReid/r4nd0m
[3] [n. d.]. Package Crypto: Python Cryptography Toolkit. https://www.dlitz.net/

software/pycrypto/api/current/
[4] [n. d.]. Random Bit Generation: Guide to the Statistical Tests. https://csrc.

nist.gov/Projects/Random-Bit-Generation/Documentation-and-Software/
Guide-to-the-Statistical-Tests

[5] [n. d.]. Statistical Tricks Extract Sensitive Data from Encrypted Communications.
[6] Berkin Akin, Franz Franchetti, and James C Hoe. 2014. Understanding the design

space of dram-optimized hardware FFT accelerators. In Application-specific Sys-
tems, Architectures and Processors (ASAP), 2014 IEEE 25th International Conference
on. IEEE, 248–255.

[7] Hasan Faik Alan and Jasleen Kaur. 2016. Can Android Applications Be Identified
Using Only TCP/IP Headers of Their Launch Time Traffic?. In Proceedings of the
9th ACM Conference on Security & Privacy in Wireless and Mobile Networks. ACM,
61–66.

[8] Mohammed M Alani. 2010. Testing randomness in ciphertext of block-ciphers
using DieHard tests. Int. J. Comput. Sci. Netw. Secur 10, 4 (2010), 53–57.

[9] Noah Apthorpe, Dillon Reisman, and Nick Feamster. 2017. A Smart Home
is No Castle: Privacy Vulnerabilities of Encrypted IoT Traffic. arXiv preprint
arXiv:1705.06805 (2017).

[10] Subir Biswas and Yan Shi. 2016. Protocol independent identification of encrypted
video traffic sources using traffic analysis. In Communications (ICC), 2016 IEEE
International Conference on. IEEE, 1–6.

[11] Tomasz Bujlow, Tahir Riaz, and Jens Myrup Pedersen. 2012. A method for clas-
sification of network traffic based on C5. 0 Machine Learning Algorithm. In
Computing, Networking and Communications (ICNC), 2012 International Confer-
ence on. IEEE, 237–241.

[12] Arthur Callado, Carlos Kamienski, Géza Szabó, Balázs Péter Gerö, Judith Kel-
ner, Stênio Fernandes, and Djamel Sadok. 2009. A survey on internet traffic
identification. Communications Surveys & Tutorials, IEEE 11, 3 (2009), 37–52.

[13] Louma Chaddad, Ali Chehab, Imad H Elhajj, and Ayman Kayssi. 2018. App
traffic mutation: Toward defending against mobile statistical traffic analysis. In
IEEE INFOCOM 2018-IEEE Conference on Computer Communications Workshops
(INFOCOM WKSHPS). IEEE.

[14] Nitesh V Chawla, Kevin W Bowyer, Lawrence O Hall, and W Philip Kegelmeyer.
2002. SMOTE: synthetic minority over-sampling technique. Journal of artificial
intelligence research 16 (2002), 321–357.

[15] Shuo Chen, Rui Wang, XiaoFeng Wang, and Kehuan Zhang. 2010. Side-channel
leaks in web applications: A reality today, a challenge tomorrow. In Security and
Privacy (SP), 2010 IEEE Symposium on. IEEE, 191–206.

[16] Yeongrak Choi, Jae Yoon Chung, Byungchul Park, and James Won-Ki Hong. 2012.
Automated classifier generation for application-level mobile traffic identification.
In Network Operations and Management Symposium (NOMS), 2012 IEEE. 1075–
1081.

[17] Mauro Conti, Qian Qian Li, Alberto Maragno, and Riccardo Spolaor. 2018. The
Dark Side (-Channel) of Mobile Devices: A Survey on Network Traffic Analysis.
IEEE Communications Surveys & Tutorials (2018).

[18] Mauro Conti, Luigi V Mancini, Riccardo Spolaor, and Nino Vincenzo Verde. 2015.
Can’t you hear me knocking: Identification of user actions on android apps via
traffic analysis. In Proceedings of the 5th ACM Conference on Data and Application
Security and Privacy. ACM, 297–304.

[19] RR Coveyou and Robert DMacPherson. 1967. Fourier analysis of uniform random
number generators. Journal of the ACM (JACM) 14, 1 (1967), 100–119.

[20] Shuaifu Dai, Alok Tongaonkar, Xiaoyin Wang, Antonio Nucci, and Dong Song.
2013. Networkprofiler: Towards automatic fingerprinting of android apps. In
INFOCOM, 2013 Proceedings IEEE. IEEE, 809–817.

[21] Sourav Kumar Dandapat, Swadhin Pradhan, Bivas Mitra, Romit Roy Choudhury,
and Niloy Ganguly. 2015. Activpass: your daily activity is your password. In
Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing
Systems. ACM, 2325–2334.

[22] Aveek K Das, Parth H Pathak, Chen-Nee Chuah, and Prasant Mohapatra. 2017.
Privacy-aware contextual localization using network traffic analysis. Computer
Networks 118 (2017), 24–36.

