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Abstract—A large population of users gets affected by sudden
slowdown or shutdown of an enterprise application. System
administrators and analysts spend considerable amount of time
dealing with functional and performance bugs. These problems
are particularly hard to detect and diagnose in most computer
systems, since there is a huge amount of system generated
supportability data (counters, logs etc.) that need to be analyzed.
Most often, there isn’t a very clear or obvious root cause. Timely
identification of significant change in application behavior is very
important to prevent negative impact on the service. In this paper,
we present ADELE, an empirical, data-driven methodology for
early detection of anomalies in data storage systems. The key
feature of our solution is diligent selection of features from system
logs and development of effective machine learning techniques
for anomaly prediction. ADELE learns from system’s own history
to establish the baseline of normal behavior and gives accurate
indications of the time period when something is amiss for a
system. Validation on more than 4800 actual support cases shows
∼ 83% true positive rate and ∼ 12% false positive rate in
identifying periods when the machine is not performing normally.
We also establish the existence of problem “signatures” which
help map customer problems to already seen issues in the field.
ADELE’s capability to predict early paves way for online failure
prediction for customer systems.

Index Terms—System Log; Anomaly Detection

I. INTRODUCTION

Reliable and fast support service in times of failure is a
prerequisite for an efficient storage facility. Enterprise storage
systems are typically used for mission-critical business ap-
plications. Customers consistently rely on storage vendors to
provide high availability of data. Although failures cannot be
completely avoided, a 24x7 support service that helps resolve
issues within minimum case resolution time1 is an imperative.

For efficient diagnosis of failures, complex enterprise sys-
tems have instrumentation to generate massive amounts of
telemetry data everyday - typically in the form of counters,
logs etc. When customer reports a problem (by opening a
“support case”) in the field, a support engineer with domain
expertise tends to sift through weeks or even months of
telemetry information to identify something abnormal. They
typically rely on thumb rules (e.g. severity-based filtering
for logs) or prior experience to identify relevant entries and
thereby eventually, the root cause. However, our analysis (in

1Case resolution period is the duration between ‘Case opened date’ and
‘Case closed date’ from customer support database.

Figure 1(a), distribution of resolution period (in days)) shows
that about 50% of the cases take anytime between 3 to 20 days
for resolution; mean resolution period is as high as 15 days
whereas median values are 5-6 days. Evidently, this approach
is not scalable, accurate or fast enough, especially when it
comes to managing multiple node clusters in large data centers.
Figure 1(b) demonstrates the fact that even when given a
higher priority for triage, resolution periods do not improve,
possibly due to complexity of such issues. Hence, improving
the resolution period is one prime concern of the stakeholders.
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Fig. 1. Distribution of Resolution Period across (a) support cases (b) priority
labels

The effectiveness of support service can be enhanced
manifold if proactive detection of impending failures can
be made automatically. However, the problem of proactive
failure detection comes with multiple challenges. First of all,
system failure is a complex process as it doesn’t follow a
single uniform pattern. Since the problems observed due to a
system bug is an artifact of the combination of anomalous
behaviors of the multiple subsystems, the resultant failure
patterns exhibit diversity across different bugs. Moreover, the
contribution of each subsystem (e.g raid, wafl etc.) towards
failure depends on the properties of that specific bug. Most of
the state of the art endeavors have overlooked the problem
of bug specific anomalous behaviors exhibited by different
subsystems. Secondly, these anomalies have several categories
and the problems slowly manifest in variety of ways. For
example, system misconfigurations are known to develop fail-
ures over time. File-system fragmentation [13] and misaligned
operations cause performance slowdown. Such logged events
are of varying severity (e.g. warning, info, etc.) and often go
unnoticed or are ignored. However, these obscure malfunctions



from one subsystem propagate and cascade to others and
result in an undesirable behavior from an overall system or
application perspective. Thirdly, their is a subtle difference
between anomaly and failures observed. During operation,
subsystems or modules might exhibit anomaly such as system
slowdown due to heavy load, increase response time of storage
I/O, however that may not always necessarily lead to failure.
Proper handling of those (false) signals is important as this
may raise a large numbers of false positive alerts which may
slower the utility of the failure prediction system. This paper
takes an important step towards this direction.

