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a b s t r a c t 

Across the world, millions of users interact with search engines every day to satisfy their 

information needs. As the Web grows bigger over time, such information needs, mani- 

fested through user search queries, also become more complex. However, there has been 

no systematic study that quantifies the structural complexity of Web search queries. In 

this research, we make an attempt towards understanding and characterizing the syntactic 

complexity of search queries using a multi-pronged approach. We use traditional statistical 

language modeling techniques to quantify and compare the perplexity of queries with nat- 

ural language (NL). We then use complex network analysis for a comparative analysis of 

the topological properties of queries issued by real Web users and those generated by sta- 

tistical models. Finally, we conduct experiments to study whether search engine users are 

able to identify real queries, when presented along with model-generated ones. The three 

complementary studies show that the syntactic structure of Web queries is more complex 

than what n -grams can capture, but simpler than NL. Queries, thus, seem to represent an 

intermediate stage between syntactic and non-syntactic communication. 

© 2016 Elsevier Ltd. All rights reserved. 

 

 

 

 

 

 

 

 

1. Introduction 

Searching information on the World Wide Web by issuing queries to commercial search engines is one of the most

common activities engaged in by almost every Web user Jansen and Spink (2006) . The Web has grown extensively over

the past two decades, and search engines have kept pace by incorporating progressively smarter algorithms to keep all the

information at our fingertips ( Ntoulas, Cho, & Olston, 2004; Risvik & Michelsen, 2002; Schwartz, 1998 ). This co-evolution of

the Web and search engines have driven users to formulate progressively longer and more complex queries, as seen by a rise

in mean lengths from 2.4 through 3.5 to about four words per unique query over the last twelve years ( Pass, Chowdhury,

& Torgeson, 2006; Saha Roy, Choudhury, & Bali, 2012a; Spink, Wolfram, Jansen, & Saracevic, 2001 ). Search queries represent

a unique mode of interaction between humans and artificial systems, and they differ observably in syntax from that of the
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parent NL. This has led researchers to argue that probably queries are acquiring linguistic properties of their own ( Dessalles,

20 06; Guichard, 20 02; Jansen, Spink, and Saracevic, 20 0 0 ; Saha Roy et al., 2012a ; [74] ; Spink et al., 2001 ). Arguing from the

perspective of the function of queries, i.e., communication, and the factors that influence their self-organization, it can be

fairly convincingly established that queries are indeed an evolving linguistic system ( Saha Roy et al., 2012a ). Nevertheless,

there is no systematic and comprehensive study of the syntactic properties of Web queries that can convincingly bring out

the fact that queries are indeed a “language”. The challenge, of course, is to identify the unique syntactic features of an NL

that make it different from any random or artificially generated sequence of symbols. Fortunately, there exist three lines of

research that can address this fundamental question. 

1.1. Background 

One of the oldest statistical characterizations of NL comes from n -gram models that can be used for both generation

of utterances or sentences to a certain degree of accuracy, and also for quantifying the predictability (and hence the com-

plexity) of a system of symbols ( Brown, Desouza, Mercer, Pietra, & Lai, 1992b ). Such a line of research in the past has been

extensively used for analyzing ancient languages (like the Indus script hypothesis ( Rao et al., 2009 )), studying languages

with diverse typological properties ( Gauvain, Messaoudi, & Schwenk, 2004 ), and also for understanding non-linguistic sys-

tems such as music ( Downie, 1999 ) and the genetic code ( Mantegna et al., 1995 ). Over time, n -gram models have been

appropriately generalized or restricted using more sophisticated linguistic features capturing various syntactic and semantic 

properties (see Bellegarda (2004) for a review). Collectively, these models are studied under the broad topic of statistical

language modeling and extensively used in applications like automatic speech recognition ( Zissman & Singer, 1994 ), machine

translation ( Koehn, 2010 ), spelling correction ( Duan & Hsu, 2011 ) and information retrieval (IR) ( Ponte & Croft, 1998 ). 

A second and more recent line of investigation into linguistic systems is through complex network modeling of languages,

where a language is modeled as a network of entities and their relations (see Choudhury and Mukherjee (2009) for a review).

These studies were inspired by similar modeling techniques employed by physicists and biologists, which led to interesting

insights into the systems being modeled. Such studies using network modeling have also revealed some interesting proper-

ties of languages ( Dorogovtsev and Mendes, 2001 ; Ferrer-i-Cancho & Solé, 2001 ). 

A third approach to characterize a linguistic interaction is to study it from the perspective of the native speakers’ intuition ,

which says, to quote Noam Chomsky (2002) : “The sentences generated will have to be acceptable to the native speaker”.

Though the concept of a native speaker is debatable and eludes a clear definition ( Paikeday, 1985 ), in the context of queries

it assumes an altogether new dimension, where it would refer to an average user of Web search engines. 

1.2. Contributions 

These three lines of investigation are, in fact, complementary, and therefore can be very well used for getting a more

comprehensive picture of a linguistic system. The necessity of such a multi-pronged approach can also be appreciated in

the context of a recent debate on the linguistic status of the Indus valley script: Based on the conditional entropy analysis

of n -grams, Rao et al. (2009) had claimed that the script was indeed used for an ancient linguistic system; this work was

later fiercely criticized and the claim was contested by the computational linguistics community, led by Richard Sproat, who

argued that even simple and random generative models can lead to such statistical properties ( Sproat, 2010 ). Subsequent

work on Indus scripts used network modeling to further substantiate Rao et al.’s original claim ( Sinha, Izhar, Pan, & Wells,

2011 ). However, as we shall see, such an analysis, by itself, is not sufficient. Therefore, if queries are indeed an evolving

linguistic system, then they should exhibit properties similar to NLs under statistical modeling, network modeling and cog-

nitive analyses. Hence, in this work, we explore the syntactic properties of queries through these three different “lenses”

and cross-validate our findings to come up with a holistic view. Specifically, we: 

1. Build n -gram and n -term models ( Srikanth & Srihari, 2002; Yan, Guo, Lan, & Cheng, 2013 ) from our Web query log and

analyze perplexity (or predictability) of the models and compare them with that of Standard English; 

2. Build word co-occurrence networks (WCNs), the most popular and well-studied network modeling approach for NLs, for

the real log and compare the topological properties of the networks with those built from artificial logs generated using

the n -gram and n -term models; and finally, 

3. Ask ordinary Internet users to rate the acceptability or “real”-ness of the search queries generated by the various lan-

guage models. 

Our study reveals that although queries seem to be more predictable (or less complex) than NL, n -gram models still

fall short of generating a rich set of artificial queries. A typical user is able to tell apart a real query from an artificially

generated one, even though a tri-gram-based generative model seems to overfit the data and is capable of confusing the

user. The word order in queries seems to be the most important clue helping a user to differentiate between the real and

artificially generated queries. Hence, the structure of current Web search queries indicates a linguistic system that has at

least a rudimentary word ordering constraint, and several other syntactic and semantic constraints that lie beyond the scope

of n -gram and n -term models. In short, queries represent a system which is in between a fully syntactic and a non-syntactic

communication system. 
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We do not know of any previous systematic study on these aspects of Web search queries, even though features like

auto-complete and query suggestions are indirect evidence that predictability of query terms is indeed exploited by Web

search engines. On the other hand, this study can not only help in more systematic and principled techniques in relevant

applications, but can also have an impact on the way we view query understanding today. The complete code for this research

has been made available at https://github.com/iamrishiraj/QueryLMStudy (accessed 02 February 2016). 

1.3. Organization 

The organization of the rest of this paper is as follows. First, we describe our dataset in Section 2 . In Section 3 , we

present the generative language models for queries used in this work. Next, in Section 4 , we discuss our complex network

modeling technique and use the framework to compare the various generative models. We then present our experimental

framework and results for crowd-sourcing to measure human intuition of query syntax ( Section 5 ). Subsequently, we discuss

the implications of our results in Section 6 , and make concluding remarks in the final section ( Section 7 ). 

2. Dataset 

For all our experiments, we use a query log sampled from Bing Australia 3 in May 2010. This raw data slice consisted of

16 . 7 M ( M = Million) queries. We subsequently extracted 11 . 9 M queries from the raw data such that the queries were com-

posed of ASCII characters only and were of length between two and ten words. The justification for imposing a filter based

on query length is as follows. One word queries do not contribute to network structures based on word co-occurrence and

are not meaningful to be judged by humans (almost any word is potentially a search query). Very long queries (having more

than ten words) are typically computer-generated messages or excerpts from NL text, and need separate query processing

techniques (only 0.01% of our log). Out of the extracted queries, 4 . 7 M are unique. In other words, the entire log contains

11 . 9 M queries. However, there are duplicates in the log. If we remove the duplicates, we are left with 4 . 7 M queries. But

in order to preserve log properties arising out of the natural power law frequency distribution of queries Pass et al. (2006) ,

duplicates were retained for all experiments. 

3. Statistical language modeling for queries 

The n -gram language model (LM), which assumes that the probability of the n th word in a sentence depends only on the

previous (n − 1) words ( Brown et al., 1992b ), which has been one of the most popularly used generative language models

for NL with many applications ( Dunning, 1994; Hull & Srihari, 1982; Koehn, 2010 ). Therefore, as the first steps, we evaluate

query models based on n -grams (and their variants). An n -gram, in our context, is any continuous sequence of n words from

a query. Mathematically, an n -gram LM over sequences of words is defined by a Markov chain of order (n − 1) ( Manning &

Schütze, 1999 ), and the probability of a k -word query is given by Eq. 1 : 

P (w 1 w 2 . . . w k ) = 

∏ 

i =1 ... k 

P (w i | w i −1 . . . w i −n +1 ) (1)

Required probabilities can be initialized through training on the real query log from the relative counts , as shown in

Eq. 2 below: 

P (w i | w i −1 . . . w i −n +1 ) = 

count ( w i . . . w i −n +1 ) 

count ( w i −1 . . . w i −n +1 ) 
(2)

Since queries are short (mean length was close to four words for distinct queries in our log), it is not practical to look

beyond tri-grams. Here distinct queries mean unique queries. Our query log, after removal of duplicate queries, contained

4 . 7 M unique or distinct queries. The average length for these unique queries came out to be 3.98, very close to four words.

An n -term ( Srikanth & Srihari, 2002; Yan et al., 2013 ) is an unordered set of n words, all of which occur in a query, but

not necessarily next to each other. Since queries have been considered to be bags-of-words in several contexts ( Ponte &

Croft, 1998; Salton & Buckley, 1988; Salton, Wong, & Yang, 1975; Song & Croft, 1999 ), a systematic exploration of n -terms

becomes necessary. The meaning of an n -term is equivalent to an unordered skipgram ( Guthrie, Allison, Liu, Guthrie, &

Wilks, 2006 ). We also note that n -term models are akin to the full dependence model ( Metzler & Croft, 2005 ), which can

capture long-range dependencies between terms but ignore their ordering and proximity. 

3.1. Query generative models 

We explore five generative models for queries, viz. 1-gram, 2-gram, 3-gram, 2-term, and 3-term. Example queries gener-

ated by each of these models are shown in Table 1 . 1-gram queries typically do not make much sense; they are just some

random words thrown in to create a query, albeit maintaining the real word probability distribution. The notion of local
3 http://www.bing.com/?cc=au , Accessed 13 January 2016. 
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Table 1 

Three example queries generated by each of the five generative models. Queries, n - 

grams and n -terms are shown in typewriter fontface to differentiate them 

from running text throughout this paper. 

Model Example queries 

a dhcp ephemeral detailing 
1-gram map rc2 western pacific kennedy 

anzac center catering civ integrate you guide 
create user account on roads 

2-gram access 2003 not working with info 
party poker table tennis player 
shaolin kung fu panda 

3-gram a brief history of witchcraft 
a thousand miles sheet music for websliders 
acer 5310 for flash player 

2-term adobe acrobat free download windows 
housing thailand what is cost of housing 
adelaide entertainment explained seating plan area 

3-term anti software virus windows vista 
adobe photoshop 7 for mac 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

coherence immediately becomes clear as one moves to 2-grams. The crossovers from one bi-gram to the next seem smooth,

but as a whole the queries are generally not meaningful. Clearly, the chances of a query being meaningful in its entirety

diminishes with increasing query length. The same thing can be observed for tri-grams; but since several queries only have

three, four or five words (can be generated with only one, two or three tri-grams, respectively), such queries are often real-

istic. For 2-terms and 3-terms, we have similar observations but it is also apparent that the sequencing of the words is not

very natural. Another point to note is that such models often contain word repetitions. Both these aspects are fall-outs of

the relaxation of the strict ordering constraint. 

