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Abstract. A common but an important feature of all real-world networks is that they are temporal in
nature, i.e., the network structure changes over time. Due to this dynamic nature, it becomes difficult
to propose suitable growth models that can explain the various important characteristic properties of
these networks. In fact, in many application oriented studies only knowing these properties is sufficient.
For instance, if one wishes to launch a targeted attack on a network, this can be done even without the
knowledge of the full network structure; rather an estimate of some of the properties is sufficient enough
to launch the attack. We, in this paper show that even if the network structure at a future time point
is not available one can still manage to estimate its properties. We propose a novel method to map a
temporal network to a set of time series instances, analyze them and using a standard forecast model
of time series, try to predict the properties of a temporal network at a later time instance. To our aim,
we consider eight properties such as number of active nodes, average degree, clustering coefficient etc.
and apply our prediction framework on them. We mainly focus on the temporal network of human face-
to-face contacts and observe that it represents a stochastic process with memory that can be modeled
as Auto-Regressive-Integrated-Moving-Average (ARIMA). We use cross validation techniques to find the
percentage accuracy of our predictions. An important observation is that the frequency domain properties
of the time series obtained from spectrogram analysis could be used to refine the prediction framework
by identifying beforehand the cases where the error in prediction is likely to be high. This leads to an
improvement of 7.96% (for error level <20%) in prediction accuracy on an average across all datasets. As
an application we show how such prediction scheme can be used to launch targeted attacks on temporal

networks.

1 Introduction

Recently the research community is reaching a consensus
that many real networks have nodes and edges entering
or leaving the system dynamically, thus introducing the
dimension of time. This special class of networks are of-
ten called temporal networks [1] or time-varying networks.
Initial studies on temporal networks have been performed
by aggregating the nodes and edges over all time steps
and then analyzing the behavior of the aggregated net-
work. This strategy however hides the time ordering of
the nodes and the edges which may have a significant role
in the understanding of the true nature of such temporal
networks. Researchers have subsequently come up with
growth models and have proposed several metrics. Tang
et al. [2] have shown the presence of correlation and small
world behavior in temporal networks. In [3] the temporal
network of human communication has been identified to
be bursty in nature. Recently, new network applications
have cropped up where an estimate of the network prop-
erties are helpful even though the network structure is
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itself unavailable. For instance, in order to launch a tar-
geted attack on the network one might not require the full
knowledge of the network structure. Instead, an approxi-
mate estimate of some of the properties might be useful
in finding the order in which the nodes and the edges may
be removed.

Our contributions in this paper are fourfold. We pro-
pose a simple strategy to represent a temporal net-
work as time series. Essentially, we consider a temporal
network as a set of static snapshots collected at consec-
utive time intervals and represent each of them in terms
of the properties of the network. In specific, we consider
eight properties namely number of active nodes, average
degree, clustering coefficient, number of active edges, be-
tweenness centrality, closeness centrality, modularity and
edge-emergence [4].

We then use the known analytical tools for time series
predictions to predict the network properties at a fu-
ture time instance. Note that the time series framework
can be particularly effective as it is impossible to define a
unified network evolution/growth model for temporal net-
works simply because the rules of temporality are varied
across systems. Hence the feasible alternative could be to
learn the evolution pattern (which we do through time-
series analysis) and then predict the later time steps.
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Due to various irregularities in the time series, predic-
tions at certain points are erroneous. Therefore we further
refine our prediction framework using spectrogram
analysis by identifying beforehand the cases where the
prediction error is high i.e., unsuitable for prediction. In
fact we observe that the accuracy of the framework is en-
hanced further by 7.96% (for error level < 20%) on an av-
erage across all datasets if we remove the cases which are
deemed unsuitable for prediction by spectrogram analysis.

As an application we also propose a strategy to
launch targeted attacks based on our prediction
framework and show that this scheme beats the state-of-
the-art ranking method used for such attacks. We believe
that our framework could be used in designing ranking
schemes for nodes in temporal networks at a future time
step albeit the network structure at that time step itself
is unknown.

