
Proceedings of NAACL-HLT 2019, pages 2218–2222
Minneapolis, Minnesota, June 2 - June 7, 2019. c©2019 Association for Computational Linguistics

2218

AttentiveChecker: A Bi-Directional Attention Flow Mechanism for Fact
Verification

T.Y.S.S.Santosh, Vishal G, Avirup Saha, Niloy Ganguly
Department of Computer Science and Engineering,

Indian Institute of Technology Kharagpur,
India

{santoshtyss, arsrivish2, saha.avirup}@gmail.com ,
niloy@cse.iitkgp.ac.in

Abstract
The recently released FEVER dataset pro-
vided benchmark results on a fact-checking
task in which given a factual claim, the sys-
tem must extract textual evidence (sets of sen-
tences from Wikipedia pages) that support or
refute the claim. In this paper, we present
a completely task-agnostic pipelined system,
AttentiveChecker, consisting of three homoge-
neous Bi-Directional Attention Flow (BIDAF)
networks, which are multi-layer hierarchical
networks that represent the context at different
levels of granularity. We are the first to ap-
ply to this task a bi-directional attention flow
mechanism to obtain a query-aware context
representation without early summarization.
AttentiveChecker can be used to perform doc-
ument retrieval, sentence selection, and claim
verification. Experiments on the FEVER
dataset indicate that AttentiveChecker is able
to achieve the state-of-the-art results on the
FEVER test set.

1 Introduction

The rising influence of fake news poses a clear
threat to ethical journalism and the future of
democracy. In order to tackle the sheer volume
of fake news produced, robust automatic tech-
niques to counter it need to be developed. To that
end, in order to facilitate researchers to develop
algorithms, a number of fact checking datasets
have been released in the recent past (Vlachos and
Riedel, 2014), (Wang, 2017), (Ferreira and Vla-
chos, 2016), (Pérez-Rosas et al., 2017), the 2017
Fake News Challenge (Pomerleau and Rao, 2017)
dataset, the dataset released against Triple Scor-
ing Task at the WSDM Cup 2017 (Heindorf et al.,
2017) etc.

However, none of these datasets provide manual
annotation for sentence or phrase-level evidence.
In this work, we experiment on the Fact Extrac-
tion and VERification (FEVER) dataset (Thorne

et al., 2018a), which is one of the first which
provides sentence-level annotations. (An Arabic
corpus (Baly et al., 2018) has been recently re-
leased.) A shared task corresponding to the dataset
was floated that required verification of an input
claim with potential evidence in a large database
of about 5 million Wikipedia documents, and also
provided a standardized benchmark setting which
enabled easy and fair comparison. Table 1 lists the
dataset splits and sizes.

Split Supports Refutes
NotEnough
Info

train 80,035 29,775 35,639
dev 3,333 3,333 3,333
test 3,333 3,333 3,333
reserved 6,666 6,666 6,666

Table 1: Statistics of claims in FEVER

Several attempts have been made to tackle the
task defined by FEVER, the most notable ones
being (Nie et al., 2018; Yoneda et al., 2018;
Hanselowski et al., 2018) which secured the 1st,
2nd and 3rd place on this shared task respectively
(Thorne et al., 2018b). Diverse methods were ap-
plied, mostly using task-specific features which al-
lowed them to beat the baseline given by (Thorne
et al., 2018a). In this paper, we propose a com-
pletely task-agnostic system, AttentiveChecker to
tackle the FEVER task.

AttentiveChecker is a pipelined system con-
sisting of three identical Bi-Directional Attention
Flow (BIDAF) networks, which are multi-layer
hierarchical networks that represent the context
at different levels of granularity. We use a bi-
directional attention flow mechanism where we al-
low the context vector at each step to flow to the
next layers in the BIDAF model. This helps to ob-
tain a query-aware context representation without



2219

early summarization. This is different from previ-
ously used attention layers employed in (Sordoni
et al., 2016), (Shen et al., 2017) where the query
and context are summarized into a single fea-
ture vector. AttentiveChecker achieves a FEVER
Score of 66.72 on the test set, which beats the 1st
ranked system (Nie et al., 2018) by more than 2
points.