3.1.1. Query generation process 

We now explain our process of generating artificial queries using n -grams or n -terms. We denote the query length (in

words) as L , a random variable that can take integral values between two and ten. Query length distribution refers to the

probability distribution of L , which is empirically estimated from the log. All the generation models described here are

made to follow this distribution. The process for generating artificial queries using n -grams is as follows (the process is

exactly analogous for n -terms): first a value l of L is stochastically sampled from the query length distribution. Then, an n -

gram is sampled in proportion to its probability, forming the initial query. An extra word is added to this initial query trying

to extend the previous string of (n − 1) words. This new word is chosen probabilistically from all the n -grams which have

their first (n − 1) words as the string concerned. This process is continued till the desired query length, i.e., l , is reached.

When a query generation process is unable to add a new word to a partially generated query using an n -gram model, then

it backs off to an (n − 1) -gram generative model to generate the new word. 

Example of an n -gram model query generation. We explain the generation process with one of the example queries

for 3-grams in Table 1 , a thousand miles sheet music for websliders . First, we stochastically sample a query

length seven from the real log query length distribution, which implies that the generated query will have seven words.

Next, the 3-gram a thousand miles is sampled from the list of all real tri-grams based on its occurrence probability.

We now try to extend the query by looking at all 3-grams that start with the 2-gram thousand miles . Using similar

frequency-biased sampling as above, we obtain the tri-gram thousand miles sheet . Next, a search for 3-grams begin-

ning with miles sheet fails, and hence we back off to the 2-gram model and sample for 2-grams starting with sheet ,
which produces sheet music . We resume our search for tri-grams using the rightmost 2-gram and add the words for
and web-sliders in consecutive iterations. No backing off was required in the last two steps. Since we have now reached

the desired query length of seven, the query generation process stops. 

We do not choose a fixed length for all the queries in the artificial logs – we maintain the query length distribution of

the real log. In other words, the proportion of queries of a particular length (in words) is approximately the same in an

artificial log as in the real log. In our algorithm for generating artificial logs, we first stochastically pick a query length l and

continue the query generation process till the query reaches l words, and then stop. Since our query generation process (for

any language model) works by adding one word at a time, it is not difficult to stop the query at a particular number of

words. For more discussion on this topic, see Section 3.1.2 . 

Example of an n -term model query generation. We explain the query generation process for an n -term model

with one of the example queries in Table 1 , adelaide entertainment explained seating plan area , using

the 3-term model. First, we stochastically sample a query length six from the real log query length distribution, which

implies that the generated query will have six words. Next, the 3-term {adelaide, explained, entertainment}
gets sampled from the list of all real 3-terms based on its occurrence probability. Since the set of 3! = six 3-grams

{adelaide explained entertainment, adelaide entertainment explained, explained adelaide 
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entertainment, explained entertainment adelaide, entertainment adelaide explained, 
entertainment explained adelaide} are all indexed as one item {adelaide, entertainment, explained}
in the 3-term probability list (individual words in a set arranged arbitrarily, not alphabetically), we arbitrarily select one

of these to be the 3-gram in the query, say, adelaide entertainment explained . We now try to extend the query

by selecting one out of all 3-terms that contain any two of the words in the 3-term {adelaide, entertainment,
explained} . Now say such a search fails. We then back off to the 2-term model, which implies that we now look

for a 2-term that contains only one of the words in {adelaide, entertainment, explained} . Using similar

frequency-biased sampling as earlier, we now obtain the 2-term {adelaide, seating} . So the new word seating
is appended to the query to obtain the partial query adelaide entertainment explained seating . Next, we

resume the search for 3-terms containing any two of the words from the following set with four items: {adelaide,
entertainment, explained, seating} . We sample {entertainment, seating, plan} and the new word

plan is appended to the end of the query. In the next step, we sample {adelaide, seating, area} and so add

area to the query. No backing off was required in the last two steps. Since we have now reached the desired query length

of six, the query generation process stops. 

We create the n -terms by the following process: we make one pass on the log and identify the unique n -terms (each

query with k unique words contributes C ( k, n ) unique n -terms, k > = n ). In the same pass, we can also compute the fre-

quencies of each of these n -terms, by incrementing an n -term count by one each time we encounter a duplicate. We then

normalize the n -term frequencies with the number of queries in the log to obtain the n -term probabilities. Now, using

these n -term probabilities, we follow the algorithm described earlier to generate the query. In short, we first stochastically

sample a query length (in words) l from the real length distribution. Next, we choose an n -term in proportion to its oc-

currence probability. We then try to extend the query by one word by selecting an n -term which has (n − 1) words (any

(n − 1) words, not necessarily the last) in common with the current (partial) query. This process is repeated using similar

frequency-biased sampling of n -terms till the desired query length l is reached. In case an n -term is not found with the

required words in common, we back off to an n -term model which is one order less than the current model. 

Words are often repeated in n -term queries because of the following reason. When an n -term is selected for a query,

it usually has a relatively high probability. Next, its words do not go out of contention for being reselected for the query.

For example, if the 3-term {anti, software, virus} ( anti software virus in the query) is selected, the next

step is to look for a relatively high-probability 3-term with any two words of the query in common. It is quite probable

that the 3-term {anti, virus, software} is selected again, with the query now becoming anti software virus
anti or anti software virus software or anti software virus virus . In our model, we did not explicitly

disallow the original n -term not to be reconsidered for query extension. Moreover, while extending the query in an n -term

model, it is not only the last (n − 1) words that are considered. Instead, the new n -term to be selected may have any

(n − 1) words of the query in common. For example, in the query housing thailand what is cost of housing ,
once we have housing thailand what is cost of , the next 3-term can have any of the two words from the set

{housing, thailand, what, is, cost, of} . So, since a frequent n -term always has the possibility of being “re-

selected”, we often see duplicate words in the n -term model-generated queries. The initial intuition behind our exploring

the n -term models was to examine the hypothesis that queries were relatively free-word order, i.e., word order did not

matter much for the user while formulating the query. We observed that n -term models failed to generate realistic queries,

which gave us evidence that word order was indeed important ( Section 6 ). 

The algorithms for generating artificial logs from real logs are presented in Algorithms 1 ( n -gram-Log-Gen ) and 2 ( n -

term-Log-Gen ). An expression refers to any n -gram or any n -term in the two algorithms, respectively. The backing off step

is shown in bold in both algorithms. The steps unique to the n -term model are marked with comments in boldface . 

3.1.2. Query termination 

Deciding the final length of a query based on the partial query generated so far is an interesting possibility. However, it

is non-trivial, or rather extremely hard to decide the length in the n -gram model based on the current partial query, using

syntactic properties only. So we have taken a more natural and simpler alternative in the paper by using the query length

distribution as a constraint. Further, similar works in NLP have used such an approach in the past – fixing the sentence

length a priori ( Biemann, Krumov, Roos, & Weihe, 2016; Biemann, Roos, & Weihe, 2012 ). Moreover, deciding the current

query length dynamically may make it very difficult to simulate the query length distribution in the real log. From past work

in this area, we know that the subsequent co-occurrence network structure depends on the sentence length distribution

( Biemann et al., 2016; Biemann et al., 2012 ). Thus, it would be difficult to have a fair comparison between real and model-

generated query word networks if the length distributions do not match. Future research can focus on building a constrained

generative model which would require a trade-off between achieving an expected length versus a more “natural” completion

of the query, using syntactic observations only. In this context, we conducted the following experiment. Instead of words,

we constrain the length by “segments”, which are the individual syntactic units of queries and are possibly multi-word

( Hagen, Potthast, Beyer, & Stein, 2012; Li, Hsu, Zhai, & Wang, 2011; Saha Roy, Ganguly, Choudhury, & Laxman, 2012b; Tan &

Peng, 2008 ). Hence, they can be a better substitute for being the building blocks of queries instead of single words. Thus, it

is worthwhile to explore how a generative model that uses length distributions based on segments would perform in this

setup. So, we first segment our real log using the state-of-the-art query segmentation algorithm described in Saha Roy et al.

(2012b) . We then compute the length distribution of the log in terms of segments and not words. We then use the 2-gram
Please cite this article as: R. Saha Roy et al., Syntactic complexity of Web search queries through the lenses of language 
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Algorithm 1 n -gram-Log-Gen( Q, n, numQueries ) 

Require: Real query log Q , model number n ( n = 3 for 3 -gram model), no. of queries to be generated numQueries 

1: E ← ∅ � E is the list of all expressions in Q ( n -grams, ( n -1)-grams, . . . , 1 -grams), initialized to NULL 

2: for all q ∈ Q do � For each query q in input log Q 

3: Extract all expressions E q from q � n -grams required for basic model, lower order expressions required for backoff

4: for all expressions e ∈ E q do � For every expression e in the query q 

5: if e / ∈ E then � Expression e not found in list E 

6: E ← E ∪ e � Expression e added to list E 

7: count(e, Q ) ← 1 � Frequency of e in Q is set to 1 when encountered for the first time in Q 

8: else � Expression e has been encountered in Q earlier 

9: count(e, Q ) ← count(e, Q ) + 1 � Increment count of e in Q by one 

10: end if � end if e / ∈ E 

11: end for � end for all expressions e ∈ E q 
12: end for � end for all q ∈ Q 

13: for all e ∈ E do � For every expression e in Q 

14: probab(e, Q ) ← count(e, Q ) / | Q | � Compute probabilities of expressions e in Q 

15: end for � end for all e ∈ E 

16: Partition E into E (1) , E (2) , . . . E (n ) by no. of words in expression � 1 -grams go to E (1) , 2 -grams to E (2) , . . . , n -grams to E (n ) 

17: Q 

′ ← ∅ � List of generated queries Q 

′ initialized to NULL 

18: while | Q 

′ | < numQueries do � Generate queries till we reach the desired number numQueries 

19: qlen ← stochastic-sample-fn( lend ist) � lend ist ∼ Real-len-dist( Q), we use 

a stochastic sampling function stochastic-sample-fn() to sample a query length qlen from the word length distribution 

function of the real queries Real-len-dist() 

20: q ′ ← “” � Query to be generated q ′ initialized to empty string 

21: e ′ ← freq-biased-sample-fn( E n ) � We use a frequency-biased sample function freq-biased-sample-fn() to sample an 

expression e ′ from a list in proportion to its occurrence probability in Q 

22: q ′ ← concat(q ′ , e ′ ) � Concatenate e ′ to q ′ 
23: while len( q ′ ) < qlen do � Continue till we reach the desired query length 

24: select-flag ← FALSE � select-flag is a Boolean variable indicating whether we have found a new e ′ to extend q ′ 
25: while select-flag = FALSE do � select-flag set to TRUE when new expression e ′ is picked 

26: x ← 1 � Try to select the next expression e ′ for extending q ′ , x acts as a model selector 

27: while x ≤ n − 1 do � Continue till we reach the 1 -gram model, n − (n − 1) = 1 

28: E ′ ← ∅ � E ′ will contain candidate list of expressions to choose from for query extension 

29: q ′ ≡ q ′ [1 2 . . . k ] � k words so far in q ′ 
30: if x < n − 1 then � We do not need to back off to the 1 -gram model yet 

31: for all E (n −x +1) 
i 

∈ E (n −x +1) do � Superscript denotes appropriate partition by length of expression in 

words, subscript denotes individual expressions in set 

32: if q ′ [(k − (n − x )) (k − (n − (x − 1))) . . . (k − 1) k ] ≡ E (n −x +1) 
i 

[1 2 . . . (n − x )] then � Last (n − x ) 

words of query so far q ′ must be the same as the first (n − x ) words of an expression in E (n −x +1) 