We perform our experiments on five different human
face-to-face communication networks and observe that the
above properties could be segregated based on time do-
main and frequency domain (spectrogram) characteristics.
In general this method allows us to make predictions with
very low errors. Importantly, the frequency domain anal-
ysis also nicely separates out those properties that can
be predicted with low errors from those for which it is
not possible. Rest of the paper is organized as follows.
In Section 2 we present a brief review of the literature.
Section 3 describes the framework for mapping temporal
networks to time series. Section 4 provides a brief descrip-
tion of the datasets we use for our experiments. In Sec-
tion 5 we perform a detailed time domain and frequency
domain analysis of the time series. Section 6 outlines the
description of our prediction framework. In Section 7 we
provide the detailed results of our prediction framework on
the human face-to-face communication networks. We also
show how the prediction scheme could be enhanced using
the spectrogram analysis. We further propose an attack
strategy based on the prediction scheme and show that it
beats the state-of-the-art methods (Sect. 8). We conclude
in Section 9 by summarizing our main contributions and
pointing to certain future directions.

2 Related works

Most of the initial works attempted to study temporal
networks by aggregating the network across all times and
then analyzing this aggregated network. However, it was
found that time ordering is an important issue and de-
stroying this ordering information severely affects the un-
derstanding of the true nature of the network. Several
ways have been therefore devised to represent temporal
networks. Basu et al. [5] have shown a way of represent-
ing temporal networks as a time series of static graph
snapshots and have proposed a stochastic model for gen-
erating temporal networks. Perra et al. [6] have provided
an activity driven modeling of temporal networks. They
define activity potential which is a time invariant func-
tion characterizing the agents’ interactions and propose a
formal model of temporal networks based on this idea.
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Random walks have been introduced in temporal net-
works [7] to single out the role of the different properties
of the empirical networks. It has also been shown that
random walk exploration is slower on temporal networks
than it is on the aggregate projected network. Several
other modeling frameworks for temporal networks have
also been proposed (see [8-10] for references). Apart from
the attempts to generate temporal networks several other
properties of these networks have also been investigated.
Temporal networks of human communication has been
observed to be bursty in nature [11]. Dynamics of hu-
man face-to-face interactions have been studied [12]. Ref-
erence [13] shows how the presence of burstiness affects the
dynamics of diffusion process. Further different metrics to
study the properties of temporal networks have also been
proposed [14].

On the other hand, time series have found a lot of
applications in economic analysis and financial forecast-
ing [15]. It has also been applied in tweet analysis [16].
However, temporal networks have not been studied in de-
tails so far as a time series problem except for prelimi-
nary attempts [17,18]. In reference [17] the authors ana-
lyze temporal networks as time series but to the best of our
knowledge this is the first work which leverages the time
series forecasting tools to predict the network properties
at a future time instant. Frequency domain analysis on the
time series representing temporal network and its implica-
tion also remain unexplored to the best of our knowledge.
Therefore we propose to leverage in this paper the stan-
dard techniques of time series analysis (both in time and
frequency domain) to understand the dynamical proper-
ties of temporal networks. Our prime contribution is to
develop a unified framework to analyze and predict differ-
ent properties of temporal networks based on time-series
modeling.

3 Mapping temporal network to time series

We consider a temporal network as a set of static
snapshots collected at consecutive time intervals. Each
snapshot is then represented in terms of eight (mainly
structural) properties of the underlying graph. Conse-
quently we obtain a set of points ordered in time or equiv-
alently a discrete time series (see Fig. 1). The eight prop-
erties we use to represent the temporal network as a time
series are:

(1) Number of active nodes: this is the count of the num-
ber of nodes in the system at a given time step. We
consider active nodes to be those which have non-zero
degree in a time step. We represent the number of ac-
tive nodes in the system at time step ¢t by N;. In a
similar way we define (2) number of active edges and
(3) average degree and represent the values of these
properties at time ¢t by F; and Avg deg,, respectively.