2 Task Definition

The task can be described as verifying a claim us-
ing evidence from Wikipedia. The system must
label the claim as SUPPORTED or REFUTED
based on the evidence from Wikipedia or NotE-
noughInfo if there is not sufficient evidence to ei-
ther support or refute it. The system must also
extract textual evidence (a set of sentences from
Wikipedia pages) that support or refute the claim.
A prediction is said to be correct only if both
(a). the label is correct and (b). the predicted
evidence set (containing at most five sentences)
covers the annotated evidence set. The accuracy
in percentage of such predictions is called the
FEVER score. The overall task can be compart-
mentalized into three distinct subtasks: (i). identi-
fying relevant documents from Wikipedia (Docu-
ment Retrieval), (ii). selecting sentences forming
the evidence from the documents (Sentence Selec-
tion) and (iii). classifying the claim w.r.t. collected
evidence (Claim Verification).

2.1 Document Retrieval

For this sub-task, we provide the first sentence of
the document and the claim as the two input se-
quences to the BIDAF model which outputs the
probability of selecting the current document as
evidence. As the number of documents is huge,
we first reduce the search space by performing
keyword match with titles of Wikipedia pages i.e.
the document is selected if there is an exact match
between the title and a span of text in the input
claim. We use our BIDAF model to rank the cho-
sen documents in order of relevance. The top-k
documents based on their score are shortlisted for
the next level.

2.2 Sentence Selection

For this sub-task, we provide (i). each sentence
of the documents in the evidence set and (ii). the
claim as the two input sequences to the BIDAF
model which outputs the probability of select-

ing the current sentence as an evidential sentence.
Since the search space is already reduced by Doc-
ument Retrieval, we can directly traverse all the
sentences and compare them with the claim using
the BIDAF model. We rank all the sentences in
every document from the evidence set and choose
the top-k sentences.

2.3 Claim Verification

For this sub-task, we provide (i) the claim, and
(ii) all evidential sentences together with the cor-
responding document names (to address corefer-
ence issues) as the two input sequences to our
BIDAF model. The BIDAF model outputs the
scores for three labels, namely SUPPORTED, RE-
FUTED and NotEnoughInfo. Then the claim is la-
belled as the one with the highest score. Note that
in order to have fair comparison across methods,
the FEVER challenge limits the sentences in the
evidence to a maximum of five. Also in the test
set of FEVER data, the number of sentences pro-
viding evidence is at most five.

3 The BIDAF Model

In this section, we will describe the architecture of
the Bi-Directional Attention Flow (BIDAF) model
which constitutes the basic building block of At-
tentiveChecker. In each stage of the pipeline, the
BIDAF model takes two input sequences and out-
puts labels based on the particular sub-task being
performed. Let X and Y denote two input word
sequences of length m and n respectively. The
BIDAF model consists of four layers: (i). the em-
bedding layer takes raw text sequences X and Y
as input and encodes them into suitable vector se-
quences Â and B̂, (ii). the attention layer takes
Â and B̂ as input, computes the attention scores
of each sequence w.r.t. the other, and outputs two
attended sequences C and D, (iii). the modeling
layer takes C and D as input and outputs two fixed
size vectors Ĉ and D̂ which capture the semantic
similarity between the two sequences, and (iv). the
output layer takes Ĉ and D̂ as input and provides
the scores for the output labels. The layers are de-
scribed below in detail.
Embedding Layer: In the embedding layer the
input sequences are encoded at three levels of
granularity viz. character, word and context. We
obtain the character-level embedding of each word
using Convolutional Neural Networks (CNN) as
described in (Kim, 2014). For word level en-