33: E ′ ← E ′ ∪ E (n −x +1) 
i 

� Add the satisfying expression to the candidate list 

34: end if � end if q ′ [(k − (n − x )) (k − (n − (x − 1))) . . . (k − 1) k ] ≡ E (n −x +1) 
i 

[1 2 . . . (n − x )] 

35: end for � end for all E (n −x +1) 
i 

∈ E (n −x +1) 

36: else � We have reached the 1 -gram model 

37: E ′ ← E (1) � Select a 1 -gram 

38: end if � end if x < n − 1 

39: if E ′ � = ∅ then � Non-zero candidate expressions found 

40: break � Break loop 

41: else � No expressions found 

42: x ← x + 1 � Back off to lower order model 

43: end if � end if E ′ � = ∅ 
44: end while � end while x ≤ n − 1 

45: e ′ ← freq-biased-sample( E ′ ) � Sample from E ′ in proportion to frequency 

46: select-flag ← TRUE � An expression has been picked for query extension 

47: end while � end while select-flag = FALSE 

48: q ′ ← concat( q ′ , e ′ [ n − x + 1] ) � e ′ has (n − x + 1) words, we need to concatenate only the last word; we add one 

new word in every iteration 

49: end while � end while len( q ′ ) < qlen 

50: Q 

′ ← Q 

′ ∪ q ′ � Add newly generated query q ′ to output list Q 

′ 
51: end while � end while | Q 

′ | < numQueries 

52: return Q’ � Return list of generated queries 
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Algorithm 2 n -term-Log-Gen( Q, n, numQueries ) 

Require: Real query log Q , model number n ( n = 3 for 3 -term model), no. of queries to be generated numQueries 

1: E ← ∅ � E is the list of all expressions in Q ( n -terms, ( n -1)-terms, . . . , 1 -terms), initialized to NULL 

2: for all q ∈ Q do � For each query q in input log Q 

3: Extract all expressions E q from q � n -terms required for basic model, lower order expressions required for backoff

4: for all expressions e ∈ E q do � For every expression e in the query q 

5: if e / ∈ E then � Expression e not found in list E 

6: E ← E ∪ e � Expression e added to list E 

7: count(e, Q ) ← 1 � Frequency of e in Q is set to 1 when encountered for the first time in Q 

8: else � Expression e has been encountered in Q earlier 

9: count(e, Q ) ← count(e, Q ) + 1 � Increment count of e in Q by one 

10: end if � end if e / ∈ E 
11: end for � end for all expressions e ∈ E q 
12: end for � end for all q ∈ Q 

13: for all e ∈ E do � For every expression e in Q 

14: probab(e, Q ) ← count(e, Q ) / | Q | � Compute probabilities of expressions e in Q 

15: end for � end for all e ∈ E 

16: Partition E into E (1) , E (2) , . . . E (n ) by no. of words in expression � 1 -terms go to E (1) , 2 -terms to E (2) , . . . , n -terms to E (n ) 

17: Q 

′ ← ∅ � List of generated queries Q 

′ initialized to NULL 

18: while | Q 

′ | < numQueries do � Generate queries till we reach the desired number numQueries 

19: qlen ← stochastic-sample-fn( lend ist) � lend ist ∼ Real-len-dist( Q), we use 

a stochastic sampling function stochastic-sample-fn() to sample a query length qlen from the word length distribution 

function of the real queries Real-len-dist() 

20: q ′ ← “” � Query to be generated q ′ initialized to empty string 

21: e ′ ← freq-biased-sample-fn( E n ) � We use a frequency-biased sample function freq-biased-sample-fn() to sample an 

expression e ′ from a list in proportion to its occurrence probability in Q 

22: e ′ gram 

← permute (e ′ ) � Create an n -gram e ′ gram 

by an arbitrary permutation of the words in e ′ 
23: q ′ ← concat(q ′ , e ′ gram 

) � Concatenate e ′ gram 

to q ′ 
24: while len( q ′ ) < qlen do � Continue till we reach the desired query length 

25: select-flag ← FALSE � select-flag is a Boolean variable indicating whether we have found a new e ′ to extend q ′ 
26: while select-flag = FALSE do � select-flag set to TRUE when new expression e ′ is picked 

27: x ← 1 � Try to select the next expression e ′ for extending q ′ , x acts as a model selector 

28: while x ≤ n − 1 do � Continue till we reach the 1 -term model, n − (n − 1) = 1 

29: E ′ ← ∅ � E ′ will contain candidate list of expressions to choose from for query extension 

30: if x < n − 1 then � We do not need to back off to the 1 -term model yet 

31: for all E (n −x +1) 
i 

∈ E (n −x +1) do � Superscript denotes appropriate partition by length of expression in 

words, subscript denotes individual expressions in set 

32: if | set(q ′ ) ∩ E (n −x +1) 
i 

| = n − x then � Any (n − x ) words of query so far q ′ must be the same 

as any (n − x ) words of an expression in E (n −x +1) , the set() function converts a string into a bag-of-words set form, 
n -terms in E (. ) are already in set form 

33: E ′ ← E ′ ∪ E (n −x +1) 
i 

� Add the satisfying expression to the candidate list 

34: end if � end if | set(q ′ ) ∩ E (n −x +1) 
i 

| = n − x 

35: end for � end for all E (n −x +1) 
i 

∈ E (n −x +1) 

36: else � We have reached the 1 -term model 

37: E ′ ← E (1) � Select a 1 -term 

38: end if � end if x < n − 1 

39: if E ′ � = ∅ then � Non-zero candidate expressions found 

40: break � Break loop 

41: else � No expressions found 

42: x ← x + 1 � Back off to lower order model 
43: end if � end if E ′ � = ∅ 
44: end while � end while x ≤ n − 1 

45: e ′ ← freq-biased-sample( E ′ ) � Sample from E ′ in proportion to frequency 

46: select-flag ← TRUE � An expression has been picked for query extension 

47: end while � end while select-flag = FALSE 

48: new-word ← e ′ \ set( q ′ ) � The new word to be added is the set difference between the words in the query so 

far q ′ and the new expression e ′ 
49: q ′ ← concat( q ′ , new-word) � Concatenate the new word to the query so far 

50: end while � end while len( q ′ ) < qlen 

51: Q 

′ ← Q 

′ ∪ q ′ � Add newly generated query q ′ to output list Q 

′ 
52: end while � end while | Q 

′ | < numQueries 

53: return Q’ � Return list of generated queries 
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Table 2 

Perplexity and counts of the different models for NL and Web 

queries. 

Model NL Queries NL Queries 

(Perplexity) (Perplexity) (Counts) (Counts) 

1-gram 1,406.593 6 ,417.283 0 . 3 M 0 . 2 M 

2-gram 193.722 104.337 3 . 5 M 1 M 

3-gram 17.663 5.430 9 . 7 M 1 . 1 M 

2-term 893.851 384.945 48 . 1 M 4 . 2 M 

3-term N.A. a 23.360 N.A. a 24 . 8 M 

a Dictionary runs out of memory even with 64 GB of RAM. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

model to generate queries, but using segment 2-grams and segment occurrence probabilities instead of words. Follow-up

experimental results on the segment-based generative model are discussed in Section 4.4.1 . 

3.2. Measuring model perplexity 

Perplexity is one of the most common metrics used for evaluating n -gram systems ( Bahl, Jelinek, & Mercer, 1983 ). It can

be intuitively thought of as the weighted average number of values that a random variable can take. Thus, perplexity of an n -

gram model tells us that if, on an average, a string of (n − 1) words of the language are known, how many words are likely

to occur in the next position. This indicates the number of words that can follow a given (n − 1) -gram in the language. A

higher value means that the n th word is less predictable from the previous (n − 1) -word context. A higher perplexity value

for a language model thus implies less certainty in the user’s mind about its predictability. The perplexity of a probability

distribution p ( x ) of a random variable X is defined as 2 H ( X ) , where H ( X ) is the entropy of X and is given by Eq. 3 : 

H(X ) = −
∑ 

x i ∈ X 
p(x i ) log 2 p(x i ) (3) 

Computation method. For n = 1 , the computations are straightforward, i.e., the probability distribution of uni-grams is

the one whose entropy (and thus perplexity) is calculated. For n -grams and n -terms where n > 1, the weighted average of

entropies over all (n − 1) -grams is considered as the entropy of the model. The weight is the probability of occurrence of

the corresponding (n − 1) -gram in the corpus. The entropy of a particular (n − 1) -gram is the entropy of the probability

distribution over all words that can appear in the n th position given that the first (n − 1) words are fixed. This entropy,

raised to the power of two, gives the corresponding perplexity. Specifically, every n -gram slot ’s appearance is referred to

by some random variable X , with probability distribution p ( x ). The individual p ( x i )-s refer to the points in the probability

distribution p ( x ), or instantiations in which the slot can be filled. For an example with the 2-gram model, let X represent

the 2-gram slot < apple ... > , where ... can be filled by juice, tart or pie . Then, apple juice, apple tart
and apple pie would be represented by the x i -s ( x 1 , x 2 , x 3 ), and their occurrence probabilities would be denoted by the

individual p ( x i )-s ( p ( x 1 ), p ( x 2 ), p ( x 3 )). Then, we would compute an entropy for < apple ... > using Eq. 3 and the final

entropy of the 2-gram model would be the weighted sum of the entropies of all such 2-gram slots, the individual weights

being the occurrence probabilities of the respective 1-grams in the first positions of the 2-grams (like apple ). The individual

p ( x i )-s are < 1 and the individual log 2 ( p ( x i ))-s are < 0, but the negative of the resultant summation, i.e., H ( X ), is not less

than zero. It varies between 0 and log 2 N, where N is the number of points in the probability distribution p ( x ). Thus, the

perplexity, which is 2 H ( X ) , varies between 1 and N . 

3.3. Experimental results 

Table 2 reports the perplexities and counts of the different models for NL and Web search queries. The corresponding

perplexity values can be obtained simply by raising 2 to the power of the entropy value H ( X ) (as obtained from Eq. 3 ). For

NL, the corpus used contained 1 M randomly sampled sentences from newswire data 4 in 2010. Newswire text was chosen

because, in general, they contain cleaner NL sentences than random Web data. For comparability of NL values with queries,

we kept the dataset size similar for the latter by randomly sampling 1 M queries from our dataset. To preserve the natural

frequency distribution, duplicates were not removed from either dataset. The NL text was case-folded and only alphanumeric

characters (and whitespace) were retained. Perplexity values for Standard English reported in Brown, Pietra, Mercer, Pietra,

and Lai (1992a) are obtained from corresponding cross-entropy values and hence are not directly comparable to those in

Table 2 . 
4 http://corpora.uni-leipzig.de/download.html , Accessed 13 January 2016. 
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Table 3 

Acronyms used in this section. 

Acronym Expansion 

LM Language Model 

WCN Word Co-occurrence Network 

LCC Largest Connected Component 

CC Clustering Coefficient 

ASPL Average Shortest Path Length 

KLD Kullback-Leibler Divergence 

DD Degree Distribution 

CDD Cumulative Degree Distribution 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.4. Interpretation 

It is quite interesting to note that while the perplexity of the uni-gram model for queries is much higher than that of NLs,

the perplexity of bi-grams and tri-grams show just the opposite trend. The explanation for this surprising trend is as follows.

We observed in our data that the rate of encountering a new word for queries is much higher (about one per 20 words)

than NL (about one per 58 words). Hence, the uni-gram distribution of queries is more diverse than NL. In fact, queries have

a much larger specialized or peripheral vocabulary and very small core vocabulary as compared to NLs ( Ferrer-i-Cancho &

Solé, 2001 ; Saha Roy, Ganguly, Choudhury, & Singh, 2011 ). This unique feature makes the perplexity of the uni-gram model

very high for queries. 

On the other hand, queries are also repeated and their repetition frequency is known to follow a power-law distribution

( Pass et al., 2006 ). In NL, sentences are rarely repeated exactly, except for phrases like Thank you and Good morning . In
our dataset, the number of duplicates (repeated at least once) in NL and queries were found to be 447 and 164, 185 respec-

tively. Furthermore, the mean sentence lengths for NL and queries were found to be 18.159 and 3.980 words, respectively.