(4) Edge emergence: edge emergence [4] is a measure that
estimates structural similarity. For measuring the edge
emergence at time ¢ we consider each edge of the net-
work at time ¢ and for each of its two endpoints we
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Fig. 1. Converting temporal network to time series.

®@ ® %@f)

O—©

((fo %
@ @

(a)

Fig. 2. (a) and (b) denote the status of the network at time ¢
and t+ 1, respectively. For the edge (i, €) in ¢ the corresponding
edges emanating from i and e are (i,a) and (e, b). For the edge

(z,y) they are (z,c) and (y,d). So the Edge emer, = *}> = .

calculate the number of edges emerging in the next
time step ¢ + 1. We represent edge-emergence at time
t by Edge emg;. If E; denotes the set of edges present
in the network at time ¢ and A;41 denotes the set
of edges at time ¢t + 1 which are adjacent to E; then

Edge emg, = ‘?E‘ll
late this measure for a temporal network at any time
instance.

(5) Modularity: we decompose each snapshot into com-
munities using the technique specified in [19] and
measure the goodness of this division using modular-
ity [20]. We represent modularity of the system at a
given time step t by Mod;.

. Figure 2 shows how we calcu-

We also consider (6) betweenness centrality, (7) closeness
centrality and (8) clustering coefficient of the graph (val-
ues computed for each node and then summed over all
nodes) and their values at time step ¢ are represented by
Bet ceny, Clos ceny and Clus coef fi, respectively.

4 Description of the dataset

We perform our experiments on five human face-to-face
network datasets: INFOCOM 2006 dataset [21], SIG-
COMM 2009 dataset [22]!, High school datasets (2011,
2012) [23] and Hospital dataset [24].

! http://crawdad.org/
2 http://www.sociopatterns.org/
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— INFOCOM 2006: this is a human face-to-face com-
munication network and was collected at the IEEE IN-
FOCOM 2006 conference at Barcelona. 78 researchers
and students participated in the experiment. They
were equipped with imotes and apart from them 20
stationary imotes were deployed as location anchors.
The stationary imotes had more powerful battery and
had a radio range of about 100 m. The dynamic imotes
had a radio range of 30 m. If two imotes came in each
others’ range and stayed for at least 20 s then an edge
was recorded between the two imotes. The edges were
recorded at every 20 s. Therefore, this is the lowest
resolution at which the experiments can be potentially
conducted. However, we observe that at this resolu-
tion the network is extremely sparse which makes it
difficult to conduct meaningful data comparison and
prediction. We observe experimentally that the lowest
interval that allows for appropriate comparison and
prediction is 5 min and therefore we set this value as
our resolution for all further analysis.

— SIGCOMM 2009: this is also a human face-to-
face communication network and was collected at the
SIGCOMM 2009 conference at Barcelona, Spain. The
dataset contains data collected by an opportunistic
mobile social application, MobiClique. The applica-
tion was used by 76 persons during SIGCOMM 2009
conference in Barcelona, Spain. The trace records all
the nearby Bluetooth devices reported by the periodic
Bluetooth device discoveries. Each device performed a
periodic Bluetooth device discovery every 120+10.24 s
for nearby Bluetooth devices. A link was added with a
device on discovering it. We remove the contacts with
external Bluetooth devices and a network snapshot is
an aggregate of data obtained for 5 min.

— High school datasets: these are two datasets con-
taining the temporal network of contacts between
students in a high school in Marseilles taken dur-
ing December 2011 and November 2012, respectively.
Contacts were recorded at intervals of 20 s. We con-
sider a network snapshot as an aggregate of data ob-
tained for 5 min.

