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Brokerage based attack on
real world temporal networks

Souvik Sur∗, Niloy Ganguly†, Animesh Mukherjee‡

Abstract

In this paper, we attempt to investigate the attack tolerance of human mobility networks where the
mobility is restricted to some extent, for instance, in a hospital, one is not allowed to access all
locations. Similar situations also arise in schools. In such a network we will show that people need
to rely upon some intermediate agents, popularly known as the brokers to disseminate information.
In order to establish this fact, we have followed the approach of attack in a network which in turn
helps to identify important nodes in the network in order to maintain the overall connectivity. In
this direction, we have proposed, a new temporal metric, brokerage frequency which significantly
outperforms all other state-of-the-art attack strategies reported in (Trajanovski et al., 2012; Sur et al.,
2015).

1 Introduction

A notion of attack in complex networks was systemically studied by Albert et al. in their
seminal paper (Albert et al., 2000). In the work mentioned above, the authors estab-
lished that scale-free networks are vulnerable to targeted node degree based attack due
to the inherent inhomogeneity of the degree distribution whereas exponential networks
are resilient from such an attack. In later years, significant efforts have been made to
explore the attack tolerance of static networks (Holme et al., 2002; Newman & Ghoshal,
2008; Latora & Marchiori, 2005). However, due to the advancement of technology, today
we can model empirical data, for instance, mobility traces to email transactions as time-
varying networks. In the context of human mobility a few publicly available temporal traces
are (Isella et al., 2011; Scott et al., 2006; Scott et al., 2009; Pietilainen, 2012). All of these
datasets contain mobility traces of participants in different conference venues like ACM
HyperText, 2009; IEEE INFOCOM, 2005 and 2006; ACM SIGCOMM, 2009. One of the
key features of these mobility networks is that the natural movement of the participants
is not limited by permission-based restrictions. However, this assumption might not be
true in many cases. For instance, in a hospital, patients might not be permitted to access
all locations; similarly, in a school premise, students might not have the permission to
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move freely at all locations. Such permission-based restrictions necessitate the members of
the network remain relatively more segregated. Therefore, in such a permission-restricted
network people need to rely upon some in-between agents or brokers to pass on information
and, thereby, maintain global connectivity.

This observation forms the primary motivation of our current work that aims to inves-
tigate how information/disease may find a pathway to spread in these restricted networks.
In view of this fact, we use the notion of attack on the network for our subsequent exper-
iments. In particular, we introduce a novel attack strategy based on the assumption that
in such restricted networks information/disease pathways are formed through brokers. We
provide a quantitative definition of brokerage and show that this can be used as an effective
metric for targeted node removal. In fact, the results manifest that brokerage based attacks
significantly outperform all other forms of attack reported in the context of time-varying
networks (Sur et al., 2015).

The notion of brokers in a social network was instigated by Granovetter (Granovetter,
1973). In the above work, he showed that there are certain “weak ties” in social networks
that uphold more information than relatively stronger ties. This initial idea was translated
into the notion of brokerage in later works (Weimann, 1982; Cook, 1981; Cook et al., 1983;
Bonacich, 1987).

In recent years, there have been a lot of works based on the concept of brokerage.
In (Sarkar et al., 2006), authors show that in case of sensor networks a double ruling
scheme based on information brokerage enhances the possibility to acquire the desired
data. A direct application on GPS of this scheme has been described in (Lin et al., 2010)
which relies upon information brokerage in turn. Moreover, Heemskerk et al. show that
there is an important role of brokerage in the construction of European network of inter-
locking directorates (Heemskerk et al., 2013). Jiao et. al. establish the fact that brokers are
responsible to form cohesive and sparse modules, simultaneously, in a social network (Jiao
et al., 2013). It has been shown that even in online social network like Twitter1 there are
some inter-group information brokers who pass information with the help of certain weak
ties among these groups (Grabowicz et al., 2012). Lind et al. discuss the role of brokerage
in the context of pre-disaster management issues (Lind et al., 2008).