In terms of data sources for anomaly identification, counters
and logs provide different value propositions. Counters are col-
lected periodically while logs have event driven characteristics.
In general, system performance issues can be better diagnosed
with the help of counters [11] [10]. On the other hand, for is-
sues like system misconfiguration or component failures, logs
contain valuable signals for prediction of anomalies [12][8][2].
There have been several studies on anomaly detection from the
log files; for instance Liang et al [9] proposed the methodology
to forecast the fatal event from IBM Bluegene/L logs. Jiang
et al [5] provided interesting data-driven analysis of customer
problem troubleshooting for around 100000 field systems.
Shatnawi et al [14] proposed a framework for predicting online
service failure based on production logs.
This paper effectively highlights the challenges of the noisy
log events and conducts an extensive log analysis to uncover
the anomaly signatures. We start with background about cus-
tomer support infrastructure and data selection criteria (Section
II). Subsequently, we develop ADELE, which leverages on
the machine learning techniques to (a) predict system failure
in advance by analyzing of log data and anomaly signatures
generated by different modules (Section IV) and (b) develop
an automated early warning mechanism to protect the system
from catastrophe. In case of a massive failure, the final failure
is typically preceded by a sequence of small malfunctions,
which most of the time have been overlooked. However, if
correctly diagnosed at proper time, these apparently harmless
malfunctioning signals can predict, in advance, the occur-
rence of a big failure. The novelty of ADELE is manifold
(a) ADELE captures the uniqueness of the individual bugs;
while detecting the anomaly, it considers and estimates the
(varying) responsibility of the individual subsystems causing
the problem (b) instead of merely relying on the vanilla fea-
tures for anomaly detection, ADELE observes the abnormality
exhibited by the individual features (via outlier detection)
to compute the anomaly score (c) finally, through empirical
experiments, we discriminate the failures with the anomaly,
which substantially reduces the false alarms.
We show that ADELE outperforms the baseline with 83% True
positive and 12% False Positive rate. It should be noted that
the log analysis method presented here is a black-box method
and does not tie itself to any domain-specific context.

In a nutshell, ADELE makes following major contributions:
• A comprehensive and generic abstraction of storage

system logs based on their metadata characteristics is

Field Log Entry Example Description
Event Time Sat Aug 17 09:11:12 PDT Day, date, timestamp and timezone

System name cc-nas1 Name of the node in cluster that
generated the event

Event ID filesystem1.scan.start EMS event ID. Contains Subsystem
name and event type

Severity info {Severity of the event}

Message String Starting block reallocation on
aggregate aggr0 Message string with argument values

TABLE I
EMS MESSAGE STRUCTURE

developed (Section III).
• Through detailed study and rigorous analysis, the rela-

tionship between anomaly signals and failure is estab-
lished. Problem-specific models are learnt using machine
learning techniques and accuracy is demonstrated with
large number of customer support cases (Section V).

• Problem specific models and signatures are extended for
generic failure prediction by mapping unknown problems
to already seen issues in field. More importantly, ADELE
creates groundwork for an proactive, online failure pre-
diction (Section VI).

II. BACKGROUND AND DATASET

A. Auto Support

System generated data like counters, logs and command
history etc. are critical for troubleshooting of customer issues.
Auto Support (ASUP) infrastructure provides an ability to
forward this logged data (storage system log) daily to Ne-
tApp. While customers can opt out of this facility, most of
them choose to go for it since it provides proactive system
monitoring capabilities and faster customer support.

B. Event Message System (EMS) Logs

Support infrastructure described above gives access to daily
EMS logs2. An example of a typical EMS log entry is as
follows:
Sat Aug 17 09:11:12 PDT [cc-
nas1:filesystem1.scan.start:info]: Starting block reallocation
on aggregate aggr0.
Interpretation of fields is summarized in Table I in context
of the above log entry. Each log entry contains time of the
event with fields like day, date, timestamp and timezone. As
multiple systems (alternatively, storage “nodes”) are clustered
in a typical Data ONTAP R© setup, name of the node where
event occurred within the cluster is required to be part of the
log entry. Event ID gives information about the kind of event
that occurred in an hierarchical fashion. First part of this ID is
the subsystem that generated the event. Severity field can take
a value from ‘emergency’, ‘alert’, ‘critical’, ‘error’, ‘warning’,
‘notice’, ‘info’, ‘debug’. Message string throws more light on
the event by incorporating context-specific argument values
(e.g. ‘aggr0’ from above example) for describing the event.