— Hospital dataset: this dataset consists of the tem-
poral network of contacts between patients and health
care workers in a hospital ward in Lyon, france. Data
was collected at every 20 s intervals. Due to sparse-
ness of the network of 20 s, we consider each network
snapshot as an aggregated network of 5 min.

In Table 1 we provide the details of the datasets.

5 Analysis of time series

In this section we present the plots of the time series and
analyze their properties based on both time domain and
frequency domain characteristics.

5.1 Time domain characteristics
For the time domain analysis of the properties we look

into the time series plots for the datasets represented in
Figures 3a, 3c, 3e and 4a, 4c. From the time series plots
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Fig. 3. (a), (c) and (e) represent the time series plots for INFOCOM 2006, SIGCOMM 2009 and Highschool 2011, respectively.
(b), (d) and (f) represent the power spectral density (PSD) corresponding to the frequency bins for INFOCOM 2006, SIGCOMM
2009 and Highschool 2011 dataset, respectively. Bins 1, 2 and 3 correspond to frequencies <5, 5-15 and >15 (Hz), respectively.
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Fig. 4. (a) and (c) represent the time series plots for Highschool 2012, Hospital, respectively. (b) and (d) represent the power
spectral density (PSD) corresponding to the frequency bins for Highschool 2012 and Hospital dataset, respectively. Bins 1, 2
and 3 correspond to frequencies <5, 5-15 and >15 (Hz), respectively.

Table 1. Properties

of the dataset used.

Time span of Time steps

Dataset # Unique nodes  # Unique edges Edge type the dataset for prediction
INFOCOM 2006 98 4414 undirected 1120 200-800
SIGCOMM 2009 76 2082 do 1068 300-900
Highschool 2011 126 5758 do 1215 200-900
Highschool 2012 180 8384 do 1512 200-1000

Hospital 75 5704 do 1158 100-900

we observe the presence of periodicity in almost all the
datasets. A stretch of high values is followed by a stretch
of low values and so on. However, they are of varying
lengths. This indicates the presence of correlation in case
of human face-to-face communication network. We quan-
tify this structural correlation later in this paper. We also
check whether these time series are stationary. On per-
forming KPSS (Kwiatkowski-Phillips-Schmidt-Shin) [25]
and ADF (Augmented Dickey Fuller) test [26] on the
data we conclude that the data is non-stationary. Overall,
the presence of correlation in case of human face-to-face

network indicates that it is a stochastic process with mem-
ory i.e., the contacts a node makes in the current time step
is influenced by its contact history.

5.2 Frequency domain analysis

In this section, we perform the frequency domain anal-
ysis of the time series extracted from the temporal net-
work by conducting a spectrogram analysis of the data.
Spectrogram analysis is a short time Fourier transform
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where we divide the whole time series into several equal
sized windows and apply discrete fourier transform on this
widowed data. The main advantages of using spectrogram
analysis are (a) we do not lose the time information, (b)
we are able to obtain a view of the local frequency spec-
trum. Also note that the spectrogram analysis allows us
to identify as well as quantify the fluctuations in the data
which is difficult to identify from the corresponding time
series. A high concentration of low frequency components
would indicate lower fluctuations in the data; in contrast
no such concentration of low frequency components would
indicate higher fluctuations and irregularities in the data.

We construct the spectrogram and segregate the power
spectral density (PSD measured in Watts/Hz) based on
the frequency into three bins. In bin 1 we calculate the
mean PSD corresponding to the frequencies <5 Hz, in
bin 2 we calculate the PSD corresponding to frequencies
between 5 and 15 Hz and bin 3 consists of the mean PSD
value corresponding to frequencies >15 Hz. We call them
LPSD, MPSD and HPSD respectively. So a higher value of
mean PSD corresponding to bin 1 (LPSD) would indicate
lower fluctuations in data. In Figures 3b, 3d, 3e and 4b, 4d
we plot the PSD corresponding to the three bins across
all the properties for all the datasets. We observe that the
lower frequencies dominate to a higher extent in case of
the properties like number of active nodes, number of ac-
tive edges, modularity but to a much lower extent in case
of betweenness centrality, closeness centrality and cluster-
ing coefficient. We show later in this paper that the pre-
diction accuracy of a property can be enhanced through
spectrogram analysis.