These two factors play a crucial role in bringing down the bi-gram and tri-gram perplexities for queries. One interesting

conclusion from these findings on perplexity is that for a random sentence or query, a native speaker (or search engine user

in case of queries) will be able to predict a random word present in an NL sentence much more certainly than for a query.

On the other hand, if one or more words are shown, it is much easier to predict the rest of the words in a query than in an

NL sentence. This is precisely why an auto-complete feature can work much better for Web search engines than for a word

editor. An alternative perspective is as follows: Web search queries generated using bi-grams or tri-grams will look much

more realistic than NL sentences generated using the same LMs. 

The perplexities of n -terms are greater than their corresponding n -grams due to the manifold increase in the number

of possibilities in the former ( Table 2 ). The number of 3-grams is comparable to the number of the 2-grams for queries

because of the presence of a substantial number of 2-word queries, that do not contribute to 3-gram counts. 

The perplexity experiments were conducted to examine the hypothesis of queries evolving into a distinct linguistic sys-

tem, different from the mother NL from which the words of the “query language” are borrowed. Had the n -gram model

perplexity values between NL and queries been almost similar, the above hypothesis could have been directly questioned.

However, that was not the case and the values differed notably. Nevertheless, just having entropy or perplexity similar to

or lower than NL need not, by itself, be indicative of an underlying language system ( Sproat, 2010 ), and hence further ex-

perimentation was deemed necessary. The low perplexity of tri-gram models in query logs can be related to the fact that

tri-gram models are restrictive in generating synthetic queries and probably overfit the data. 

4. Complex network modeling for queries 

Network analysis provides an elegant mathematical framework to study various complex systems ( Albert & Barabási,

20 02; Newman, 20 03; Strogatz, 20 01 ). The success of such network-based techniques in the last couple of decades is pri-

marily due to the fact that a network can capture aggregate properties of a system, while considering both local and long

range (global) interactions present in a system. Of special interest to us here is the application of network models to linguis-

tics and corpus studies ( Choudhury & Mukherjee, 2009; Mehler, 2008 ). The most popular and well-studied representation

of a language corpus is the word co-occurrence network (WCN) ( Biemann et al., 2012; Choudhury, Chatterjee, and Mukherjee,

2010; Dorogovtsev and Mendes, 2001 ; Ferrer-i-Cancho & Solé, 2001 ), which we have applied here to study the statistical

properties of query logs. In the recent past, such WCNs have also been used for term weighting in IR ( Blanco & Lioma,

2012 ). The acronyms used in this section are expanded in Table 3 . 

4.1. Network definition and construction 

A WCN for any given text corpus is defined as a network N : 〈 N, E〉 , where N is the set of nodes each labeled by a unique

word and E is the set of edges. Co-occurrence can be defined on a query-level, sentence-level, paragraph-level, document-

level, corpus-level or in a window of n words. In our model of a WCN, two nodes { i, j } ∈ N are connected by an edge ( i, j )
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Fig. 1. Illustration of a WCN for queries. It is built from the toy query log provided in the text. Pruned edges are shown using dashed lines. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

∈ E if and only if i and j co-occur in a query (analogous to an NL sentence ( Biemann et al., 2012 ; Ferrer-i-Cancho & Solé,

2001 ). Co-occurrence can be defined variously; in this paper, we define local and global models of co-occurrence as follows.

Local co-occurrence. According to this model of WCN, immediate word neighborhood is considered important and an

edge is added between two words only if they occur within a distance of two (i.e., separated by zero or one word) in a

query. 

Global co-occurrence. In this model, an edge is added between two words if they occur within the same query, irre-

spective of their positions. Thus, a global co-occurrence network will have more edges than a local co-occurrence network. 

For both local and global networks, the edges resulting from random and in-significant collocations are pruned using

edge restriction condition ( Ferrer-i-Cancho & Solé, 2001 ) as follows. Let i and j be two distinct words from the corpus. Let

p i , p j and p ij be the probabilities of occurrence of i, j and the 2-gram 〈 i j 〉 (or 2-term {i, j} ), respectively, in the data. Then,

in a restricted network, an edge exists if and only if p ij > p i p j . All networks considered in this study are undirected and

unweighted. Fig. 1 illustrates the concept of WCN by showing the network generated from the toy query log below. Pruned

edges are shown using dashed lines. 

samsung focus gprs config 
dell laptop extreme gaming config 
extreme gaming dell laptop config 
buy samsung focus at&t 
gprs config at&t samsung focus 
samsung focus gprs config at&t 
As per convention ( Ferrer-i-Cancho & Solé, 2001 ), all network statistics discussed are computed on the largest connected

component (LCC) of the graph. For LCCs of WCNs generated for 1 M query samples from our query logs, | N | � 180, 0 0 0

(both for local and global models), while | E| � 1 . 5 M (local) and | E| � 2 . 0 M (global), on an average. Thus, these are very

sparse networks with average edge density (i.e., probability of having an edge between a random pair of nodes = | E| / (| N| 
2 

)
)

of the order of 10 −4 . 

4.2. Topological properties of WCNs 

We now explain the topological properties of word co-occurrence networks that we use for characterizing real and gen-

erated query logs, namely, degree distribution, clustering co-efficient, average shortest path length, and network motifs. 

4.2.1. Degree distribution 

The degree of a node in a network is the number of nodes that it is connected to. The degree distribution (DD) of a

network is the probability distribution p k of a node having a degree k . A cumulative degree distribution (CDD) P k (probability

of a node having degree ≥ k ) is more robust to noisy data points and is preferred for visualization. A representative CDD

for a query WCN built from 1 M randomly sampled queries is shown in Fig. 2 (local model; global model is almost exactly

similar) and is found to resemble a two-regime power law. This is also found for NLs ( Ferrer-i-Cancho & Solé, 2001 ) and

indicates the presence of a kernel-periphery structure. A kernel is a small subgraph of the network where all nodes have very

high degrees. The nodes in the periphery have relatively lower degrees than the nodes in the kernel. The majority of the

nodes in a query WCN are observed to form very small peripheral clusters which are all connected to the kernel. 
Please cite this article as: R. Saha Roy et al., Syntactic complexity of Web search queries through the lenses of language 

models, networks and users, Information Processing and Management (2016), http://dx.doi.org/10.1016/j.ipm.2016.04.002 

http://dx.doi.org/10.1016/j.ipm.2016.04.002


R. Saha Roy et al. / Information Processing and Management 0 0 0 (2016) 1–26 11 

ARTICLE IN PRESS 

JID: IPM [m3Gsc; April 29, 2016;8:13 ] 

Fig. 2. Sample Cumulative Degree Distribution (CDD) for a real query log. A CDD smoothens out the distribution, removing jitters in the DD graph by 

handling intermittent degrees with zero probability appropriately. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.2.2. Clustering coefficient 

Let a node r in the network have k neighbors. Then, 
(

k 
2 

)
edges are possible among its neighbors. The clustering co-

efficient (CC) of r, CC r , is the fraction of these edges that actually exist in the network ( Watts & Strogatz, 1998 ). The CC N of

the entire network N is defined as the average of CC r over all r ∈ N . A high CC indicates that the network consists of one

or more dense subgraphs or clusters. The average CCs for the real WCNs (built from 1 M random queries) are 0.429 (local)

and 0.521 (global). The CC for the global network is slightly higher because of the higher edge density. These values are

quite high as compared to the CC of an E-R random graph ( Erdös and Rényi, 1959 ; Ferrer-i-Cancho & Solé, 2001 ), which

is of the order of its edge density ( 10 −4 ). CC for similar networks for NL has been reported to be 0.437 ( Ferrer-i-Cancho &

Solé, 2001 ). This result shows lower density for NL WCNs than those for queries. 

4.2.3. Average shortest path length 

The shortest path length between a pair of nodes is the minimum number of edges that one must traverse to reach one

node from the other. The average shortest path length (ASPL) is defined as the mean of the shortest path lengths between

all pairs of nodes in the network that can be reached in a finite number of steps from each other. The ASPL for the WCN

built from a 1 M real query sample is 3.519 (local) and 3.004 (global). The ASPL for the global network is slightly lower

because of the higher edge density. These values are quite small for a network with close to 180, 0 0 0 nodes, and near to

the expected ASPL for an E-R random graph of similar size and density (4.253 (local) and 3.830 (global)). ASPL for an E-R

random graph is given by l n | N| /l n ( ̄k ) ( Watts & Strogatz, 1998 ), where k̄ is the average degree of the graph, given by (2 ×
| E |)/| N |. It has been argued that the low ASPL for similarly constructed NL WCNs (2.67) is an outcome of an optimization of

language structure necessary for fast recognition and retrieval of words ( Ferrer-i-Cancho & Solé, 2001 ). As an aside, we also

note that a network with high CC, low ASPL and low edge density (all with respect to random graphs) is known as a small

world network ( Newman, 2003 ). Hence, like social networks and WCN for NLs, WCNs for queries are also examples of small

world networks. 

4.2.4. Network motifs 

Network motifs are small subnetworks that are found to occur in significantly higher numbers in real networks than in

random networks ( Batagelj & Mrvar, 2002; Kashani et al., 2009; Kashtan, Itzkovitz, Milo, & Alon, 2004; Milo et al., 2002;

Schreiber & Schwöbbermeyer, 2005; Wernicke, 2005 ). For example, cliques with four nodes have an occurrence probability of

10 −11 in a real WCN, while their expected probability in an E-R random graph ( Erdös & Rényi, 1959 ) with the same number

of nodes and edge density, is only 10 −20 . A �n -motif is defined as a subgraph of n distinct nodes in the network, unique to

structural isomorphism. Counting motifs for large graphs is computationally expensive, because beyond �4 , motifs typically

have a very large number of possible isomorphisms. In this study, we only consider connected �3 and �4 motifs. Fig. 3

enumerates all the connected �3 and �4 motifs. The motifs in this paper are named following the convention introduced by

Biemann et al. (2012) . Motif detection has attracted attention as a useful technique to uncover structural design principles of

networks in various domains like biochemistry, neurobiology, ecology, and engineering ( Milo et al., 2002; Wernicke, 2005 ). 

Here, we use the algorithm FANMOD ( Wernicke, 2005 ) to detect �3 and �4 motifs. Since motif counts are dependent on

the size of a network, they must be suitably normalized by their corresponding expected counts for an E-R random graph

model with the same number of nodes and edge density ( Wernicke, 2005 ). Since the ratios of the probabilities can be very

skewed, we take the natural logarithms of these quantities for meaningful comparisons of values, which we shall refer to as
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Fig. 3. Connected �3 and �4 motifs with examples and LNMCs from the real log. LNMC represents log normalized motif counts, i.e., logarithms of motif 

counts normalized by expected counts (or, corresponding probabilities) in an E-R random graph. 

Table 4 

Basic network statistics for various network sizes (local and global models indicated by subscripts l and 

g respectiely). The properties include the numbers of nodes and edges, the clustering coefficient and 

the average shortest path length, of the largest connected component in the network. W represents 1 M 

queries. 

Log size |N| l |N| g |E| l |E| g CC l CC g ASPL l ASPL g 

W 177, 900 177, 975 1, 526, 043 2, 089, 729 0.429 0.521 3.519 3.320 

W /10 46, 528 46, 523 299, 496 412, 218 0.463 0.555 3.536 3.328 

W /20 30, 398 30, 399 169, 670 233, 932 0.474 0.566 3.567 3.355 

W /50 17, 160 17, 162 77, 052 106, 306 0.493 0.588 3.644 3.410 

W /100 10, 991 10, 990 41, 270 56, 992 0.512 0.611 3.741 3.481 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

the Log Normalized Motif Counts (LNMC), defined in Eq. 4 below: 

LNMC(�n 
i ) = log e 

Actual count of �n 
i 

Expected count of �n 
i 

in an E-R graph 

(4) 

where, �n 
i 

is the i th n -sized motif. For example, following Fig. 3 , �3 
2 

and �4 
3 would be the 3-clique and the 4-loop-

out respectively. Fig. 3 (third row) reports the LNMC values for �3 and �4 motifs for the real WCN (local co-occurrence

model). This vector of eight elements for motifs is referred to as the motif signature of the network ( Biemann et al., 2012 ).