We would like to mention that to the best of our knowledge the concept of brokerage
has been applied as an attack strategy for the very first time here. Our motive is just not
to introduce a novel attack strategy, rather, in this paper, we emphasize the importance
of brokers in empirical human contact networks. To attack, we adapt the methodology
described in (Sur et al., 2015) for meaningful comparison only. We believe that the idea of
brokerage and the subsequent quantification of it in temporal networks plus the mechanism
to identify the important nodes based on this quantification is a fundamental contribution
of our work that has never been done in a systematic and rigorous way before.

In particular, our finding may add some novel dimensions to the rich literature of mobile
ad-hoc network (MANET). Since there is no well-defined underlying infrastructure in
MANET, sometimes it may happen that all the agents (communication devices) willing to
communicate with each other may not be within the communication range of each other

1 http://www.twitter.com
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directly. In such a scenario, the underlying routing protocol may take the advantage of the
broker nodes to pass messages (Funke et al., 2006; Daly & Haahr, 2007; Hui et al., 2011).
MANET has special applications in military communication as well as in building post-
diaster temporary networks if the normal connectivity gets disrupted. To make such
networks more efficient, many times specialized devices like message ferries (Zhao et al.,
2004; Shah et al., 2003) are deployed. These devices mostly have higher mobility span and
so can pass information among localized devices. The framework developed in this paper
can help in identifying such ferries from within the system - thus saving the extra cost and
overhead of deploying specialized equipment.

On the other hand, in the context of attack in time-varying networks Trajanovski et al.
suggest three attack strategies for temporal networks and show that empirical temporal
networks behave similar to their random counterparts (Trajanovski et al., 2012). However,
one major drawback of this work is that it does not take into account the short-time correla-
tions (Sur et al., 2015) present in such empirical networks. Considering such correlations,
authors of (Sur et al., 2015) have recently proposed a different model of attack based on
recurrent community structure. In this paper, we show that in the context of permission-
restricted networks, brokerage based attack strategy significantly outperforms the recurrent
community based attack scheme. To this purpose, we first propose a method to quantify
the extent of brokerage of nodes in a permission-restricted network followed by a set of
thorough experiments to substantiate the effectiveness of the proposed scheme.

The rest of the paper is structured as follows. In section 2, we describe the data that we
have investigated, temporal network modeling of the data and the different attack strategies.
In section 3, we present the results obtained from our investigation. Finally, we summarize
our contributions in section 4.

2 Methodology

2.1 Data

For the purpose of our experiments, we consider two specific real-world face-to-face con-
tact datasets and present our results for each of them.

A detailed description of the datasets on which we conduct our experiments are as
follows:

1. HOSPITAL, 2009 (Hospital): This dataset contains the temporal network of con-
tacts between patients, patients and health-care workers (HCWs) and among HCWs
in a hospital ward in Lyon, France, from Monday, December 6, 2010 at 1:00 pm
to Friday, December 10, 2010 at 2:00 pm. The study included 46 HCWs and 29
patients (Vanhems et al., 2013). For data collection, active RFID devices were used
to detect and record face-to-face proximity relation among people wearing the RFID
badges. These devices can detect face-to-face proximity (1− 1.5 meter) of another
device with a temporal resolution of τ = 20 seconds. Thus in a single hour there
can be a maximum of n = 3600/τ = 180 network snapshots. In this data, along with
the temporal information, the nodes are also labeled by their role/occupation. Each
set of nodes with a particular role/occupation can be thought of as a cohesive group
of individuals usually termed as ground-truth communities in the literature (Yang &
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Leskovec, 2012). The different categories here are medical staffs (MED), adminis-
trators (ADM), nurses (NUR) and patients (PAT), each representing a ground-truth
community. The time series showing number of active nodes (i.e., nodes with degree
> 0) in each hour in each of these ground-truth communities (stacked one after
another) is shown in Fig. 1(a).
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Fig. 1: (Color online) Time series of the number of active nodes in each hour in different ground-
truth communities for (a) Hospital (b) High School 2011 and (c) High School 2012. The number of
active nodes in the different categories are stacked one after another for every hour.