6 Prediction framework

In this section, we employ the time series to forecast the
different structural properties of the temporal networks.
Elementary models of time series forecasting could be cat-
egorized into Auto-regressive (AR) and Moving average
(MA) models [27]. In case of an auto-regressive model of
order p, AR(p), the value of the time series at time step ¢
is given as:

Yt = Q1Yt—1+ ...+ 0pYr—p + €+ ¢,

where «;s are parameters, e; is the white noise error term
and c¢ is a constant. Similarly, in case of Moving average
model of order ¢, MA(q), the value of the time series at
time step ¢ is given as:

Y = Brer—1+ ...+ Bger—qg + L+ €1 +c,

where ;s are parameters, e;, e;_1, . .. are white noise error
terms and p is the expectation of y;. These two models
could be combined into Auto-regressive-moving-average
(ARMA (p,q)) [27] where the value of the time series at
time step ¢ is given as:

Yo =oYi—1+ ... Fapy—p+Bier—1+...+Bgei—q+e +c.
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Fig. 5. (a) and (b) denote the status of node i at time ¢t and
t + k, respectively. NBR(i): = {a,b,c¢} and NBR(i)i1r =
{a,d,c,e} Correlation(i)r = xgggz;zgxgggg:’; = 2 where
NBR(i); — the set of neighbors of i at time ¢.

However, in our case the time series show evidences of non-
stationarity and short term dependencies and these mod-
els are insufficient and hence we use ARIMA model [28§]
for forecasting. The initial differencing step in ARIMA
model is used to reduce the non-stationarity. On fitting
an ARIMA(p,d,q) model to a time series we obtain an
auto-regressive equation of the form

Yo =oYi—1+ ... FopYi—p+ Bres—1+ ...+ Beer—q +c.

Hence we can take a time series corresponding to a net-
work property and fit an ARIMA model to it. Thus, we
obtain an auto-regressive equation for that series which
can be used in forecasting. In order to predict a value at a
future time point, we divide the data in smaller parts and
perform our predictions on these smaller stretches. In the
next subsection we discuss how we perform this division.

6.1 Selecting a window

In order to identify the right length of a stretch (i.e., a
window size) we need to identify how the network at any
time point is influenced by the network at the previous
time points. The basic idea is that the time points to which
this influence extends should all get included into a single
window. To quantify this influence we define a new met-
ric called neighborhood-overlap which measures the struc-
tural correlation between network snapshots at two time
steps. We define the difference between these two time
steps as the lag. To measure the neighborhood-overlap of
the network snapshots at time t and ¢ + k, we calculate
for each active node at time ¢ the overlap in its neighbor-
hood between two time points. To measure this overlap we
use the standard Jaccard similarity as has been pointed
out [2]. Note that this is one of the most standard and
interpretable ways to measure structural similarity as has
been identified in the literature with applications rang-
ing from measuring keyword similarity [29] to similarity
search in locality-sensitive-hashing (LSH) [30]. It has also
been extensively used in link prediction [31,32] as well as
community detection [33]. Figure 5 shows how we formu-
late this measure using the Jaccard similarity index. We
represent the neighborhood overlap at lag k£ as the mean
value across all the active nodes in time step t. To measure
the extent of similarity we measure neighborhood-overlap
for each snapshot at different lags and take the average of
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them. This essentially shows, given a time specific snap-
shot how the similarity changes as we increase the lag.
Figures 6a—6e show how this similarity changes with time
as we increase lag for the five different datasets. As we
increase the lag the similarity decreases almost exponen-
tially and hence considering snapshots at larger lag where
the similarity value is very low could introduce error in
learning the auto-regressive equation. Also for a higher
similarity value the corresponding lag would increasingly
introduce more error in the fit due to lesser number of data
points on which the ARIMA model gets trained to learn
the fit function (see Fig. 7). In fact we observed that the
error in prediction increases if we consider a lag too small
(high similarity value) or too large (low similarity value)
(see Fig. 7). Hence we consider the similarity value of 0.2
as the threshold for calculating the lag. For our prediction
framework the corresponding value of the lag acts as the
window for fitting the ARIMA model.