These ratios indicate that the probabilities of occurrence of all the connected motifs in a real WCN are several orders of

magnitude higher than probabilities in an E-R random graph. Fig. 3 also contains real examples of each type of motif from

the network. Motifs in WCNs capture semantic relatedness between the words, and certain �4 motifs like boxes and chains

are representative of semantic concepts like synonymy and polysemy, respectively ( Biemann et al., 2012 ). We found motifs

to offer insights into query semantics as well ( Section 6 ). 

Basic network properties like the numbers of nodes and edges, the degree distribution, the clustering coefficient and the

average shortest path length are indeed very commonly used metrics for comparison. However, it is true that they cannot

completely capture the complexity of the model generating the network, and can be replicated to a good extent using simple

models. On the other hand, using motif signatures is a fairly new technique for this purpose, being proposed by Biemann

et al. in 2012 ( Biemann et al., 2012 ). While certain motifs like 4-cliques or 4-semi-cliques do represent strong connections

among nodes in the network when present in substantially high counts, other motifs like chains, boxes, loop-outs and stars

represent interesting semantic relationships among its nodes. Non-existent edges in the motifs represent non-connections

between pairs of nodes, which may often convey non-trivial interpretations. Exactly replicating the motif signature of a

network appears to be fairly hard, and thus the proximity of the motif signature of a network built from model-generated

query logs (or NL sentences) to the signature of the network built from real logs can indeed shed light on the complexity of

the model ( Biemann et al., 2012 ). A motif signature is a more effective property for comparing networks at a macroscopic

or aggregate level, than the standard characteristics like degree distribution, clustering coefficient and average shortest path

length. 

4.3. Stability of WCNs 

The trends in the network statistics described above are useful only if they remain reasonably fixed when the size of the

log is varied. Hence, to analyze the stability of the WCN statistics, we varied the network size by controlling the number

of queries from which the network is created. Let W (= 1 M here) be the number of sample queries used to build a large

WCN. We construct smaller query logs consisting of W /10, W /20, W /50, and W /100 queries by random sub-sampling of the

entire log and computing the network statistics. To minimize sampling bias, for each W / s -sized log, the experiments were

repeated s times and statistics were averaged over these s instances (not applicable for DD). Table 4 reports | N |, | E |, CC and

ASPL for each of these sizes. Subscripts l and g represent local and global models of co-occurrence. Fig. 4 shows the CDD

plots for the respective networks (one specific sample from each network size; local co-occurrence model). In this figure,

from the top left, we show degree distributions for networks constructed from query logs of sizes W, W /10, W /20, W /50,

and W /100. We do not reduce the network size beyond W /100 because W /10 0 0 � 10 0 0 queries which is too small for any

reliable network analysis. 
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Fig. 4. (Color online) Sample CDDs at different network sizes. Here W represents 1 M queries. The network stabilizes to its final form marked by a two- 

regime power law, at about W /10. 

Table 5 

�3 and �4 Motif signatures at various network sizes (local co-occurrence). The vector composed of the LNMC 

values of the two 3-motifs and the six 4-motifs is referred to as the motif signature of a network. 

Log size 3-chain 3-clique 4-chain 4-star 4-loop-out 4-box 4-semi-clique 4-clique 

W 3.574 7.973 4.637 6.350 10.998 8.003 16.921 23.562 

W /10 3.063 7.658 4.417 6.261 10.839 7.905 16.375 22.791 

W /20 2.873 7.172 4.066 5.890 10.251 7.189 15.427 21.460 

W /50 2.614 6.580 3.587 5.407 9.489 6.215 14.208 19.735 

W /100 2.371 6.185 3.192 4.915 8.873 5.406 13.296 18.498 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The results (mean values over s experiments) in Table 4 show that the statistics are extremely robust to network size

variation. Similar stability for WCNs for NL text has been reported in Biemann et al. (2012) . Importantly, the standard devia-

tions for the s experiments were found to be very low in all cases, further indicating network stability (of the orders of 10 −3

for CC and 10 −2 for ASPL respectively). Even when the dataset size is decreased by two orders of magnitude ( W to W /100),

the CC and ASPL change only by � 17% ( g ) to 19% ( l ) and � 5% ( g ) to 6% ( l ), respectively. We also note an interesting trend

here – both CC and ASPL increase as the network size decreases. This is slightly counter-intuitive, because a large network

with a small ASPL is expected to have a high CC. However, the trend is explained as follows. As the network grows in size

due to an increase in the number of queries, (a) new nodes join the network with edges connecting them to existing nodes;

and (b) new edges form between existing nodes. Since new nodes do not immediately have several new connections, the

first event decreases the CC and increases the ASPL. The second event decreases the ASPL and increases the CC. However,

these rates of increase and decrease of CC and ASPL caused by the two events are not the same. For Web queries, with

lots of new and rare words (arising from various proper nouns) continuously joining the network, it is the first event that

mostly dominates and is responsible for the drop in CC and increase in ASPL. 

Examining the degree distribution, it is evident that the network stabilizes to its final form marked by a two-regime

power law, at about W /10, which is 10 0 , 0 0 0 = 0 . 1 M queries. The motif statistics for the local network indicate similar

stabilization trends and have been shown in Table 5 . Motif results for the global network also show similar behavior and

hence are not reported here. From these results, we infer that for dependable query WCN analysis, one must have at least

0 . 1 M queries in their sample. 

Proximity of local and global co-occurrence networks. An important observation from these experiments on network

stability is the relative invariance in the properties of local and global co-occurrence networks for queries. Even though the
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Table 6 

Mean network statistics for the query LMs. Since DD cannot be summarized by a single 

average value, the Kullback-Leibler Divergence (KLD) values are computed between the DDs 

(after applying add-one Laplace smoothing) of the real networks and the DDs of the model- 

generated networks. The CC, ASPL and KLD values for the models with minimum deviations 

from those for the real network are shown in boldface . 

Model |N| |E| CC ASPL KLD 

Real 34, 209 242, 680 0.623 3.302 0.0 0 0 

1-gram 28, 748 311, 955 0.280 2.823 0.349 

2-gram 33, 257 209, 947 0.619 5.011 0.077 

3-gram 60, 594 292, 210 0.591 3.472 0.068 

2-term 28, 978 227, 146 0.630 4.968 0.054 

3-term 47, 292 249, 966 0.634 3.538 0.031 

Table 7 

�3 and �4 motif signatures for the query LMs. M-Diff represents the sum of the absolute differences between a model network’s 

LNMC values with corresponding values from the real network. M-Sum is simply the sum of the individual values in a network’s 

motif signature. The two minimum M-Diff-s and the two maximum M-Sum-s are shown in boldface . 

Model 3-chain 3-clique 4-chain 4-star 4-loop-out 4-box 4-semi-clique 4-clique M-Diff M-Sum 

Real 2.941 7.185 4.101 6.057 10.315 7.212 15.463 21.484 0.0 0 0 74.758 

1-gram 2.579 6.428 3.706 4.868 8.987 6.627 13.710 19.072 8.781 65.977 

2-gram 2.969 7.369 4.162 6.095 10.464 7.540 15.795 21.954 1.590 76.348 

3-gram 2.971 8.049 4.631 6.001 11.383 8.286 17.281 24.153 8.109 82.755 

2-term 2.874 7.073 3.989 5.733 9.935 7.210 15.075 21.034 1.835 72.923 

3-term 2.907 7.832 4.439 5.859 11.057 7.967 16.832 23.514 6.113 80.407 

The three lowest and the highest values in the M-Diff and M-Sum columns, respectively, are marked in boldface . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

global networks have more edges, differences in the CC and ASPL values are very small. Moreover, trends observed in degree

and motif distributions are also quite similar. Thus, in the rest of this paper, results will be reported only on local WCNs. 

4.4. Comparison of real and model-generated query WCNs 

We have seen that the statistical properties of the networks are stable as long as the log consists of at least 0 . 1 M queries.

Therefore, for reliable results, we decided to conduct all our experiments on logs having 1 M queries. We sampled the entire

real query log to construct 100 sub-samples of 1 M queries each, each sub-sample preserving the query length distribution by

words. These will serve as our real logs for all the following experiments. Similarly, we stochastically generated 100 logs,

each consisting of 1 M queries, for each of the five generative models. We constructed the WCNs for these 6 (real and five

models) ×100 = 600 logs and computed the DD, CC, ASPL and motif signatures for each network. We observed negligible

variance in the network statistics across the 100 samples generated from the same model, which further demonstrates the

robustness of network modeling. Thus, we report only the average values for | N |, | E |, CC and ASPL in Table 6 , and the average

LNMC values for the connected �3 and �4 motifs in Table 7 . We note that the values reported here for the real log do not

necessarily match those corresponding to W in the previous sub-section because now the sampling is done preserving the

query length distribution by words; the sampling was intentionally random during the experiments on network stability for

emphasizing the idea of stability. Henceforth, we will refer to the WCNs generated from the real query logs as real networks

and the WCNs generated from the model-based query logs as model-generated networks . 

Since DD cannot be summarized by a single average value, the KLD ( Kullback & Leibler, 1951 ) is computed between the

DDs (after applying add-one Laplace smoothing ( Manning, Raghavan, & Schütze, 2008 )) of the real networks and the DDs

of the model-generated networks. These values are also reported in Table 6 . The smaller the KLD, the closer is the DD of

the network to that of the real WCN. Fig. 5 shows the CDDs for one of the sub-samples each from the real and the model-

generated networks. The degree k is the number of nodes that a particular node is connected to, in the network. The plots

have been split into two groups, to somewhat mitigate the problem of almost completely overlapping curves. 

Smoothing for KLD. We smooth the graph DDs to make them suitable for KLD computation in the following way. The

KLD between two probability distributions P and Q is defined as shown in Eq. 5 : 

D KL (P ‖ Q ) = 

∑ 

i 

P (i ) ln 

P (i ) 

Q(i ) 
(5) 

Finding the KLD requires that both the distributions sum to one. Hence, we use the simple (non-cumulative) DD. In all

our experiments, P is taken to be the DD of the real graph R . Next, KLD is defined only if Q ( k ) > 0 for any k where P ( k )

> 0. If the quantity 0 ln 0 appears in the formula, it is interpreted as zero. Now, there will be many degrees k in a model-

generated graph M such that no vertex has that degree. For such degrees, Q(k ) = 0 . But for some of the same degrees in

R , we may have P (k ) � = 0 , which is not permissible for KLD computation. To avoid such cases, we must smooth the DD of
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Fig. 5. (Color online) Sample CDDs for query LMs. It shows CDDs for one of the subsamples each from the real and the model-generated networks. The 

plots have been split into two groups, to somewhat mitigate the problem of almost completely overlapping curves. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

M at all points where Q ( k ) is zero. First, if the maximum degree for the real network ( k max (R ) ) is greater than that for

M ( k max (M) ), we set the maximum data point for Q to be at k max (R ) . Now for M , we first compute smoothed frequencies

(number of nodes having a particular degree) and then compute the probabilities. Say, all the degree points ( a + i ) in M

between degree a and degree b are missing (zero), where i is an integer and i min = 1 , where a < b and freq ( a ) < freq ( b ).

Then, we replace all these missing values with f req (b) − f req (a ) / (b − a ) , and this value is rounded off to the nearest

integer. If it becomes zero, we add one to all frequencies in M (add-one Laplacian correction) ( Manning et al., 2008 ). We

can similarly handle cases where freq ( a ) > freq ( b ). If the last t degree points for M are missing (zero) and the last degree

that has a non-zero frequency is m , then the frequencies of the last t points are replaced by freq (m ) /t and this value is

rounded off to the nearest integer, and the add-one Laplacian correction is applied if necessary. Finally, the corresponding

probabilities are computed by dividing the updated frequencies by the sum of the updated frequencies of all degrees of

nodes in the network. 