2220

coding, we use pre-trained word vectors, to ob-
tain the word embedding of each word in the
input sequences. Corresponding to each word,
we output a vector concatenating the word level
and character level encoding. Let X′ denote the
sequence of concatenated vectors for the input
word sequence X. We use a Bi-directional Long
Short-Term Memory Network (BiLSTM) on X′,
to model the temporal interactions between words
within each sequence and thus obtain the contex-
tual embedding :

Â = BiLSTM(X′) ∈ Rd0×m

where Â denotes the sequence of all output vec-
tors of the BiLSTM. Similarly we get a sequence
B̂ ∈ Rd0×n for the sequence Y. Note that the
character-level embeddings obviate the need for
task-specific embeddings or features (e.g. those
used by (Nie et al., 2018) for claim verification),
as character-level embeddings can encode a far
more generalized set like numeric sequences,
misspellings, emoticons or other languages.
Attention Layer: Intuitively, the attention layer
give higher importance or weight to those parts of
a sequence which overlap with parts of the other
sequence. We compute attention for the two se-
quences Â and B̂ with respect to each other. Here
we compute attention in both directions: from
first sequence to second sequence and vice versa.
To achieve this we make use of a similarity matrix
S ∈ Rm×n where Sij indicates the similarity (or
attention score) between the ith word in the first
sequence and the jth word in the second sequence
and is computed by applying a linear mapping
after a single layer perceptron stage on the ith

column vector of the first sequence and the jth

column vector of the second sequence (Hermann
et al., 2015).

Sij = W1
ᵀ. tanh(W2.[Âi : B̂j ] + b) ∈ R

where W1, W2 indicate trainable weight matri-
ces, b indicates trainable bias matrix, Âi, B̂j indi-
cate ith column vector of Â and jth column vector
of B̂ respectively. : indicates vector concatena-
tion. The context vector for the ith word of the
sequence Â w.r.t. the sequence B̂ is given by

Ãi =
∑
j

αijB̂j ∈ Rd0

where αij = softmaxj(Sij) =
exp(Sij)∑n
j=1 exp(Sij)

.

Finally we obtain the attention vector sequence
for the sequence X as C ∈ Rd1×m by adding
ReLU after applying single layer perceptron to the
vector obtained by concatenating the ith column
vector of contextual embedding (Â) and ith col-
umn vector of context vectors (Ã):

Ci = max(0,W.[Âi : Ãi] + b) ∈ Rd1

where Ci, W, b indicate ith column vector of
C corresponding to the ith word of X, trainable
weight matrix, trainable bias matrix, respectively;
: indicates concatenation of vectors. Each column
vector of C can be considered as the Y-aware rep-
resentation of each word in the sequence X. The
above computation is repeated to obtain the con-
text vector B̃ and subsequently the attention vec-
tor sequence D ∈ Rd1×n for Y.
Modeling Layer: We apply bi-directional LSTM
to the obtained sequence C for X to obtain a new
sequence C̃

C̃ = BiLSTM(C) ∈ Rd2×m

and then take the concatenation of the fi-
nal forward and backward outputs of the BiL-
STM to obtain a fixed size vector representation

Ĉ =
←−
C̃1 :

−→
C̃m ∈ R2d2 which captures the se-

mantic interaction between the two sequences be-
cause of the attention applied in the previous layer.
This is different from the embedding layer, which
captures the interaction among words of one se-
quence independent of the other sequence. Simi-
larly we get a sequence D̃ ∈ Rd2×n and a vector

D̂ =
←−
D̃1 :

−→
D̃n ∈ R2d2 for Y.

Output Layer: To quantify the semantic similar-
ity between the two sequences, we apply the in-
verse exponential of the Manhattan distance (M)
as suggested in (Mueller and Thyagarajan, 2016)
to the representations obtained from the modeling
layer.

O =M(Ĉ, D̂) = exp(−||Ĉ − D̂||1)

Then O is fed to a single layer perceptron, to ob-
tain the required sub-task specific output. For doc-
ument retrieval and sentence selection, we have
one output neuron in the single layer perceptron
which indicates the probability of selecting the
current document or sentence as evidence, while
for claim verification, we have three output neu-
rons indicating the scores for three labels, namely
SUPPORTED, REFUTED and NotEnoughInfo.