Let the size of the window be w and we want to pre-
dict the value of the time series at time ¢. To our aim
we consider the time series of the previous w time steps
consisting of the values between time steps t — 1 — w to
t — 1 and fit the ARIMA model to it and obtain its value
at time step t. We repeat this procedure for forecasting at
every value of t. Thus, the time step t is the test point and
the series of points t —w —1 to ¢t — 1 form the training set.
One can imagine this process as a sliding window of size

w which is used for learning the auto-regressive equation
and the point that falls immediately outside the window
is the unknown that is to be predicted.

7 Prediction results

In this section, we provide detailed results of the our pre-
diction framework on the datasets discussed earlier. To
determine the accuracy of our prediction strategy we use
the cross validation technique. For each time step in this
range we use our framework to obtain a prediction at that
time step. Since we already know the original value, we can
obtain a percentage error for the prediction. Let predict,
represent the prediction value at time ¢t and original;
represent the original value. We obtain percentage error
(errory) using the formula:

loriginal, — predicty|

errory = x 100.

original,

First we try to find the suitable window for predicting the
value of a time series at a time step. For this we refer
to Figure 6 where we quantify structural correlation and
show how the similarity value decreases with increasing
lag. We observe that the value of the structural correla-
tion decreases as we increase the lag. For INFOCOM 2006
dataset (Fig. 6a) the correlation drops to less than 0.2 at
lag around 70. Therefore we select a window of size 64. We
could have selected any other value between 60 and 70,
but we select 64 as it is in the power of 2 and it helps in
the spectrogram analysis. Similarly we find the suitable
window size to be around 128, 64, 64, 32 (closest power
of 2) for the SIGCOMM 2009, Highschool 2011, High-
school 2012 and Hospital datasets respectively (refer to
Fig. 6).

For the INFOCOM 2006 dataset we consider the time
steps 200-800. Note that selection of these is just rep-
resentative and one is free to take any time step given
there is a window of appropriate length available. For SIG-
COMM 2009, Highschool 2012, Highschool 2011 and Hos-
pital datasets we consider our test time steps to be 300—
900, 200-1000, 200-1000 and 100-900, respectively (refer
to Tab. 1).
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Fig. 8. The percentage error distribution of all the properties (time series) for (a) INFOCOM 2006 dataset, (b) SIGCOMM 2009
dataset, (c¢) Highschool 2011. (d) Highschool 2012 and (e) Hospital. X-axis represents percentage error and Y-axis represents
probability.

Table 2. Network property and the fraction of predictions with percentage error <20% without (with) spectrogram analysis.
The cases where more than 80% of the points have prediction error <20% have been highlighted in bold font and the cases
where on using spectrogram analysis the improvement is more than 5% have been underlined.