2https://library.netapp.com/ecmdocs/ECMP1196817/html/event/log/show.html



C. Customer Support Database and Bug Database

Customer Support Database: Customer support portal
provides customers an ability to report their grievances. It
also provides a forum for customers to engage with support
engineers to clarify configuration queries and provide other
guidance. Cases can be system generated based on predefined
rules or human-generated. We query this database for fields
like opened date, closed date, priority label etc. for customer
support cases.

Bug database: Bug database is typically internally oriented
and tracks the engineering side of problems. The same bug
can be experienced across multiple customers, systems and
configurations. We use this database to query customer cases
associated with bugs.

D. Data Filtering

For evaluation of the methodology, we selected most severe
and impactful cases filed by customers. Customer cases can
get escalated and are filed as bugs with bug database. Figure
2(a) shows distribution of number of cases across bugs. We
filter dataset of cases and bugs in four steps as following:
(a) First, we select bugs having a sufficient number of cases

associated with them. This ensures sufficient data to
validate the model and also provides robustness and
generality to the mechanism as these cases are spread
across multiple systems, customers and configurations.

(b) In second step, we filter out instantaneous failures - bugs
that are race conditions3, coding errors etc. These are
failures that cannot be predicted and are not in “slow
death” category.

(c) As a third step, we filter cases based on the priority label.
These are the most severe and impactful cases filed by
customers.

(d) In the last step, we filter out cases with missing data.
In a five month time period required for validation, we
exclude those cases from analysis if system logs aren’t
available for one or more days.
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Fig. 2. (a) Case distribution across bugs (b) Priority distribution across cases

As per the above criteria, we identified 48 bugs with at least 70
customer support cases associated with each of them (Figure
2(a)). We concentrated on cases with priority labels 1, 2, 3
(Figure 2(b)). Finally, we analyzed 4827 cases for about 4305
unique systems that span over 5.5 (January 2011 to June 2016)
years.

3https://en.wikipedia.org/wiki/Race condition

III. ANOMALY DETECTION: ATTRIBUTES AND ITS
REPRESENTATION

In this section, we first demonstrate the evidences showing
the potential of event logs, generated by multiple subsystems,
to detect overall system anomaly. Next, we perform rigorous
experiments uncovering the features exhibiting the anomaly
signatures. Finally we propose a novel representation of the
features with the help of score matrix.

A. Periodicity and Anomaly Clues

Attributes of event logs generated by a subsystem seem to
show a weekly periodic pattern. Some typical examples are
shown in Figures 3 & 4. In Figure 3(a), number of events
generated by “api” subsystem shows an almost perfect periodic
pattern across different time intervals of the day. Similarly,
amount of total messages by “callhome” module show a
weekly recurring pattern. The recurrence is expected, typically
due to planned maintenance, scheduled backups, workload
intensity changes [7] - e.g. exchange server has similar activity
profile across same days of the week - Mondays show a
distinctly different behavior from Sundays.
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Fig. 3. Periodicity (a) Event count across intervals for “api” (b) Event count
for “callhome”
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Fig. 4. Anomaly (a) Mean inter-arrival time for “lun” (b) Event count across
intervals for “kern”

If one or more subsystems are going through an anomalous
phase, it gets reflected in some attributes of logs generated for
those subsystems. Red vertical lines on Figures 4(a) & 4(b)
represent the date when customer reported an issue. We can
see that mean inter-arrival time between messages for “lun”
module (Figure 4(a)) shows an irregular behavior before a
customer reports the problem. Since there is no practical and
standard way of knowing the exact time a failure occurred,
we used reported time as the metric- since it can be safely
assumed that that’s the time when failure was first sensed.
Also, number of events generated by “kern” module (Figure



4(b)) across different intervals in the day shows an abnormal
behavior few days prior to case filed date. A system failure is
typically preceded by one or more modules generating events
in patterns that are not “normal”4.

B. Engineering Log Attributes
EMS logs have a total of approximately 7800 event types

spanning 331 subsystems. We extract 18 attributes correspond-
ing to each subsystem as summarized in Table II. Figure
5 shows a representative example of each attribute showing
an anomaly signal before case is filed by the customer. As
the range of values are different for different subsystems, we
normalized the values between 0 and 1.

(a) (b)

(c) (d)

(e) (f)

Fig. 5. (a) Event count of ‘cmds’ subsystem (b) Event ratio of ‘unowned’
subsystem (c) Mean time of ‘quota’ module (d) Mean msg of ‘wafl’ module
(e) Severity Count of ‘ems’ subsystem (f) Interval Count of ‘rdb’ module.