2. HIGH SCHOOL (High School): These datasets contain the temporal network of
contacts between students in a high school in Marseilles, France. The first dataset
corresponds to the contacts of the students of three classes on 4 days in November,
2011 (referred to High School 2011), and the second corresponds to the contacts of
the students of 5 classes on 7 days (from a Monday to the Tuesday of the following
week) in November, 2012 (denoted as High School 2012) (Fournet & Barrat, 2014).
Once again, τ is equal to 20 seconds here. A link has been constructed at a certain
time if any two nodes were within the communication range. In this case, the differ-
ent categories can be broadly divided into two groups, a group of two classes (MP*1
and MP*2) and a group of three classes (PC, PC*, PSI*), each of which corresponds
to a ground-truth community. Once again, the time series of the number of active
nodes at each of the hours in the different categories (stacked one after another) are
shown in Fig. 1(b) and (c) respectively for the two sets of data.

These networks also exhibit the existence of silence hours as defined in (Sur et al.,
2015). Silence hours refer to those hours when the human activity (in terms of number of
edges in this case) becomes significantly lower than that in the other hours (See Fig. 2).
In order to quantify this effect, we identify and discard those hours which have active node
participation lower than 25% of the mean of the entire time series of the number of active
nodes over time, as the silence hours and retain the others as the active hours.

Table 1 summarizes some of the basic statistics of the datasets used in our experiments.
In general, these statistics indicate that the graphs are usually sparse like many other social
networks (Clauset et al., 2004).
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Fig. 2: (Color online) Time series of the number of active nodes in each hour for (a) Hospital (b)
High School 2011 and (c) High School 2012.

Table 1: Datasets statistics

Dataset No. of nodesNo. of edges/hourNo. of active hours

Hospital 75 337.75 69

High School 2011 126 375.80 31

High School 2012 180 221.90 83

2.2 Brokerage

Marsden defines brokerage as a process “by which intermediary actors facilitate transac-
tions between other actors lacking access to or trust in one another (Marsden & V., 1982).”
On the other hand, Burt defines brokers as actors who simultaneously send and receive
resources from different parts of the network in which they are embedded (Burt, 1976).

Formally, brokerage can be defined as follows: in a graph representing the non-symmetric
binary relation R, j is said to be a broker between i and k if and only if iR j, jRk, and iR̄k,
where iR j indicates that i is tied to j by the relation R, and iR̄k is the negation of iRk (Gould
& Fernandez, 1989). Here negation of R indicates that i is not related to j according to the
definition of R. Specifically, in our case it means that there is no edge between i and j.

According to (Hanneman & Riddle, 2005; Gould & Fernandez, 1989) the brokers can
be classified into following five categories noted in Fig. 3.

However, these configurations of different brokerages are entirely based upon static net-
work model. In this paper, we attempt to extend the same idea for time-varying networks.
The key modification is that, here in time-varying networks the time-respecting paths have
been considered instead of simple paths in the static counterpart. Fig. 4 illustrates the idea.
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Fig. 3: (Color online) Classification of brokerage. Different colors represent nodes from different
ground-truth communities.