We can observe that even the DD of the 1-gram model is like a two-regime power law ( Fig. 5 ), which means that DD

is the easiest of the network statistics to replicate. For other generated networks, the DD is almost identical to the real

network, a fact also apparent from the KLD values in Table 6 . However, the 1-gram model has much lower CC and ASPL

than the real network. The CC matches (is close to the real network) for all models where n ≥ 2, and the ASPL matches

only for the 3-gram and 3-term LMs. Thus, ASPL is a harder statistic to replicate artificially than CC. 

A general observation from the motif signatures is that like NLs ( Biemann et al., 2012 ), it is possible to be close to real

networks on �3 motif counts with 2- and 3-grams. To examine deeper, we computed two aggregate motif statistics for each

model: M-Diff, the motif-wise (point-wise) sum of the absolute LNMC differences between real and generated networks, and

M-Sum , the sum of the LNMC values for all connected motifs. Eqs. 6 and 7 show computations of M-Diff and M-Sum for a

model M : 

M−Di f f (M ) = 

4 ∑ 

k =3 

∑ 

i 

| LN MC(�k 
i ) Real − LN MC(�k 

i ) LM 

| (6)

M−Sum (M ) = 

4 ∑ 

k =3 

∑ 

i 

LNMC(�k 
i ) LM 

(7)

The existence of a large number of connected motifs in a network is an indication of its non-randomness ( Wernicke,

2005 ). We argue that the larger the sum of LNMC values for connected motifs, the more structured the network is. How-

ever, if this sum exceeds that of the real WCN, it implies that the network is becoming more restrictive than what is nat-

urally expected. With M-Diff values as low as 1.590 and 1.835, the 2-gram and 2-term models have almost the same motif

signatures as the real network. On the other hand, going by the abundance of connected motifs, the 3-gram and 3-term

models seem to be the most restrictive ( > Real M-Sum ). As supporting evidence, we note that the 3-gram model has lower

perplexity than the 1-gram or 2-gram model ( Table 2 ). We also note that the n -gram models have motif signatures closer

to the real network than the corresponding n -term LMs. Thus, relative word ordering in queries is important. For example,

in the query convert pdf to word windows , the intent of the query would be altered if the order of pdf and word
was interchanged to convert word to pdf windows . 

4.4.1. Segment co-occurrence networks 

In continuation to the discussion in Section 3.1.2 , we now evaluate how segment co-occurrence networks behave in the

current framework. The basic network properties were computed on the LCCs and the results are presented in Table 8 and
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Table 8 

Basic network statistics for word ( w ) and segment ( seg ) co-occurrence 

networks for the same generative model 2-gram. 

Log |N| |E| CC ASPL KLD 

Real 34, 209 242, 680 0 .623 3 .302 0 .0 0 0 

2-gram- w 28, 748 311, 955 0.280 2.823 0.349 

2-gram- seg 270, 687 1, 642, 641 0.572 3.519 0.523 

Fig. 6. (Color online) Sample CDDs for word and segment co-occurrence networks for the same 2-gram generative model. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6 . We observe that the segment 2-gram model (2-gram- seg ) has matched up quite close to real logs (CC and ASPL); it is

slightly nearer to real logs on ASPL and slightly farther away on CC and KLD, than the word-level 2-gram model 2-gram- w .

The property values are quite close to real logs and to 2-gram- w in spite of the very large network size for segments than

words (almost eight times larger both in terms of nodes and edges than the word level 2-gram- w ). The number of nodes

in the segment model are so high because segments are created by permutations of individual words, which results in a

very large number of potential segments (although only a small fraction of the possible segments are actually present in

the real query log). All values are averaged over 100 samples of 1 M queries each. While it is intuitive that using segment

statistics could ultimately produce better quality logs, the degree distribution shows a slightly higher deviation from the

real distribution (the 2-gram- seg degree distribution plot is almost a one-regime instead of a two-regime power law) which

needs a more thorough investigation. Segment-based query generative models remains an important avenue to explore. 

4.5. Variation of the significance threshold 

In our co-occurrence model, we consider a co-occurrence between a pair of words only if they occur together more often

than expected by random chance . This is ensured by having an edge in the WCN only if the joint probability of occurrence

p ij of words i and j is greater than the product of their individual occurrence probabilities p i and p j , i.e., p ij > p i × p j (edge

restriction condition). This condition is imposed because if occurrences of i and j are independent, then p i j = p i × p j . Thus,

edges are not created simply by a binary indicator, i.e., if the two words are co-occurring in queries or not. 

However, weighted networks capture more information than un-weighted graphs, and we have used the latter in our

experimental model. Nevertheless, computing and comparing motif signatures between real and model-generated query 

logs are an integral part of our experimental framework, and counting motifs has not yet been defined for a weighted graph

in the literature. However, we did perform a set of experiments on un-weighted graphs that, in a way, simulates the effect

of weighting the edges. We do this by having a parameter α as the exponent of the p ij term in the edge restriction condition

( Section 4.1 ), and varying α between 0.0 and 2.0 in steps of 0.1. Thus, our edge restriction condition becomes p α
i j 

> p i × p j .

When α = 0 , p α
i j 

= 1 , and since p i × p j is always less than 1 if probabilities p i and p j are both non-zero, we have a network

with all the possible edges being present, irrespective of i and j co-occurring in a query. This is a boundary condition. As

α is increased from 0.0 to 1.0 in small steps, the number of edges in the network decreases. Consider a specific pair of

words i and j . Here a positive fraction is raised to the power of a positive fraction, and while the base of the quantity ( p ij )

remains constant, the exponent ( α) is increasing, and thus the value of the expression decreases. But the right-hand side of

the condition remains constant ( p i × p j ). Thus, it gradually becomes harder to have edges in the network. At α = 1 . 0 , we

reach our original edge restriction condition. As α is gradually increased from 1.0 to 2.0, the value of left-hand side further

decreases due to the nature of the values of the base and the exponent resulting in a continued decrease in the number of
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Table 9 

Effect of variation of α in edge restriction condition on ba- 

sic network properties of 2-gram model WCN. All computa- 

tions are performed on the LCC of the network. Values are 

averaged over 100 samples. 

α |N| |E| CC ASPL KLD 

0 .0 33, 213 225, 370 0.656 3.739 0.084 

0 .1 33, 213 225, 370 0.656 3.739 0.084 

0 .2 33, 213 225, 370 0.656 3.739 0.084 

0 .3 33, 213 225, 370 0.656 3.739 0.084 

0 .4 33, 213 225, 370 0.656 3.739 0.084 

0 .5 33, 213 225, 370 0.656 3.739 0.084 

0 .6 33, 213 225, 370 0.656 3.739 0.084 

0 .7 33, 213 225, 366 0.656 3.739 0.085 

0 .8 33, 213 225, 229 0.655 3.741 0.084 

0 .9 33, 213 222, 777 0.644 3.739 0.083 

1 .0 33, 213 210, 047 0.619 3.887 0.079 

1 .1 33, 213 182, 645 0.595 4.137 0.081 

1 .2 33, 210 147, 534 0.579 4.466 0.091 

1 .3 32, 962 112, 668 0.569 4.942 0.128 

1 .4 32, 564 82, 731 0.562 5.865 0.202 

1 .5 30, 828 57, 438 0.562 7.807 0.329 

The row corresponding to the original condition with α = 

1 . 0 is shown in boldface. 

Table 10 

Effect of variation of α in edge restriction condition on motif signatures of 2-gram model WCN. M-Diff decreases till α = 1 . 0 

and then increases. M-Sum decreases steadily till network breakdown. 

α 3-chain 3-clique 4-chain 4-star 4-loop-out 4-box 4-semi-clique 4-clique M-Diff M-Sum 

0 .0 3.282 8.199 6.795 4.421 11.859 7.382 17.736 24.523 12.711 84.197 

0 .1 3.282 8.199 6.795 4.421 11.859 7.382 17.736 24.523 12.711 84.197 

0 .2 3.282 8.199 6.795 4.421 11.859 7.382 17.736 24.523 12.711 84.197 

0 .3 3.282 8.199 6.795 4.421 11.859 7.382 17.736 24.523 12.711 84.197 

0 .4 3.282 8.199 6.795 4.421 11.859 7.382 17.736 24.523 12.711 84.197 

0 .5 3.282 8.199 6.795 4.421 11.859 7.382 17.736 24.523 12.711 84.197 

0 .6 3.282 8.199 6.795 4.421 11.859 7.382 17.736 24.523 12.711 84.197 

0 .7 3.282 8.198 6.795 4.421 11.859 7.389 17.734 24.519 12.711 84.192 

0 .8 3.263 8.002 6.712 4.405 11.592 7.062 17.341 23.951 11.174 82.328 

0 .9 3.225 7.948 6.673 4.423 11.464 8.086 17.102 23.619 11.050 82.541 

1 .0 2.969 7.369 4.162 6.095 10.464 7.540 15.795 21.954 1.590 76.348 

1 .1 2.460 6.662 4.867 3.434 9.035 6.225 14.089 19.986 9.532 66.758 

1 .2 1.892 6.330 3.382 2.544 7.987 4.711 13.073 18.975 15.864 58.894 

1 .3 1.388 6.448 2.209 1.667 7.486 3.318 12.926 18.635 20.681 54.077 

1 .4 0.903 6.829 1.180 0.756 7.248 2.256 13.278 18.729 23.579 51.178 

1 .5 0.413 7.319 0.222 −0 . 146 7.148 1.504 14.009 18.902 25.655 49.370 

The row corresponding to the original condition with α = 1 . 0 is shown in boldface. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

edges in the network. Thus, the number of the edges steadily decreases in the network as α is increased from 0.0 to 2.0.

We found that at α = 2 . 0 , the network ceases to exist as none of the word pairs satisfy the edge restriction condition. This

framework with unweighted graphs has essentially the same effect on network properties as gradually increasing the weights of

edges in a weighted-graph model. 

Specifically, we performed this α variation experiment on the logs generated by our 2-gram model. We report the basic

network statistics and the motif signatures in Table 9 and 10 , respectively. As usual, all computations are performed on

the LCC of the graph. The numbers reported are the average values of 100 random samples. There is negligible standard

deviation among the properties of the random samples. 

The number of edges falls sharply from α = 1 . 6 , with almost no edges being created from then on. The numbers of

nodes in the LCC become 11, 6 and 0 for α = 1 . 6 , 1 . 7 , 1 . 8 respectively, and the numbers of edges in the LCC become 17, 8

and 0, respectively. So we do not consider α > 1.5 in our analysis. 

We observe that with decreasing α, the number of edges decreases, making the network sparser. This is shown by the

steady decrease of CC from 0.656 to 0.562. Similarly, as the edge density decreases, the shortest paths become longer,

from 3.739 up to 7.807. We also observed that there is no change in the LCC from α = 0 . 0 to 0.6, with the first noticeable

decrease in edges in the LCC happening from α = 0 . 7 . The real network’s CC and ASPL are 0.623 and 3.302 respectively.

Since closeness to the real values is preferable, we find the best α to be 1.0 (CC) and < = 0 . 7 (ASPL). However, we see that

there is no substantial deviation in CC or ASPL till about 1.0, after which the network starts becoming sparse at a reasonably

high rate. The minimum KLD with the real degree distribution is again found to be the lowest for α = 1 . 0 , thus underlining
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Fig. 7. (Color online) Effect of variation of α in the edge restriction condition on CDD of 2-gram model WCN. The plots are almost exactly overlapping 

from α = 0 . 0 to 1.0, and after α = 1 . 2 the two-regime power law clearly breaks down, indicating a drastic change in network structure due to the rapid 

removal of edges. 

Table 11 

Effect of stopword removal on basic network properties of 2-gram 

model. Removing stopwords does not have a substantial effect on 

the basic network statistics of CC, ASPL and KLD from the real net- 

work. 

Stopwords |N| |E| CC ASPL KLD 

Present 33, 257 209, 947 0.619 5.011 0.077 

Absent 31, 362 184, 142 0.623 4.069 0.079 

Table 12 

Effect of stop-word removal on motif signature of 2-gram model. Removing stop-words does not appear to sub- 

stantially affect the motif signature. 