1) Event Count: Event count denotes the number of events
generated by the particular subsystem. For instance the
event count of ‘cmds’ module ( Figure 5(a)) shows an
irregular behavior before case filed date.

4We have used the term anomaly to signify deviant behavior for a day
while failure to signify it over an extended period (couple of days/one week)
- the rationale being that failure sets in when anomaly persists for some time.

2) Event Ratio: Event Ratio is the fraction of events gener-
ated by the particular subsystem. The irregular behavior
of ‘unowned’ module is observed in Figure 5(b).

3) Mean inter-arrival time: We define Mean inter-arrival
time as the mean time between successive events for that
subsystem. Figure 5(c) is a representative instance of
subsystem ‘quota’ showing an irregular behavior before
case filed.

4) Mean inter-arrival distance: The Mean inter-arrival
distance is defined as mean number of events by other
subsystems between successive events of module under
consideration. Figure 5(d) shows an example where
we have shown the behavior of ‘wafl’ which seems
anomalous before case filing.

5) Severity Spread: We capture severity spread for the
subsystem in 8 attributes (Severity 0 to 7) with severity
values ‘EMERGENCY (Severity 0)’, ‘ALERT’, ‘CRIT-
ICAL’, ‘ERROR’, ‘WARNING’, ‘NOTICE’, ‘INFO’,
‘DEBUG (Severity 7)’ each. The severity spread of ‘ems’
subsystem is shown in Figure 5(e).

6) Time-interval Spread: To capture activity profile of
different time intervals during the day, we define six
intervals that represent event counts during the interval
for the particular subsystem. As an example we have
shown only the activity profile at each interval of ‘rdb’
subsystem in Figure 5(f).

Attributes like severity spread and time-interval spread detect
changes in individual module’s behavior. On the other hand,
event ratio, mean inter-arrival time and mean inter-arrival dis-
tance capture normalcy of a module relative to other modules.
We need a holistic approach in detecting system failure with
certainty. Our hunch is that false positive rate will be really
high if we treat every irregular signal for every subsystem
(“anomaly”) as a criterion for predicting failure. It Would be
better if we could prove that with some data. It should be
noted that attributes listed in Table II can be extracted from
most type of logs, and are not specific to EMS.

Attribute Description
Event Count Total number of events
Event Ratio Ratio of number of events to total number of messages
Mean Inter-arrival Time Mean time between successive events
Mean Inter-arrival Distance Mean number of other messages between successive events
Severity Spread Eight attributes corresponding to event counts of each severity type
Time-interval Spread Six attributes denoting event counts during six four-hour intervals of the day

TABLE II
ATTRIBUTES EXTRACTED PER SUBSYSTEM (MODULE)

Table III shows how anomaly signals are distributed across
attributes for our dataset. Interestingly and intuitively, except
lower severity (0,1,2) values, most attributes have sufficient
clues for predicting system anomaly. Importantly, average
number of days relative to case filed date when these anomaly
signals appear is ranging from 6-12. Both these are highly
encouraging starting points for leveraging these log attributes
for overall anomaly detection for the system. In another high-
level empirical study described in Table IV, we observe the
distribution of anomaly signals across susbsystems(module).
This Table shows statistics for only top 7 subsystems across



Attribute Cases
(%)

Total
Signals

Average
Days

Event Count 68.39 7163 10.86
Event Ratio 66.25 7037 11.01

Mean Inter-arrival Time 80.30 12955 9.90
Mean Inter-arrival Distance 66.10 9816 11.08

Severity 0 0.00 0.00 0.00
Severity 1 0.30 14 10.0
Severity 2 0.00 0.00 0.00
Severity 3 8.39 456 11.88
Severity 4 14.65 773 10.91
Severity 5 12.06 648 11.23
Severity 6 34.04 2203 10.91
Severity 7 42.59 3124 12.89
Interval 1 46.87 4016 7.25
Interval 2 44.58 3249 9.95
Interval 3 48.24 4045 10.76
Interval 4 47.63 3854 6.80
Interval 5 52.06 4178 11.67
Interval 6 49.00 4289 12.13

TABLE III
DISTRIBUTION OF ANOMALY CLUES ACROSS ALL CASES. NOTE THAT
EXCEPT LOWER SEVERITY VALUES (0,1,2), MOST ATTRIBUTES SHOW

SUFFICIENT CLUES.

all log attributes described earlier. Reasonably high number of
cases show subsystems in anomalous conditions considerably
early from the case filed date.