[23] Ali Doganaksoy, Baris Ege, Onur Koçak, and Fatih Sulak. 2010. Cryptographic
Randomness Testing of Block Ciphers and Hash Functions. IACR Cryptology
ePrint Archive 2010 (2010), 564.

[24] Hossein Falaki, Dimitrios Lymberopoulos, Ratul Mahajan, Srikanth Kandula, and
Deborah Estrin. 2010. A first look at traffic on smartphones. In Proceedings of the
10th ACM SIGCOMM conference on Internet measurement. ACM, 281–287.

[25] Horst Feistel. 1973. Cryptography and Computer Privacy. Scientific American
228, 5 (1973), 15–23.

[26] Michael Finsterbusch, Chris Richter, Eduardo Rocha, Jean-Alexander Muller, and
Klaus Hanssgen. 2014. A survey of payload-based traffic classification approaches.

Communications Surveys & Tutorials, IEEE 16, 2 (2014), 1135–1156.
[27] Yanjie Fu, Hui Xiong, Xinjiang Lu, Jin Yang, and Can Chen. 2016. Service usage

classification with encrypted internet traffic in mobile messaging apps. IEEE
Transactions on Mobile Computing 15, 11 (2016), 2851–2864.

[28] Aaron Gember, Ashok Anand, and Aditya Akella. 2011. A comparative study of
handheld and non-handheld traffic in campus Wi-Fi networks. In Passive and
Active Measurement. Springer, 173–183.

[29] Xun Gong, Negar Kiyavash, and Nikita Borisov. 2010. Fingerprinting websites us-
ing remote traffic analysis. In Proceedings of the 17th ACM conference on Computer
and communications security. ACM, 684–686.

[30] Alina Hang, Alexander De Luca, and Heinrich Hussmann. 2015. I know what you
did last week! do you?: Dynamic security questions for fallback authentication
on smartphones. In Proceedings of the 33rd Annual ACM Conference on Human
Factors in Computing Systems. ACM, 1383–1392.

[31] Min Hur and Myung-Sup Kim. 2012. Towards smart phone traffic classification.
In Network Operations and Management Symposium (APNOMS), 2012 14th Asia-
Pacific. IEEE, 1–4.

[32] Alfonso Iacovazzi and Andrea Baiocchi. 2014. Internet traffic privacy enhance-
ment with masking: Optimization and tradeoffs. IEEE Transactions on Parallel
and Distributed Systems 25, 2 (2014), 353–362.

[33] Rozanna Nadeera Jesudasan, Philip Branch, and Jason But. 2010. Generic at-
tributes for Skype identification using machine learning. Centre for Advanced
Internet Architectures, Swinburne University of Technology, Melbourne, Australia,
Tech. Rep. A 100820 (2010), 20.

[34] John B. Kam and George I. Davida. 1979. Structured Design of Substitution-
Permutation Encryption Networks. IEEE Trans. Comput. 10 (1979), 747–753.

[35] Vasilios Katos. 2005. A randomness test for block ciphers. Applied mathematics
and computation 162, 1 (2005), 29–35.

[36] Donald E Knuth. 1981. The Art of Programming, vol. 2, Semi-Numerical Algorithms.
Addison Wesley, Reading, MA.

[37] Conti Mauro, Luigi Vincenzo Mancini, Riccardo Spolaor, and Nino Vincenzo
Verde. 2016. Analyzing android encrypted network traffic to identify user actions.
IEEE Transactions on Information Forensics and Security 11, 1 (2016), 114–125.

[38] Stanislav Miskovic, Gene Moo Lee, Yong Liao, and Mario Baldi. 2015. App-
Print: Automatic Fingerprinting of Mobile Applications in Network Traffic. In
Proceedings of Passive and Active Measurement Conference. 57–69.

[39] Thuy TT Nguyen and Grenville Armitage. 2008. A survey of techniques for
internet traffic classification using machine learning. Communications Surveys &
Tutorials, IEEE 10, 4 (2008), 56–76.

[40] Pavel Piskac and Jiri Novotny. 2011. Using of time characteristics in data flow
for traffic classification. Managing the Dynamics of Networks and Services (2011),
173–176.

[41] Abbas Razaghpanah, Arian Akhavan Niaki, Narseo Vallina-Rodriguez, Srikanth
Sundaresan, Johanna Amann, and Phillipa Gill. 2017. Studying TLS usage in
Android apps. In Proceedings of the 13th International Conference on emerging
Networking EXperiments and Technologies. ACM, 350–362.

[42] Satadal Sengupta, Vinay Kumar Yadav, Yash Saraf, Harshit Gupta, Niloy Ganguly,
Sandip Chakraborty, and Pradipta De. 2017. MoViDiff: Enabling service differ-
entiation for mobile video apps. In Integrated Network and Service Management
(IM), 2017 IFIP/IEEE Symposium on. IEEE, 537–543.