Stopwords 3-chain 3-clique 4-chain 4-star 4-loop-out 4-box 4-semi-clique 4-clique 

Present 2.969 7.369 4.162 6.095 10.464 7.540 15.795 21.954 

Absent 2.567 7.374 4.920 4.016 10.212 7.370 15.770 22.072 

 

 

 

 

 

 

 

 

 

 

 

 

the choice of α as 1.0 to be close to optimum (closeness to real logs is what we try to achieve). CDDs at some sample α
values are shown in Fig. 7 . The plots are almost exactly overlapping from α = 0 . 0 to 1.0, and after α = 1 . 2 the two-regime

power law clearly breaks down, indicating a drastic change in network structure due to the rapid removal of edges. 

We observed that M-Diff initially decreased from 12.711 ( α = 0 . 0 through 0.7) to 5.329 ( = 1 . 0 , original). Then it increased

steadily to 25.655 with increase in α. Since lower M-Diff is an indicator of proximity to the real network ( Section 4.4 ), inci-

dentally it turns out that α = 1 . 0 is indeed the best setting. The M-Sum values, however, continue to decrease monotonically

with increase in α from 0.0 to 1.5, throughout. However, as discussed within the text, the increase in the LNMC values only

implies that the network is getting more restrictive and probably trying to overfit the training data. Thus, from these exper-

iments, we find that with an exponent value of 1.0 for α, we get the closest proximity to the real network (the first row in

Table 7 ). 

4.6. Effect of stopword removal 

We wanted to study the effect of stopword removal. Again, we chose the 2-gram model as the representative for exper-

imentation. We removed the stop-words from the logs generated by the 2-gram model and constructed the new WCN. We

then compared the network statistics with those obtained from the original log containing the stop-words. Basic network

properties are presented in Table 11 and the motif signatures in Table 12 . Sample degree distributions are shown in Fig. 8 .

From both the tables and the figure, we found that removing stopw-ords does not have a substantial effect on the network

statistics. This is perhaps because users already omit most of the stop-words while formulating Web search queries. 
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Fig. 8. (Color online) Effect of stop-word removal on the cumulative degree distribution of the 2-gram model. Removing stop-words does not seem to have 

a substantial effect on the cumulative degree distribution. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5. User intuition of real queries 

One of the important aspects of any NL is the grammatical correctness and coherence of the sentences, which is typically

verified through native speakers’ judgments ( Heilman & Smith, 2010; Mitkov, An Ha, & Karamanis, 2006 ). Native speak-

ers can also predict the next word in a sentence given the previous ( n − 1 ) words with a reasonable degree of accuracy

( Shannon, 1951 ), which makes them a good point of comparison against n -gram models. Therefore, statistical and network

modeling-based analyses of query syntax would not be complete without a native speaker evaluation on acceptability of the

generated queries. The challenge, however, is to redefine the concept of native speakers in the context of queries, and to

design the corresponding query-acceptability task. 

If queries are considered as a language, then clearly anybody generating a query can be considered a native speaker

of the language. Thus, for our experiments, we deem an average search-engine user as the native speaker of the query

language. However, asking a user whether a query is acceptable or not seems quite a meaningless task – any random

sequence of keywords could constitute a query that has been issued by a real user, because as such there is no consensus

on grammatical constraints on queries. To get around this problem we carefully designed our experiment in the following

way: 

1. Users were given a triplet having one real query and two generated queries. 

2. They were asked to identify the real query in this triplet. 

3. The remaining two search queries were to be rated on a five-point scale. 

To make the comparison meaningful, the three queries in the triplet had some words (at least one word to at most three

words) in common. The selection of query triplets was automated by a program; the program conditionally selected triplets

from thousands of query sets if the three chosen queries of a triplet had at least one to at most three words in common. The

philosophy behind this evaluation strategy is that if a generated query is sufficiently realistic, the user will have to make a

random choice between the generated and the real query. Moreover, the rating points awarded to the queries in the triplet

will give us information about the relative quality of the underlying generative models. We did not consider preference

judgments ( Carterette, Bennett, Chickering, & Dumais, 2008 ) for the models as these are useful if one is only interested

in the relative performance of the models. Here, on the other hand, we would like to find out the absolute goodness of

a model with respect to real queries. This would not be captured through preference-based judgments. Moreover, after

selecting the real query, since the users had to score the two remaining queries, the ranking within a triplet can be easily

inferred. 

On a related note, Li et al. (2012) describe an experiment where artificial queries were rejected if they were not ac-

ceptable to human judges. However, in their setup, new queries were created by string transformation methods from a

real query. Users only had to judge if the generated queries had the same intent as the corresponding original ones, and

therefore, their experimental framework is not applicable to our problem. 
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Fig. 9. Some solved examples for the crowd-sourced query annotation task posted on AMT. To reduce annotator bias, we tightened our guidelines as far 

as possible, which are detailed in the text. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5.1. Method 

We use crowd-sourcing through Amazon’s Mechanical Turk 5 (AMT) for our user experiments. Apart from being a cheap

and fast method for gathering large data ( Alonso & Baeza-Yates, 2011; Carvalho, Lease, & Yilmaz, 2011; Hagen, Potthast,

Stein, & Bräutigam, 2011 ), a Turker (AMT task participant) is expected to be as good as an average search-engine user

because AMT experiments are done online and often require one to really conduct Web searches. Hence, crowd-sourcing is

amenable to our experimental setup. We designed the Human Intelligence Task or HIT (a unit task in AMT) as follows. The

five LMs can be combined with real queries to create 
(

5 
2 

)
= 10 triplets. This gives us ten combinations of { Real query-Model

i-Model j } triplets. For each of these ten combinations, we randomly selected 35 triplets such that individual queries had

some words in common (at least one word to at most three words) – making a total of 10 × 35 = 350 triplets containing

1050 queries to be judged. Some solved examples are shown in Fig. 9 . The choice of assigning a 5 appears difficult for

question 2, and one of the realistic queries is model-generated. We assume that the annotator makes a random choice in

such cases, and sufficiently realistic artificial queries will generally accumulate high scores in the end. To reduce annotator

bias, we tightened our guidelines as far as possible, which are specified below: 

1. Each question in the datasheet contains three queries – one is issued by a real human user, and the other two are

generated by an algorithm. 

2. The task is to find the query that is most likely to be issued by a human user and mark it 5 . For example, how to
play a cd on my computer . 

3. The remaining queries are to be scored on a scale of 0 – 4 according to the following guidelines. 

4. Mark 4 if you think that the query is generated by an algorithm, but could almost be the real query (some external

factor may make the query unrealistic, like the lack of the context in the example shown). For example, queries like

australian currency exchange limit . 
5. Mark 3 if you think that the query is generated by an algorithm, and it makes sense, but has incorrect grammar or

spelling. 6 For example, queries like i fit to get blood transfussion . 
6. Mark 2 if you think that the query is generated by an algorithm, and represents incomplete information needs or jum-

bled units, but could be meaningful if completed or reordered. For example, queries like ancient rome slaves how
did . 

7. Mark 1 if you think that the query is generated by an algorithm, and parts of the query are coherent, but not as a whole.

For example, queries like creating pdf a file share tab security . 
8. Mark 0 if you think that the query is generated by an algorithm, and it is totally nonsensical. For example, queries like

and anzac to jungle characters 101 . 

Task details are presented in Table 13 . An individual HIT was defined as the task of rating all the queries in five triplets . In

other words, each HIT was defined by us as identifying the real query and scoring the other queries in the triplet for a set of

five query triplets, i.e., a human annotator had to examine a set of five (independent) triplets and provide his annotations. In

other words, (s)he may not choose to solve only three or four triplets in the task. Additionally, for a task to be approved by
5 https://www.mturk.com/mturk/welcome , Accessed 13 January 2016. 
6 In hindsight, this may not really have been a good criterion on which to judge the “real”-ness of a query. A spelling error can also be easily made by 

a human user. 
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Table 13 

AMT experiment details. An individual HIT was defined as the task of rating all the queries in five triplets. A set of five annotations was requested for 

each HIT. 

Parameter Details 

Task description Identify a real query hidden among model-generated ones. Then give grades to the remaining queries. 

Task keywords Web search queries, Real and generated queries, Rating queries 

No. of query triplets in 1 HIT 5 

Total no. of triplets 350 

Annotations per triplet 5 

Alloted assignment time for each HIT 20 min 

Actual assignment time per HIT (mean) 1 min 24 s 

Turker qualification Approval rate > 50 tasks 

Turker location Any 

Reward per HIT $0.05 

Total completion time allotted 7 days 

Table 14 

A summary of absolute ratings obtained through AMT. We report the average rating assigned to 

a query within a triplet by five annotators, averaged over all queries from a Model (reported in 

the Average Rating column). #Total Triplets count the number of triplets that has the presence 

of a query from the corresponding LM. The “Real” Percentage column lists the percentage of 

times a query generated by a model was marked as “Real”. The actual number of times that 

a query from the corresponding LM was marked as “Real” in a triplet is shown in the Judged 

“Real” column. 

Model #Total Judged “Real” Average 

Triplets “Real” Percentage Rating 

Real 350 211 60.317 4.046 

1-gram 140 14 9.645 2.406 

2-gram 140 28 20.098 2.833 

3-gram 140 39 28.095 3.276 

2-term 140 25 18.072 2.880 

3-term 140 22 15.625 2.875 

The two highest values in the last two columns marked bold . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

us, the annotator had to provide ratings to all the fifteen queries in the five triplets. Approval was subject to the condition

of having exactly one score of five (“Real”) in a triplet. We had requested and had obtained five annotations for every HIT.

This means that we procured scorings by five different people for every query triplet (every query in every triplet). This

was done to compute inter-annotator agreement (which turned out to be quite good) and allowed us to report aggregated

ratings which are often more robust to noise than individual ratings. Aspects of the AMT experiment setup like cost, allowed

time for each HIT and task descriptions are crucial to receiving quick and reliable responses. For our research, we followed

the general guidelines presented in Alonso and Baeza-Yates (2011) . 

Participants for our study needed to have at least fifty tasks approved in order to be eligible. Apart from this, no other

restriction was placed on attributes of participants. Amazon allows any person to sign up for participation in AMT tasks,

irrespective of his/her demographic properties. Consent of participants was obtained using Amazon. All relevant information

can be found at Amazon’s participation agreement 7 and the privacy notice. 8 None of the authors had any access to identi-

fying information for the participants. AMT only provides user-ids to task publishers which lack any personally identifiable

information. 

5.2. Results and observations 

Table 14 reports the average rating assigned to a query within a triplet by the five annotators, averaged over all queries

from a model (reported in the “Average Rating” column). #Total Triplets count the number of triplets that has the presence

of a query from the corresponding LM. The “Real” Percentage column lists the percentage of times a query generated by

a model was marked as “Real”. The actual number of times that a query from the corresponding LM was marked as “Real”

in a triplet is shown in the Judged “Real” column.. The triplets for which the annotation results obtained from AMT were

inconsistent in any way (missing rating, and none or multiple 5-point ratings within a triplet) were re-published as new

tasks till we obtained consistent ratings. We observed that real queries are detected correctly a large number of times ( �
60%). It is notable that among generated queries, those from the 3-gram model were judged as “real” the greatest number
7 https://www.mturk.com/mturk/conditionsofuse , Accessed 13 January 2016. 
8 https://www.mturk.com/mturk/privacynotice , Accessed 13 January 2016. 
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Table 15 

Summary of relative ratings from AMT. Results are shown in a tournament- 

like fashion. Ordering of LMs in rows and columns is such that light and 

dark cells roughly create upper and lower triangular matrices. 

Model Real 3-gram 2-term 3-term 2-gram 1-gram 

Real X 0.655 0.741 0.752 0.708 0.832 

3-gram 0.345 X 0.559 0.613 0.548 0.862 

2-term 0.260 0.441 X 0.500 0.519 0.762 

3-term 0.248 0.387 0.500 X 0.533 0.704 

2-gram 0.292 0.452 0.482 0.467 X 0.423 

1-gram 0.169 0.138 0.238 0.296 0.577 X 

Table 16 

User ratings by query length. We notice that the average ratings obtained for 

different query lengths are very similar, varying only from the second decimal 

place (between 2.721 for three words and 2.770 for five words). 