Subsystem Cases (%) Total
Signals

Average
Days

raid 13.03 8842 10.82
kern 11.51 7811 10.98
wafl 7.95 5394 11.01
ems 7.12 4834 11.10

callhome 7.09 4811 7.26
disk 5.21 3537 10.87

hamsg 3.94 2674 10.92
TABLE IV

DISTRIBUTION OF ANOMALY SIGNALS ACROSS SUBSYSTEMS.

C. Representation of Features: Log Transformation

Extracted 18 attributes corresponding to each subsystem
(module) per day is summarized in Table II. We call each
Module-attribute combination as “feature”. First, we represent
EMS log of dth day as a raw feature matrix as follows.

Xd =
{
X

(d)
i,j where i ∈M and j ∈ A

}
where M is the set of modules (|M | = m) and A is the set of
attributes (|A| = a). ith row and jth column of Xd contains
jth attribute’s value of ith subsystem.

IV. ADELE: FRAMEWORK FOR ANOMALY DETECTION

The proposed methodology computes an overall system
anomaly score for a candidate case. Figure 6 presents an
overview of the core methodology of ADELE. We group the
support cases based on their association with bugs and we train
the model for each bug. We collect EMS logs for 5 months
for each support case (18 weeks before and 2 weeks after
case filed date). Log of each day is then transformed into the
corresponding score matrix, as a representation of the features.

We present the machine learning technique to estimate system
anomaly score from the computed features. The coefficient
vector considered as problem signature is the model learnt.

Fig. 6. Overview of the Anomaly identification Process

A. Anomaly Scores For Individual features

We transform the raw matrix (Xd) to an equivalent score
matrix which captures the abnormality observed by the indi-
vidual features. In section III-A, observed periodicity of log
attributes corresponds to normal behavior whereas deviations
from periodic behavior provide clues to anomalous behavior.
With these observations, we fit normal distribution with the
moving window of feature values over last few weeks -
e.g. (X(d−7)

i,j ,X(d−14)
i,j ,X(d−21)

i,j , ...). Let µi,j be the mean and
σi,j be the standard deviation for a particular observation
Xi,j across last four weeks. CDF (Cumulative Distribution
Function) of normal distribution [1] is given by

CDF (Xi,j) =
1

σi,j
√
2π
e−(Xi,j−µi,j)

2/2σ2
i,j (1)

Anomaly score of this observation Xi,j is then calculated as

Si,j = 2 ∗ |0.5− CDF (Xi,j)| (2)

which is a measure of outlier [4]. This captures how far the
value deviates from normal. Thus, we transform the matrix
(Xd) of dth day into a score matrix (Sd) using above formula
for each feature.

B. System State Labeling
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Fig. 7. Labelling (a) Step (b) Ramp.

In order to label the state of the system for training and
testing, we consider observations in section III-A. From our
analysis, anomaly signals typically start appearing about 2
weeks before case is filed (Refer Table III, IV). Also, the
system can be considered to be in abnormal state till the case



is resolved (refer Figure 1, median case resolution time is 5-6
days.) With these data-driven insights, we label 2 weeks before
and 1 week after case filed date as an abnormal period. Here
data produced in each of those days are marked as anomalous.
Rest of the days are treated as normal. In Figure 7, we
consider two types of labeling strategy (a) Step and (b) Ramp.
In step labeling, we assign a score of either 0 (normal) or
1(abnormal). In case of ramp labeling, system state of each day
is annotated with a fractional number, the number is inversely
proportional to the number of days before failure set in - that
is further the day is from failure smaller is the value assigned.

C. Estimating System Anomaly Score

We develop ADELE to compute the overall anomaly score
from the feature vector represented as the score matrix Sd.
Each feature (Si,j) contributes differently to overall anomaly
of the system depending upon the specific problem. For
instance, disk subsystem might be highly anomalous for some
problems but not for others. In essence, these contributions
are problem-specific and are learnt using Ridge regression.
Two labelling strategies as described in section IV-B are used
for learning. We perform learning using Ridge regression5

which minimizes squared error while regularizing the norm of
the weights. It performs better as compared to other methods
because of its inherent mechanisms to address the possibility
of multi-collinearity and sparseness of coefficients which is
typical in our dataset. The weight vector (w) of length m ∗ a
returned by Ridge regression is termed as coefficient vector.
Here we consider score matrix Sd of dimension M × A as
feature matrix. The loss function (J(w)) of Ridge regression
can be represented as follows.