The node y turns out to be a potential broker between nodes x and z since it can receive
information from node x at time t = 1 and pass it to node z at time t = 3. While in a static
network, y always qualifies as a broker, in a temporal network y can act as a broker only if
it has first got linked with x and received a message that can then be transmitted at a later
step to z when a link is formed between y and z. In other words, in the static aggregation, y
is always adjudged as a broker; in contrast, only if the explicit time order is maintained in
a time-varying network, y can qualify as a broker. Note that the edges in the network can
be thought of having dynamic directions defined by their explicit time ordering.
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Fig. 4: (Color online) A possible configuration of a temporal broker.
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Temporal brokerage: One can now attempt to introduce, a node j’s total brokerage ac-
tivity in a network with N nodes. For example, if we assume, iR j refers to an edge between
i and j, the total brokerage for a particular node j can be defined as the number of ordered
pairs (i,k) in the network for which the condition iR j and jRk and iR̄k hold simultane-
ously (Gould & Fernandez, 1989). For a time-varying network, iR j and jRk need not be
simultaneously true. In particular, the brokerage can be defined as, iRt1 j, jRt2k, and iR̄t∗k
where t1 ≤ t2 and t∗ could be any time-point within the time-window under investigation.
Note that, in case of static networks, the path from i to k via j is a static path while in case of
temporal networks the path has to be time-respecting (Trajanovski et al., 2012). Intuitively,
if the existence of a node turns out to be essential to diffuse information between another
two nodes, then the essential node qualifies as a broker.

We can quantify the idea of brokerage using the number of ‘brokerage relations’ of a
node is involved in. This is referred to as brokerage frequency of a node and can be com-
puted by constructing the first contact matrix which is a matrix whose (i, j) cell represents
the time of the first contact between the node pair i and j. If ti j = ∞ then i and j remain
disconnected for the entire time-window under investigation. Therefore, the node j acts as
a broker between nodes i and k if ti j ≤ t jk and tik = ∞.

In a given time interval [T1,Tn], the brokerage frequency of a node j is the fraction of
ordered pairs (i,k) in the network for which the conditions ti j ≤ t jk and tik = ∞ hold during
this time interval.

B( j;T1,Tn) =
1

(N−2)(N−1)

N,N

∑
i=1,k=1,i6= j 6=k

δik (1)

where

δik =

{
1, if ti j ≤ t jk and tik = ∞.

0, otherwise.

2.3 Temporal Networks, Variables and Metrics

Our objective is to identify the role of brokerage in the network as one of its structural
properties. One possible way to judge the importance of any structural property would
be to eliminate that property partially or fully and observe how the resultant network is
affected. This is popularly modeled as attack in the literature.

Before going into the details of the attack models, here we present some of the important
terminologies required for further discussion. For the rest of our discussion, we consider N
as the total number of unique nodes in the network in a given time-window [t1, tn].

Temporal distance: Temporal distance di j(t1, tn) between nodes i and j is the minimum
number of time-steps required to reach node j from node i in the time interval [t1, tn] (Scel-
lato et al., 2011).

In case where it is not possible to spread the message between two particular nodes
i and j, the temporal distance is infinity; di j(t1, tn) = ∞ and on the other hand if i and
j are connected since the first time-step then di j(t1, tn) = 1. Usually, temporal distance
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among all pairs of nodes in a graph are calculated by flooding the network with messages.
The messages can traverse along the edges only when these edges are present in the
network (Trajanovski et al., 2012).

Temporal efficiency: Temporal efficiency is the averaged sum of the inverse temporal
distances over all pairs of nodes in the time interval [t1, tn] :

E(t1, tn) =
1

N(N−1) ∑
i, j;i6= j

1
di j(t1, tn)

(2)

where N is the total number of unique nodes in the network and di j(t1, tn) is the temporal
distance between nodes i and j in the time interval [t1, tn] (Scellato et al., 2011).

Temporal robustness: Temporal robustness is the relative change of the efficiency after
a structural damage. If the temporal efficiency of the damaged network is E, then the
temporal robustness is expressed as

RG =
E ′

E
= 1− ∆E ′

E
(3)

where E ′ is the efficiency of the temporal network before the damage (Scellato et al.,
2011).