Prediction error < 20%

INFOCOM SIGCOMM Highschool Highschool .
Datasets 2006 2009 2012 2011 Hospital
# Active nodes  0.984, (0.988) 0.907, (0.91)  0.68, (0.765)  0.861, (0.882) 0.782, (0.859)
Average degree  0.975, (0.968)  0.84, (0.834)  0.816, (0.81)  0.91, (0.908)  0.714, (0.724)
Modularity ~ 0.905, (0.921)  0.838, (0.85)  0.90, (0.91)  0.92, (0.917)  0.78, (0.812)
Edge emergence 0.971, (0.983) 0.906, (0.91) 0.56, (0.71) 0.42, (0.512) 0.57, (0.652)
# Active edges  0.901, (0.91)  0.71, (0.81)  0.72, (0.78)  0.836, (0.86)  0.734, (0.796)
Clustering
coofficient 0.829, (0.858) 0.725, (0.75) 0.54, (0.623) 0.5, (0.682) 0.71, (0.751)
Closeness
centrality 0.751, (0.887) 0.71, (0.83) 0.83, (0.843)  0.821, (0.853) 0.74, (0.786)
Betweenness
centrality 0.621, (0.818) 0.472, (0.61) 0.51, (0.63) 0.22, (0.418) 0.542, (0.689)
Average 0.867, (0.916)  0.763, (0.813) 0.694, (0.768)  0.686, (0.754)  0.69, (0.74)

To check how efficient our predictions are we plot the
cumulative probability distribution of percentage error for
all the datasets in Figure 8. In Table 2, we compare the
prediction results across different datasets and different
metrics for cases where the prediction error <20%. Note
that this error level is representative and ideally a table
can be recovered for each such error level from Figure 8.
We make the following observations from the results:

— Our framework is able to predict the values for active
nodes, average degree and modularity with high accu-
racy across all datasets.

— For active edges, edge emergence, clustering coeffi-
cient and closeness centrality our framework is able to
predict the values with moderate accuracy although
the prediction accuracy for these properties is reason-
ably high for some datasets (INFOCOM 2006, SIG-
COMM 2009).

— The prediction accuracy is poor across all datasets for
betweenness centrality and in some cases for clustering
coeflicient and closeness centrality.

An important observation is that the spectrogram analy-
sis (introduced in Sect. 5) is able to distinguish between
these properties based on their predictability. On ranking
the properties based on the PSD value at bin 1 (refer to
Figs. 3b, 3d, 3f and 4b, 4d), we observe that the higher
ranked properties are the ones for which the prediction
error is low while the lower ranked ones have higher pre-
diction error. Following this observation we further plot
the mean percentage error for all the properties across all
the datasets versus LPSD in Figure 9. The plot clearly
shows that the higher the value of LPSD, lower is the
mean percentage of error and vice versa.

On further investigating into the cases where the pre-
diction error is high, we observed that these points are
mostly located either in places where a sharp transition
occurred or in silent phases where there was limited inter-
action among the nodes. Figure 10 identifies some of the
transition and silent phases in the time series of number
of active edges in INFOCOM 2006 dataset. Similar phases
are also present in the other datasets as well.
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Fig. 9. (A) LPSD versus mean percentage error for all the
properties across all the datasets.
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Fig. 10. The time series plot for number of active edges. The
red and the green ellipses identify two transition and two silent
phases, respectively.

7.1 Enhancing the prediction scheme
through spectrogram

Since spectrogram analysis of the time series could deter-
mine the predictability of the corresponding property, an
immediate extension would be to check whether it could be
leveraged to identify beforehand the cases where the pre-
diction error is high (unsuitable for prediction). To that
aim we extend the spectrogram analysis to the single point
case whereby while predicting a property at a give time
step, we find that the spectrogram of the window (w) and
use the LPSD value as an indicator for potential prediction
accuracy. The cases identified by spectrogram analysis to
be unsuitable for prediction can then be filtered out to im-
prove the overall accuracy of the prediction framework. A
schematic diagram of this enhanced prediction framework
is provided in Figure 11. We now consider all the datasets
and the corresponding time steps for prediction (which
we considered earlier in this section, refer to Tab. 1) and
instead of directly using our prediction framework we per-
form spectrogram analysis (single point method) on these
points to separate out those which are unsuitable for pre-
diction. We predict only the points which the spectrogram
analysis identified as suitable for prediction. In Table 2 we
compare the fraction of predictions with error <20% be-
tween both the cases where we do not use spectrogram

Page 9 of 11
mapping time
Temporal ; series | Spectrogram prediction
to time ;
network and analysis |::>
point of = serties L4 (ABIME)
prediction
if suitable for
prediction ﬂ
predicted
value

Fig. 11. The prediction framework.

and where we use spectrogram. We observe that the frac-
tion of prediction with error <20% is enhanced for all
the properties albeit only marginally in some cases where
the accuracy was already high. More importantly for (ill-
predicted) properties like betweenness centrality, closeness
centrality, the prediction accuracy increases substantially.
Note that prediction error 20% is again representative and
similar results could be obtained for other values of pre-
diction error as well.