2221

We note that although the output layer must nec-
essarily be sub-task specific (since the objective of
each subtask is different), however the difference
in architecture is only in the number of output neu-
rons.

4 Results

In this section we first present the results for the
full system and then the ablation results for each
stage of the pipeline.
Full Pipelined system: We evaluated our com-
plete system with all components on the test set by
setting k=5 for both document retrieval and sen-
tence selection. We found that the accuracy val-
ues obtained by AttentiveChecker (a). with the re-
quirement to provide correct sentences as evidence
(FEVER Score) and (b). without the requirement
to provide correct sentences as evidence (Label
Accuracy) for the SUPPORTED/REFUTED la-
bels are 66.72 and 69.98 respectively. Table 4
compares performance of AttentiveChecker with
two baselines (i). the FEVER baseline given by
(Thorne et al., 2018a) and (ii). NSMN (Nie et al.,
2018). We observe that AttentiveChecker per-
forms better than the baselines on the overall task.

Task Metric
FEVER
Base-
line

NSMN
Our
Sys-
tem

Full Sys-
tem

Label
Acc.

50.91 68.16 69.98

Full Sys-
tem

FEVER
Score

31.87 64.23 66.72

Table 2: Performance of AttentiveChecker on the test
set vis-a-vis the baseline systems for k=5.

NSMN (Nie et al., 2018) is a homogeneous
BiLSTM-based pipeline but still uses task-specific
features as input for claim verification. The
key difference in AttentiveChecker compared to
NSMN is the attention layer which we claim to
be a better way of matching corresponding parts
of the two sequences than the sequence alignment
which is done in the analogous ‘alignment layer’
of NSMN. This attention layer is the major reason
behind our improvement over NSMN and justifies
the name of our system.

We now present the ablation results for the indi-
vidual pipeline stages.
Document Retrieval & Sentence Selection: Ta-
ble 4 shows the performance of our document

retrieval and sentence selection systems on the
dev set for different values of k (no. of docu-
ments/sentences retrieved). We report the Oracle
Accuracy which is the upper bound of the FEVER
score assuming perfect downstream stages.

k
Oracle Acc. (Docu-
ment Retrieval)

Oracle Acc.
(Sentence
Selection)

3 93.30 82.37
5 94.05 88.23
7 94.15 88.24

Table 3: Performance of the retrieval systems on the
dev set for top-k retrieval using k = 3, k = 5, and k =7

Claim Verification: To understand how well At-
tentiveChecker performs in this sub-task, we per-
formed an oracle evaluation on the dev set by pro-
viding a gold standard evidence set and achieved
an accuracy of 90.63 (this has to be done with
k = 5 as per requirement of the shared task).
The ablation results are summarized in Table 4
for k=5 and compared with the baselines. We
observe that AttentiveChecker performs better in
most sub-tasks (except sentence selection where it
falls marginally short) compared to the baselines.

Task Metric
FEVER
Base-
line

NSMN
Our
Sys-
tem

Doc. Re-
trieval

Oracle
Acc.

70.20 92.42 94.05

Sent. Se-
lection

Oracle
Acc.

62.81 91.19∗ 88.23

Claim
Verif.

Oracle
Acc.

88.00 N/A 90.63

Table 4: Ablation results of pipeline stages on the dev
set vis-a-vis the baseline systems for k=5.
∗With Annealed Sampling. Score without it is 86.65.

5 Conclusion

We developed a homogeneous BIDAF model for
all three FEVER subtasks achieving the state-of-
the-art on the overall task. Our system is com-
pletely task-agnostic and can therefore be trans-
ferred to other similar tasks (e.g. exaggeration de-
tection) if need be. For the first time in this task,
we have used a query-aware bi-directional atten-
tion model that avoids early summarization. Al-
though the improvement in the FEVER Score ap-



2222

pears modest (2 points), it is still significant con-
sidering the hardness of the problem.