The Attack Model: We adopt a simple approach to formulate the attack scheme. In a
particular hour, we rank the nodes based on a particular attack strategy, for example, (i)
average node degree (Trajanovski et al., 2012) or (ii) temporal closeness (Trajanovski
et al., 2012) or (iii) number of node contacts-updates (Trajanovski et al., 2012) or (iv)
nodes within communities of hourly aggregated network (Sur et al., 2015) – and remove
a fraction (Pattack) of the highest ranked nodes based on each of these strategies from the
subsequent hour. In other words, we conduct the measurement and ranking of the nodes
in a particular hour and then attack the high ranked nodes in the following hour. Precisely,
for each of the consecutive pairs of hours, we perform the following independently: for
every ith hour we study the networks at 20 seconds interval, i.e., we actually consider 180
static snapshots and compute the different attack metrics, e.g., average degree of a node,
temporal closeness, etc. Based on the rankings obtained from each of these metrics we
select the candidates for the attack in the next hour i.e., the (i+ 1)th hour. Therefore, this
one hour is our observation window where we extract statistics from all the 180 snapshots
with no aggregation of the networks at all. For the (k+1)th pair, we bring back the nodes
into the system removed in the kth iteration provided they are still active in the hour being
considered. The assumption is that attacks on such short-time spans (specifically an hour)
should appropriately reflect the effect of the shorter-time correlations (Sur et al., 2015).
We describe each of the attack strategies and the associated results below. In each case, the
temporal robustness is averaged over the total number of active hours (hours that are not
silent) for different values of Pattack.
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3 Results

For the purpose of our experiment, we have considered these following five temporal
metrics along with the ‘brokerage frequency’ to attack the empirical networks mentioned
in section 2.1. The metrics are,

1. Average node degree: The temporal equivalent of the degree centrality in static
network (Trajanovski et al., 2012). The nodes are removed in decreasing order of
their average node degree values.

2. Temporal closeness: The temporal equivalent of the closeness centrality in static
network (Trajanovski et al., 2012). The nodes are removed in increasing order of
their temporal closeness centrality values.

3. Number of node contacts-updates: The temporal equivalent of the betweenness
centrality in static network (Trajanovski et al., 2012). Once again, the nodes are
removed according to decreasing values of node contacts-updates.

4. Aggregated community: A node belonging to the largest recurrent community is
randomly picked up for removal and the scheme is repeated for the other communi-
ties in decreasing order of their sizes. (Sur et al., 2015).

5. Ground-truth community: A node from the largest recurrent ground-truth commu-
nity (See section 2.1) is randomly picked up for removal, and the scheme is repeated
for the other communities in decreasing order of their sizes.

As an initial step, we plot in Fig. 5, the robustness values for different attack strategies
that are based on the various metrics used to rank the nodes to be attacked. It is evident from
the result that ‘brokerage frequency’ affects the network robustness most significantly in
comparison to the others. Moreover, in panel (a), it can be clearly observed that the random
strategy performs poorly than the other intelligent strategies. It holds true for the other two
datasets also. We argue that this is due to effect of short-time correlation of empirical
human proximity networks (Sur et al., 2015).
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Fig. 5: (Color online) Temporal robustness (shown as Robustness) as a function of the fraction
of nodes under attack (shown as Pattack) for different attack strategies. (a) Hospital (b)
High School 2011 and (c) High School 2012.
A.N.D: Average Node Degree, T.C: Temporal Closeness, N.C.U : Number of Node Contact-updates,
Com: Aggregated Community, GrondCom: Ground-truth Communities, Brokerage: Brokerage
Frequency.
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As a following step, we show that while community based attack proposed in (Sur et al.,
2015) is more suitable than brokerage based attack for face-to-face interaction networks
like ACM HyperText (Isella et al., 2011) (see Fig. 6), the opposite is true for networks
with permission based restrictions like Hospital (see Fig. 5).
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Fig. 6: (Color online) Temporal robustness (shown as Robustness) as a function of the fraction of
nodes under attack (shown as Pattack) for each different attack strategies, (a) HY PERT EXT,2009 ,
(b) INFOCOM,2005,(c) INFOCOM,2006
A.N.D: Average Node Degree, T.C: Temporal Closeness, Brokerage: Brokerage Frequency, N.C.U :
Number of Node Contact-updates, Com: Aggregated Community.