8 An attack strategy using prediction
framework

In this section we show how our prediction can be used
in order to launch targeted attack on temporal networks.
The strategy proposed is a modification over the average
node degree attack presented in [34]. In case of average
node degree attack the temporal degree® [34] of the nodes
are calculated and the node with highest temporal degree
is removed in the subsequent steps (i.e., “the node is at-
tacked”). We observe that for every node its degree over a
given time interval forms a time series. Using our predic-
tion framework we calculate the degree of the node at a fu-
ture time step based on the previous w time steps (window
size for the corresponding dataset, refer to Sect. 6) and re-
move a node with the highest degree as predicted by our
proposed framework. We compare our strategy (Pred-deg)
with average node degree based attack (Avg-deg) and the
random case (nodes are selected at random and removed).
The effectiveness of an attack strategy is measured using
temporal robustness [34] which is estimated by the rela-
tive change in efficiency [34] after a structural damage D.
Temporal efficiency of a network G in a given time inter-
val [t1,tn], Fa(t1,t2) is defined as the averaged sum of the
inverse temporal distances over all pairs of nodes in that
time interval.

1 1

EG(tly t2) - N(N _ 1) Ez,]:z;ﬁj dij (tl, tg) .
Here N is the number of nodes in the network and
d;j(t1,t2) is the temporal distance which is the smallest
temporal length paths among all the temporal paths be-
tween 7 and j in the time interval [t1, t2]. Hence, temporal
robustness is defined as Rg(D) = EEGGD. In Figure 12 we

3 Given a time interval [t1,%,] temporal degree of node i is
the average degree of ¢ over the time interval.
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Fig. 12. Temporal robustness as a function of the fraction of removed nodes for (a) INFOCOM 2006 and (b) SIGCOMM 2009

datasets.

plot temporal robustness as a function of the fraction of
nodes (P) removed for (a) INFOCOM 2006 and (b) SIG-
COMM 2009 datasets. We observe that our strategy does
better than both the random and average node degree
based strategy.

9 Conclusions and future work

Our contributions in this paper can be summarized as
below:

— We provide a general framework to map temporal
network of human contacts consisting of a series of
graphlets equispaced in time into time series and pro-
vide a detailed time domain and frequency domain
analysis.

— We re-establish the presence of structural correlation
in a temporal network of human face-to-face con-
tact using a new metric which we call neighborhood-
overlap.

— We further quantify the extent of this correlation using
neighborhood-overlap and use to identify the correct
window used in our prediction framework.

— We also provide an approach for predicting the prop-
erties of future network instances using time series as a
proxy and show that even though the precise network
structure is not known at time step, one can estimate
its properties.

— Finally we provide a frequency domain analysis of tem-
poral network and show how it can be useful in enhanc-
ing the prediction accuracy.

— As an application we show how our framework can be
used in devising better strategies for targeted network
attacks.

In its current state our framework can predict the values
of the network properties at a future time step but is un-
able to offer the exact network structure at that time step.
But our framework can have genuine contributions toward
link prediction in temporal networks. Since we show that
structural correlation exists in these networks and we can
also predict the network properties at these time steps as

well, we can re-frame the link prediction problem as a net-
work at a time step which is obtained from the network
at a previous time step with minimal changes made de-
pending on the values of the properties. We plan to deeply
investigate this problem in subsequent works.
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