No. of query words 3 4 5 6 7 8 

Average user rating 2.721 2.761 2.770 2.733 2.741 2.756 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

of times and have the highest average rating of 3.276. Even though n -term models are poorer than corresponding n -gram

models on being judged as real, their average ratings are marginally better than the 2-gram model. 

Results are reported in a tournament-like fashion in Table 15 . Ordering of LMs in rows and columns is such that light

and dark cells roughly create upper and lower triangular matrices. The values are computed from all the triplets that had

queries from both models i and j . Cell [ i ][ j ] contains the fraction of times model i has won over (had a better rating than)

model j . A dark cell indicates that the row lost substantially to the column (cell value < 0.4). A light cell indicates that the

row and the column faired more or less equally well (cell value between 0.4 and 0.6). An unshaded cell indicates that the

row won over the column substantially (cell value > 0.6). In this representation, the relative performance of the models

becomes evident from the row (left to right, better to worse) or column orderings (top to bottom, better to worse). Not

considering real queries which are identified correctly at least 65.5% of the times against the next best model (highest value

in Row 1 of Table 15 ), all models have at least one grey cell in their rows (or columns). This indicates that even though the

3-gram model competes the best against real queries, it is not the best by a very big margin. Models in the middle zone are

also quite comparable in their performance levels. 

Inter-annotator agreement (IAA). In AMT, since a single Turker need not complete all annotations of the entire dataset,

conventional ideas of IAA are not applicable. However, the average standard deviation for ratings from five annotators for

a query is found to be 1.032. Given that the overall rating was to be done on a 6-point scale ( 0 − 4 and “Real” ratings), an

average deviation of one point is within acceptable limits. 

Effect of query lengths. We examined if the number of words in the generated queries had an effect on their perceived

quality. We present mean user ratings for different query lengths in Table 16 . We notice that the average ratings obtained

for different query lengths are very similar, varying only from the second decimal place (between 2.721 for three words and

2.770 for five words). Thus, with the generation process followed, the language model, and not the number of query words, play

the determining role in how realistic the synthesized queries appear to Web users. 

5.3. Interpretation 

These results provide us with the following interesting insights: (a) If any string was equally acceptable, real queries

would get a “Real” rating only 33.3% of the time by random chance. The fact that real queries get the “Real” rating about

60% of the time implies that users already have a notion of queries being well-formed , i.e., the acceptability of queries; (b)

The 3-gram model-generated queries can confuse the user about 28% of the time. In contrast, for NL, speakers can easily

identify tri-gram-generated sentences, which are locally readable, but semantically incoherent ( Biemann et al., 2012 ). This

shows that tri-grams capture more information than bi-grams and probably over-fit the data; (c) 2-term and 3-term queries

getting lower “Real” percentage scores than 2-gram and 3-gram queries implies that word ordering provides vital clues to

the users; (d) Bi-grams received a higher “Real” percentage value but a lower average rating than the 2-term and the 3-

term models. This is because bi-grams generate very realistic queries at times, especially when the query length is small,

but meaningless ones on other occasions. This is supported by the observation that the standard deviation of the ratings for

bi-grams is 1.476, while it is lower for 2-terms and 3-terms (1.334 and 1.302 respectively); (e) 2-term and 3-term models

getting almost exactly similar average ratings further emphasizes the importance of word ordering. 3-terms are expected to

generate semantically more coherent queries, but an obvious lack of ordering hinders their acceptability to Web users. 
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6. Discussion 

We now discuss some of the inferences that we draw from the research presented in this paper. 

Motif analysis is insightful. Biemann et al. (2012) observe that box motifs in NL ( Fig. 3 ) often occur due to synonymy ,

and chain motifs due to polysemy . We found that the synonymy and polysemy interpretations from NL hold good for queries

as well. This is because synonyms will rarely co-occur in the same query, thus leading to an absence of connecting edges in

the WCN. Similarly, the second and the third nodes in 4-chains (or the middle node in a 3-chain) are connected to concepts

that are not connected to each other, hence representing multiple senses. Additionally, we observed that box motifs in query

logs typically occur with two similar entities (e.g., titanic and spiderman , both movies) forming a pair of disconnected

nodes and two attributes (e.g., mp3 and cast ) forming the other pair of disconnected nodes. The other common reason

for box motifs in queries is spelling mistakes or spelling variations (like pituitary and pitutiary ) at two opposite ends,

and related words like hormone and tumor forming the other two opposite ends of the box motif. We observed star

motifs in query logs arise due to a content unit (e.g., titanic ) in the centre and three intent units ( Saha Roy, Katare,

Ganguly, Laxman, & Choudhury, 2015 ) (e.g., cast , mp3 and review ) connected to it. Thus, motifs occur due to syntactic

and distributional constraints in the linguistic system, and hence, they are relatively harder to capture through a generative

model. While bi-gram models can match the motif signature of the real log to a good extent, the actual motifs are far less

intuitive, which is also evident from the low acceptability of bi-gram-generated queries by Web users. 

Tri-grams overfit the data. User experiments show that tri-gram models generate quite realistic queries ( Table 14 ) and

have surprisingly low perplexity ( Table 2 ). However, this does not imply that tri-grams solve the problem of artificial query

generation and thus can be used for creating synthetic logs. In fact, network analysis shows that tri-gram-generated queries

give rise to a higher number of motifs of each kind than even the real WCN, which means that tri-grams possibly over-fit the

training data. Therefore, a log generated with tri-grams will contain realistic but frequently seen queries. Such a synthetic

log will lack the diversity present in a true query log. This is not surprising because the average length of a query being

only four, a large number of queries will be generated with only one or two tri-grams. This will effectively generate only

queries that have been frequently seen in the training query log. 

There is scope for better generative models. Since tri-gram models over-fit and bi-gram models fall short of gener-

ating good individual queries, realistic queries can only be generated using more sophisticated models that can capture

the structural constraints of queries both at syntactic and semantic levels. Since motif analysis indicates the importance of

content-intent relationships ( Saha Roy et al., 2015 ) in queries, we believe that a better quantification of the distribution of

these relationships can lead to improved generative models for Web search queries. 

Relative word ordering is important for the user. Researchers in the past have criticized the bag-of-words model for

queries ( Croft, Metzler, & Strohman, 2010; Philbin, Chum, Isard, Sivic, & Zisserman, 2007; Zhao, Eck, & Vogel, 2004 ). Our

analysis strengthens earlier findings by showing the importance of word ordering constraints in queries, as the bag-of-

words model-based query generation (using the n -term models) is shown to be inadequate in both network and user-based

setups. 

There is a cognitive model for queries. Finally, it is interesting to note that users, or as we can say, the native speakers

of the language of queries, are indeed able to differentiate real queries from artificially generated ones. This shows that an

average user has already internalized a cognitive model for queries, or for language in general. It is indeed believed to be

true that there is a common faculty of language in all humans that helps in building the cognitive model for a language.

Interestingly, this faculty mediating human communication appears very different from that of other living creatures; the

human faculty of language bears resemblance to the genetic code – hierarchical, generative, recursive, and virtually limitless

with respect to its scope of expression ( Hauser, Chomsky, & Fitch, 2002 ). However, cognitive models built for the different

languages will have different parameters that have to be internalized by its native “speakers”. In this respect, we believe

that the parameters for the language of queries (say, average length in words, relatively free word order, and omission of

function words) are different from that of the parent language from which the query words are borrowed. Moreover, these

parameters may depend on the parent language itself, i.e., “English” queries may have different parameters from “German”

queries. Our experimental result that users are able to recognize real queries among synthesized ones about 60% of the

time, shows that the average Web searcher has acquired the parameters of the English query language with a satisfactory

level of proficiency. Further probing of this cognitive model through psycholinguistic experiments would be an interesting

exercise that can provide interesting insights into the organization of query syntax, and also how a new language might

evolve and automatically acquire a syntax of its own. It is worth noting here that since queries are not used for direct

human communication, they cannot be collectively compared to the concept of a register in linguistics ( Biber & Finegan,

1994 ), which is a style of language used for a specific reason or in a specific social scenario. Finally, we do not know of

prior work that takes a holistic approach towards the analysis of the syntactic complexity of Web search queries from the

first principles. Previous works related to statistical and network analysis of queries have been reported in the respective

sections. Nevertheless, there are two lines of research pertaining to the syntactic analysis of queries. 

Linguistic analysis of queries. First, linguistic analysis and annotation of queries at the level of segmentation or chunking

( Hagen et al., 2012 ) and parts-of-speech tagging ( Barr, Jones, & Regelson, 2008; Bendersky, Croft, & Smith, 2010; 2011;

Ganchev, Hall, McDonald, & Petrov, 2012 ) have been important directions of research since the early 20 0 0s ( Jansen et al.,

20 0 0 ). While these studies reveal interesting syntactic properties and trends, such as more than 70% of the query terms are

nouns ( Barr et al., 2008 ), and NL question queries are on the rise ( Pang & Kumar, 2011 ), they are based on the fundamental
Please cite this article as: R. Saha Roy et al., Syntactic complexity of Web search queries through the lenses of language 
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assumption that queries issued using the words of a certain parent language, say Standard English, will borrow grammatical

artefacts of that parent language (i.e., nouns, verbs, noun and verb phrases, etc.). This assumption is biased because a noun

in English is called a noun because it follows a particular syntactic distribution; it is quite unlikely that the same word will

behave as a noun in a query either from the point of statistical distribution or its cognitive interpretation by the users. Thus,

if queries are to be understood linguistically, they should be analyzed from the first principles rather than superimposing

the grammatical syntax of NLs ( Mishra, Saha Roy, Ganguly, Laxman, & Choudhury, 2011 ), which masks their true syntactic

properties. We note that techniques based on the superimposition of syntax from the parent NL can still be useful for

practical applications, but they cannot tell us much about the true syntax of Web search queries. 

Entities and intents. The second line of research, which we believe is more promising, is the analysis of queries in terms

of user intents. Such studies have looked into queries from various perspectives and have come up with various concepts

such as entities and attributes ( Alfonseca, Pa ̧s ca, & Robledo-Arnuncio, 2010; Jain & Pennacchiotti, 2010; Pa ̧s ca & Van Durme,

20 07; Pasca, 20 04; Reisinger & Pa ̧s ca, 20 09 ), kernel-objects and modifiers ( Yu & Ren, 2012 ) and query facets ( González-Caro

& Baeza-Yates, 2011; Nguyen & Kan, 2007 ), to factor the parts of a query and place it within a taxonomy of semantic or

syntactic patterns. While it is not possible to review all these studies here, a closer look at the actual network motifs of

the WCN for real queries reveals interesting synergy between the concepts of intent words ( Lin, Pantel, Gamon, Kannan, &

Fuxman, 2012; Saha Roy et al., 2015; Yin & Shah, 2010 ) (also called modifiers or attributes) and content words (or entities

or kernel-objects), which is worth mentioning here. 

7. Conclusions 

In this paper, we have tried to understand the syntactic complexity of Web search queries, a distinct mode of interaction

between man and man-made systems. We have adopted a three-pronged approach: applying statistical language models (us-

ing n -grams and n -terms), using complex network modeling (with WCNs), and asking native speakers (Web search users).

Our results underline the necessity of using multiple independent perspectives. Having entropy or perplexity similar to or

lower than NL need not, by itself, be indicative of an underlying language system ( Sproat, 2010 ). Network analysis shows

bi-grams to be within striking distance of replicating real log syntax at a corpus-level. However, when native speakers are

consulted, individual queries generated by tri-grams are found to be much more acceptable than those by bi-grams. Only

a combined approach is successful in bringing out the complete picture of n -gram-based statistics being inadequate, and

the need for a language model that imbibes syntactic and semantic constraints specific to Web search queries. More inter-

estingly, in both network and user experiments, a common behavior emerges: the results are distinct both from scenarios

that assume queries being random word sequences or following the syntactic constraints of the parent natural language.

We believe that these can indeed be considered positive cues in favor of acceptance of our original hypothesis of queries

evolving into a distinct linguistic system. However, we do not claim that this research is complete by itself. Rather, it is only

the first step towards a more holistic goal – when queries, communicating information needs of millions of users, can be

established to be an independent language system from all the three aspects – structure, function and dynamics. 
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