To investigate this fundamental difference in results further, in Fig. 7(a) we observe that
although in this case, the edge emergence factor (ξ )2 (Sur et al., 2015) is correlated to
largest community size (L.C.S), the correlation seems to be way weaker than in the case of
HyperText network (Pearson’s r = 0.4) in Fig. 7(b) . The primary reason for this is that in
movement-restricted networks, community structures are not very strong and well-defined.

This thorough comparison unfolds that the brokerage based attack outperforms all other
forms of attack described in (Sur et al., 2015). Since these networks contain explicit node
labels, so it is possible to classify every node triplet into one of the five classes discussed
in Fig. 3. However, since these networks are undirected, so there is no difference between
‘gate-keeper’ and ‘representative’ – we club these two into a new class, ‘fringe-keeper’.
In Fig. 8 we plot the time series of the number of brokerage classes (i.e., the number of
brokerages appearing in each class) at different time-points.

This time series seems to be significantly uneven (i.e., the number of different classes of
brokers is very different in each hour) and therefore one might argue that the class with the
most frequent brokerage might dominate the other classes. In order to, eliminate this effect,

2 Let, Et = set of edges at time instance t and At+1 = set of edges at t +1 adjacent to these Et edges.
The edge emergence factor(ξ ) for that time window is expressed as

ξ (t1, tn) =
∑

n−1
t=1 |At+1|
∑

n−1
t=1 |Et |

(4)
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Fig. 7: (Color online) Relation between edge emergence factor (ξ ) and size of the largest community
and number of nodes.
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Fig. 8: (Color online) Time series of the number of different brokerage classes for (a) Hospital (b)
High School 2011 and (c) High School 2012.

we re-define the brokerage frequency of a node by normalizing this term with the total
frequency of brokerage that is present in the class to which the node under investigation
belongs to. The results comparing the community based attack and the two brokerage based
attacks are shown in Fig. 9. The results once again indicate that brokerage based attack
schemes significantly outperform the community based schemes. In general, two different
strategies yield the same results if and only if they produce the same ranking of nodes
for each of the values of the attack probability (Pattack). So, it is evident that both the
brokerage based attack schemes enumerate more or less same ranking of nodes. The subtle
differences observed are most probably due to the alteration of one or two nodes in the
resultant ranking. In particular, networks that we investigate, the normalization does not
bring a large change in the ranking. However, it appears that the normalized brokerage
frequency is a more principled measure.
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Fig. 9: (Color online) Temporal robustness (shown as Robustness) as a function of the fraction of
nodes under attack (shown as Pattack) for normalized brokerage frequency based attack strategy. (a)
Hospital (b) High School 2011 and (c) High School 2012.

From these experimental inferences it can be realized that in these permission-restricted
empirical networks people fail to form cohesive groups of significant size since, otherwise
community based attack would have outperformed all other strategies as it has been es-
tablished in (Sur et al., 2015). The effectiveness of the temporal brokerage based attack
indicates that in such permission-restricted empirical networks people need to rely upon
some intermediate agents or brokers to maintain the overall connectivity. For example,
in a hospital where a patient may not be allowed to move out from his/her cabin, staffs
(including doctors and nurses) may turn out to be responsible for maintaining the overall
connectivity. Consequently, removal of these brokers from the network affects the network
mostly which results in a sharp drop in network robustness.

4 Conclusion

In summary, the contribution of this work is to introduce a novel attack strategy, brokerage
frequency, for empirical human contact networks where the movements are restricted.
The state-of-the-art attack strategies fail in case of such networks. The most important
observation in this context is that even in the human contact networks there is a crucial role
of information brokers who are responsible for the dissemination of messages. As a future
step, we wish to investigate the performance of the attack schemes on newer samples of
data.
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