References
Ramy Baly, Mitra Mohtarami, James Glass, Lluı́s

Màrquez, Alessandro Moschitti, and Preslav Nakov.
2018. Integrating stance detection and fact
checking in a unified corpus. arXiv preprint
arXiv:1804.08012.

William Ferreira and Andreas Vlachos. 2016. Emer-
gent: a novel data-set for stance classification. In
Proceedings of the 2016 conference of the North
American chapter of the association for computa-
tional linguistics: Human language technologies,
pages 1163–1168.

Andreas Hanselowski, Hao Zhang, Zile Li, Daniil
Sorokin, Benjamin Schiller, Claudia Schulz, and
Iryna Gurevych. 2018. Ukp-athene: Multi-sentence
textual entailment for claim verification. arXiv
preprint arXiv:1809.01479.

Stefan Heindorf, Martin Potthast, Hannah Bast, Björn
Buchhold, and Elmar Haussmann. 2017. Wsdm cup
2017: Vandalism detection and triple scoring. In
Proceedings of the Tenth ACM International Con-
ference on Web Search and Data Mining, pages 827–
828. ACM.

Karl Moritz Hermann, Tomas Kocisky, Edward
Grefenstette, Lasse Espeholt, Will Kay, Mustafa Su-
leyman, and Phil Blunsom. 2015. Teaching ma-
chines to read and comprehend. In Advances in Neu-
ral Information Processing Systems, pages 1693–
1701.

Yoon Kim. 2014. Convolutional neural net-
works for sentence classification. arXiv preprint
arXiv:1408.5882.

Jonas Mueller and Aditya Thyagarajan. 2016. Siamese
recurrent architectures for learning sentence similar-
ity. In AAAI, volume 16, pages 2786–2792.

Yixin Nie, Haonan Chen, and Mohit Bansal. 2018.
Combining fact extraction and verification with neu-
ral semantic matching networks. arXiv preprint
arXiv:1811.07039.

Verónica Pérez-Rosas, Bennett Kleinberg, Alexan-
dra Lefevre, and Rada Mihalcea. 2017. Auto-
matic detection of fake news. arXiv preprint
arXiv:1708.07104.

Dean Pomerleau and Delip Rao. 2017. Fake news chal-
lenge.

Yelong Shen, Po-Sen Huang, Jianfeng Gao, and
Weizhu Chen. 2017. Reasonet: Learning to stop
reading in machine comprehension. In Proceedings
of the 23rd ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, pages
1047–1055. ACM.

Alessandro Sordoni, Philip Bachman, Adam Trischler,
and Yoshua Bengio. 2016. Iterative alternating neu-
ral attention for machine reading. arXiv preprint
arXiv:1606.02245.

James Thorne, Andreas Vlachos, Christos
Christodoulopoulos, and Arpit Mittal. 2018a.
FEVER: a large-scale dataset for fact extraction and
verification. In NAACL-HLT.

James Thorne, Andreas Vlachos, Oana Cocarascu,
Christos Christodoulopoulos, and Arpit Mittal.
2018b. The fact extraction and verification (fever)
shared task. arXiv preprint arXiv:1811.10971.

Andreas Vlachos and Sebastian Riedel. 2014. Fact
checking: Task definition and dataset construction.
In Proceedings of the ACL 2014 Workshop on Lan-
guage Technologies and Computational Social Sci-
ence, pages 18–22.

William Yang Wang. 2017. ” liar, liar pants on fire”:
A new benchmark dataset for fake news detection.
arXiv preprint arXiv:1705.00648.

Takuma Yoneda, Jeff Mitchell, Johannes Welbl, Pon-
tus Stenetorp, and Sebastian Riedel. 2018. Ucl ma-
chine reading group: Four factor framework for fact
finding (hexaf). In Proceedings of the First Work-
shop on Fact Extraction and VERification (FEVER),
pages 97–102.