J(w) = λ
∣∣∣∣w2

∣∣∣∣+∑
i

(wT · si − yi)2. (3)

where si is input vector, yi represents the corresponding output
label of observation i and λ is the shrinkage parameter.
Then the stationary condition is

∂J

∂w
= 0 (4)

(STd + λI)w = Sdy (5)

w = (SdS
T
d + λI)−1Sdy (6)

Finally after training the model with feature matrix (Sd) and
ground truth label (y) the Ridge regression estimates the
system anomaly score.

Anomaly Signature: Overall weight vector (w) learnt
through Ridge regression, denotes the relative importance of
different features in identifying the problem (bug) correctly.
This vector becomes the signature of the problem.

V. EVALUATION

In this section, we perform a 5-fold cross-validation over
all cases associated with each of the 48 bugs and compute the
corresponding coefficient vector w. We apply Ridge regression

5https://onlinecourses.science.psu.edu/stat857/node/155

with regularization parameter α = 0.5 and tolerance= 0.01.
We select the value of α and tolerance empirically which
essentially reduces the variance of estimates and increases the
precision of the solution.

A. First glimpse

Figure 8 illustrates the aggregated anomaly scores as
computed by our formulation for 4 different cases belonging to
four different bugs. Note that these scores cross threshold value
thereby giving an early signal of anomaly which ultimately
will lead to failure.
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Fig. 8. ADELE’s aggregated anomaly scores exceed threshold several days
before case is filed

B. Performance Metrics

We define the standard yardsticks in this context. True
Positives (TP): Anomaly that are correctly identified. False
Positives (FP): Normal days that are flagged as anomalous.
True Negatives (TN): Normal days that are flagged as
normal. False Negatives (FN): Anomalous days that are
not identified correctly. We calculate: True Positive Rate
(Recall) TPR(%) = TP

TP+FN × 100. True Negative Rate
(Specificity) TNR(%) = TN

TN+FP × 100. False Positive
Rate (Fall-out) FPR(%) = 100− TNR(%).

C. Model Performance

In a moving window of base period (last 7 days), if anomaly
score exceeds threshold for a certain number of days (3 days),
we flag the onset of failure. (These choices are explained
later in section V-F). Figures 9(a),(b) show TPR(%) plotted
on X-axis and FPR plotted on Y-axis for step and ramp
labeling respectively. In this scatter plot, each point represents
a bug plotted considering corresponding average TPR(%) and
FPR(%) values calculated across all of its support cases. Most
bugs are concentrated near top left corner, as expected ideally.
From Figure 9, it is seen that step labelling performs much
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Fig. 9. TPR-FPR plot with (a) Step (b) Ramp Labelling; Step labelling
performs better than Ramp labelling.

better as compared to ramp labeling as the points in the latter
are less concentrated signifying inferior TP and higher FP.

D. Early Detection

Due to high fidelity of the system, the failure can be
captured as soon as it sets it (14 days prior to case file date
as per our design). Whatever is missed is captured in the
subsequent days; Figure 10(a) exhibits the distribution of
those cases. The study shows ADELE can in most of the cases
set in warning much before actual failure sets in.

(a) (b)

Fig. 10. (a) Early detection of failure by ADELE model (b) The problem
signatures are consistent across subgroups of cases for same bug

E. Anomaly Signatures

An important sanity check of our system would be to inspect
whether all the cases belonging to a specific bug exhibit
similar anomaly signatures under the proposed framework.
To demonstrate this, we consider 10 bugs and split cases for
each bug in 3 non-overlapping subgroups. Ridge regression is
applied on each of these subgroups separately to get coefficient
vector (w) which become corresponding anomaly signatures.
(Dis)-similarity between all pairs of signatures is calculated
using Euclidean distance. We then use K-means [3] algorithm
(“clusplot”6 method in R) to cluster these signatures. Figure
10(b) shows that different subgroups of cases for same bug
(represented by same color) get clustered together (represented
by rings) because of similarity. When we extend this to all
bugs (48) studied, only 23 (out of 48 × 3) subgroups are

6https://stat.ethz.ch/R-manual/R-patched
/library/cluster/html/clusplot.default.html

misclassified. This indicates that signatures are similar for the
same bug irrespective of the cases used to learn the model and
largely distinct from other types of bugs.