[43] Yan Shi and Subir Biswas. 2015. Characterization of Traffic Analysis based
video stream source identification. In Advanced Networks and Telecommuncations
Systems (ANTS), 2015 IEEE International Conference on. IEEE, 1–6.

[44] Juan Soto and Lawrence Bassham. 2000. Randomness testing of the advanced
encryption standard finalist candidates. Technical Report. BOOZ-ALLEN AND
HAMILTON INC MCLEAN VA.

[45] Raphael Spreitzer, Veelasha Moonsamy, Thomas Korak, and Stefan Mangard.
2018. Systematic classification of side-channel attacks: a case study for mobile
devices. (2018).

[46] Tim Stöber, Mario Frank, Jens Schmitt, and Ivan Martinovic. 2013. Who do
you sync you are?: smartphone fingerprinting via application behaviour. In
Proceedings of the sixth ACM conference on Security and privacy in wireless and
mobile networks. ACM, 7–12.

[47] Qixiang Sun, Daniel R Simon, Yi-Min Wang, Wilf Russell, Venkata N Padman-
abhan, and Lili Qiu. 2002. Statistical identification of encrypted web browsing
traffic. In Security and Privacy, 2002. Proceedings. 2002 IEEE Symposium on. IEEE,
19–30.

[48] Vincent F Taylor, Riccardo Spolaor, Mauro Conti, and Ivan Martinovic. 2018.
Robust smartphone app identification via encrypted network traffic analysis.
IEEE Transactions on Information Forensics and Security 13, 1 (2018), 63–78.

[49] Qinglong Wang, Amir Yahyavi, Bettina Kemme, and Wenbo He. 2015. I know
what you did on your smartphone: Inferring app usage over encrypted data
traffic. In Communications and Network Security (CNS), 2015 IEEE Conference on.
IEEE, 433–441.

[50] Tzy-Shiah Wang, Hui-Tang Lin, Wei-Tsung Cheng, and Chang-Yu Chen. 2017.
DBod: Clustering and detecting DGA-based botnets using DNS traffic analysis.
Computers & Security 64 (2017), 1–15.

https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/mobile-white-paper-c11-520862.html
https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/mobile-white-paper-c11-520862.html
https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/mobile-white-paper-c11-520862.html
https://github.com/StuartGordonReid/r4nd0m
https://www.dlitz.net/software/pycrypto/api/current/
https://www.dlitz.net/software/pycrypto/api/current/
https://csrc.nist.gov/Projects/Random-Bit-Generation/Documentation-and-Software/Guide-to-the-Statistical-Tests
https://csrc.nist.gov/Projects/Random-Bit-Generation/Documentation-and-Software/Guide-to-the-Statistical-Tests
https://csrc.nist.gov/Projects/Random-Bit-Generation/Documentation-and-Software/Guide-to-the-Statistical-Tests


[51] Charles VWright, Scott E Coull, and Fabian Monrose. 2009. Traffic Morphing: An
Efficient Defense Against Statistical Traffic Analysis.. In NDSS, Vol. 9. Citeseer.

[52] Yue Wu, Joseph P Noonan, and Sos Agaian. 2011. NPCR and UACI randomness
tests for image encryption. Cyber journals: multidisciplinary journals in science
and technology, Journal of Selected Areas in Telecommunications (JSAT) 1, 2 (2011),
31–38.

[53] Qiang Xu, Yong Liao, Stanislav Miskovic, Mario Baldi, Z. Morley Mao, Antonio
Nucci, and Thomas Andrews. 2015. Automatic Generation of Mobile App Signa-
tures from Traffic Observations. In Proceedings of IEEE INFOCOM 2015 (INFOCOM

’15).
[54] Hongyi Yao, Gyan Ranjan, Alok Tongaonkar, Yong Liao, and Zhuoqing Morley

Mao. 2015. SAMPLES: Self Adaptive Mining of Persistent LExical Snippets
for Classifying Mobile Application Traffic. In Proceedings of the 21st Annual
International Conference on Mobile Computing and Networking (MobiCom ’15).
439–451.


	Abstract
	1 Introduction
	2 Bit-Sequence Based Features
	2.1 Background
	2.2 Randomness Analysis of Ciphers
	2.3 Defining Bit-Sequence Based Features
	2.4 Cipher and Key-Size Classification
	2.5 Bit-Sequence Features: Detailed Analysis

	3 Experimental Setup and Dataset
	3.1 Experimental Setup
	3.2 Android Application Dataset

	4 Evaluation
	4.1 Baseline (Packet-Level) Features
	4.2 Classification Methodology
	4.3 Classification Results

	5 Discussion
	6 Related Work
	6.1 Generic Web Traffic Classification
	6.2 Mobile Traffic Classification

	7 Conclusion
	References