F. Selection of Parameters

True positives and false positives typically exhibit a classic
trade-off as they show similar behavior (both TP and FP either
reduce or increase) when tunable parameters are varied. As
part of the design, we would like to achieve high TP while
allowing as minimum FP as possible. A high FP would falsely
ring the alarm bell several number of times, thus eroding the
confidence of the maintenance engineer using the system. To
quantitatively determine the ideal point, we plot TPR and
TNR (100-FPR) for varying value of the parameter under
consideration - the point of intersection between these curves
is considered the optimal point from design perspective.

We obtain the optimal values of the following three param-
eters pursuing the protocol.
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Fig. 11. Threshold Selection: (a) 0.70 and (b) 0.22 are optimal values for
ramp and step labeling respectively. (c) Base period: 7 days (d) Critical period
:3 days are optimal values.

(a) Threshold: The optimal threshold is approximately 0.7
and 0.2 for ramp labelling and step labelling respectively
(Figure 11(a), (b)).

(b) Base Period: We choose a moving window of base period
for assessment. From domain knowledge of weekly pat-
terns (section III-A), 7 days seemed like an ideal base
period to assess the anomaly. From TPR-TNR plot in
Figure 11(c), 8 days (close to expected value of 7) is the
optimal point.

(c) Critical Period: This is the number of days in base
period for which anomaly scores exceed threshold value.
Selection of this critical period as 3 is justified in TPR-
TNR plot in Figure 11(d).

Note that, since these three parameters have dependency
among themselves, the initial values are guessed checking a



randomly chosen subset of cases and then the values are fixed
by running the experiments iteratively.

G. Comparison with Baseline Model

We implement the following three baseline models to com-
pare the performance of our model. The first two baselines
are borrowed from the state of the art competing algorithms
whereas the third one is the variation of ADELE.

(a) Liang Model: Prediction methodology of [9] involves
first partitioning the time into fixed intervals, and then trying
to forecast whether there will be failure events in each interval
based on the event characteristics of preceding intervals. This
method studies patterns of non-fatal and fatal events to predict
fatal event in BlueGene systems. Following two assumptions
have been made (i) We treat case filing action as fatal
event. (ii) As per terminologies from this paper, we choose
observation window of 7 days and 7th and 8th day as the
current and prediction window, respectively.

As prescribed in their work, a total of 8265 features are
extracted from EMS log. Using step labeling, we apply recom-
mended procedure - SVM with RBF kernel over this feature-
set for prediction of fatal event (customer reporting a problem,
in our case).

(b) EGADS Model: Laptev et. al. [6] introduces a generic
and scalable open source framework called EGADS (Ex-
tensible Generic Anomaly Detection System) for automated
anomaly detection on large scale time-series data. EGADS
framework consists of two main components: the time-series
modeling module (TMM) and the anomaly detection module
(ADM). We consider three specific implementations of ADM
namely KSigma, DBScan and ExtremeLowDensity. For the
sake of comparison, (i) The abstracted raw matrix (Section
III-C) of each day (treated as timestamp) is converted into a
multivariate row vector to build the input as time-series data.
(ii) Due to multivariate nature of our input data we have chosen
multiple regression model as TMM.

(c) ADELE Direct: In this baseline model, we have im-
plemented a variation of the ADELE where we directly use
raw matrix features. Considering the same labeling (Section
IV-B), we apply Ridge regression and perform 5-fold cross-
validation.

Model TPR (%) FPR (%) Accuracy
(%)

F1 Score
(%)

Liang 74 34.75 66.79 0.440
EGADS-KSigma 76.41 22.49 77.31 0.543
EGADS-DBScan 59.52 20.05 76.34 0.476

EGADS-
ExtremeLowDensity 62.31 21.78 75.41 0.475

ADELE Direct 47.87 27.04 68.53 0.352
ADELE 83.92 12.02 87.26 0.710

TABLE V
COMPARISON WITH BASELINE MODELS. ADELE BEATS ALL THE

BASELINE IN TERMS OF ALL PERFORMANCE METRICS.

Evaluation of ADELE against baselines: We calculate
the TPR and FPR for the aforesaid baseline algorithms, as
described in Section V-B. From the Table V we observe that
ADELE beats all the baseline handsomely. Figure 12(a) shows

the early detection result of ADELE and EGADS-KSigma
model. Our model detects failure early in more cases as com-
pared to EGADS model. From Figure 12(b), we observe that
the bug specific TPR-FPR result of ADELE is also better than
EGADS. The result of different anomaly detection modules
(ADM) proposed in [6] is shown in Table V. Only EGADS
K-SigmaModel technique produces best result (76.41% TPR
and 22.49% FPR overall) among all other ADM, whereas [9]
beats the remaining ADM of EGADS. Performance exhibited
by ADELE Direct model is the poorest since it takes a vanilla
approach of feeding raw features into a ML model; whereas
ADELE uses a novel score matrix formulation enabling it to
achieve superior performance.
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Fig. 12. (a) In more cases ADELE detects failure early as compared to
EGADS. (b) TPR-FPR plot for each bug using EGADS-KSigma model and
ADELE model

VI. ADELE:ONLINE FAILURE PREDICTION

Finally we extend the ADELE to develop a framework for
predicting failures in real time. The focus of this online failure
prediction is to perform short-term failure predictions based
on current state of the system. Here we trace the system
log at each specific time interval (1 day taken in our model)
and notify the health of the system; the system needs to be
trained for at least 1 month to construct the score matrix. The
schematic diagram of our proposed real time failure prediction
model is shown in Figure 13. Given an (unknown) system
log, the major challenge is to identify the correct weight
vector which carries the proper signature of the bug. Since
in our dataset, we explore the most frequently occurring 48
bugs, we expect to map the unknown log to one known
bug. Additionally, in practice, this narrows down the probable
candidates for the support person and with the help of domain
knowledge, he can quickly nail down the correct issue. The
outline of the approach is described below.

A. Mapping to A Known Bug

We build a dictionary (key-value pair) taking bug ID as the
key and coefficient vector (w) as the value. Our goal is to
map a random case (bug is unknown) to any of the known
bugs (amongst 48). For the customer case to be mapped to a
known issue, we follow the same procedure described earlier
to transform daily logs to a score matrices (Sd) and estimate
system anomaly scores for each anomaly signature present
in the dictionary. The estimated anomaly score is the sum of
linear combination of score matrix and coefficient vector (inner



Fig. 13. A schematic of our proposed framework for online failure prediction.

dot product) and intercept values. We separately calculate
intercept values (difference of actual Ridge function estimation
and inner dot product result) for each bug. Finally, we rank
all the bugs based on the estimated anomaly score and select
top 3-5 ranked bugs. In actual practice, this essentially makes
the troubleshooting process semi-automated since it narrows
down the probable candidates for the support personnels. They
can quickly nail down the correct issue further with domain
knowledge. For validation of our approach, we expect the
correct bug to appear in top five ranks. Figure 14(a) shows
that around 87% cases ground truth matches with one of the
top five ranks given by ADELE. In only 6% cases, the actual
bug is ranked beyond 8.
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Fig. 14. (a) ADELE correctly predicts the bug in top 5 for 87 % cases (b)
Case specific TPR-FPR result by online failure prediction model

B. Predicting System Failure

Finally, we estimate the anomaly score of each day taking
the top five coefficient vectors (corresponds to the top five
mapped bugs) and score matrix of the corresponding day into
consideration. We count the number of cases (out of top 5),
whose estimated score exceeds the threshold; exceeding the
threshold for the 50% cases predicts the failure in the system.
For validation, we used over 49 customer reported cases.
Result for a particular case over (multiple) days is shown in
Figure 14(b). Overall we get 82.26% as average TPR and
17.10 % as average FPR.

VII. CONCLUSION AND FUTURE WORK

In this paper, we have provided insights into storage sys-
tem logs via extracted attributes. We used machine learn-
ing techniques to identify anomalous signatures from this
construction for already known problems. In this process,
we could reasonably accurately identify anomaly and beat
baseline handsomely. After building the model for known
bugs, we proposed a mixed model which is capable to map
unknown cases to known bug and detecting failure in real
time. ADELE can identify abnormality in the system roughly
12 days early. This essentially means that if support person can
intervene in any one of those 12 days, failure can be avoided.
We observe that signatures are consistent; hence similar type
of problems can be identified through the proximity of their
underlying signatures and a automated method of root cause
analysis can be developed - this would be our future work.
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