
Improving Document Ranking for Long Queries
with Nested Query Segmentation

Rishiraj Saha Roy1, Anusha Suresh1, Niloy Ganguly1, Monojit Choudhury2,
Deepak Shankar3, and Tanwita Nimiar3

1 Indian Institute of Technology Kharagpur, Kharagpur, India – 721302.
{rishiraj, anusha.suresh, niloy}@cse.iitkgp.ernet.in

2 Microsoft Research India, Bangalore, India – 560027.
monojitc@microsoft.com

3 R. V. College of Engineering, Bangalore, India – 560059.
{deepak.shankar94, ntanwita21}@gmail.com

Abstract. Past work on query segmentation has exclusively focused
on flat or non-hierarchical segmentation, where query words are simply
partitioned into non-overlapping contiguous chunks of words. Such an
approach suffers from the problem of granularity, and consequent diffi-
culties in IR application. Here, we explore nested or hierarchical query
segmentation, where segments are defined recursively as consisting of
contiguous sequences of segments or query words, as an effective and
powerful alternative representation of a query. We design a lightweight
and unsupervised nested segmentation scheme, and propose how to use
the tree arising out of the nested representation of a query to improve
retrieval performance. We examine several aspects of the IR application
framework and show that nested segmentation can be suitably exploited
for the re-ranking of documents leading to significant gains over baselines
that include the state-of-the-art flat segmentation strategies, and can
provide benefits when combined with the latest term proximity model.

1 Introduction

Query segmentation [1–3] is one of the first steps towards query understand-
ing where complex queries are partitioned into semantically coherent word se-
quences. Recent studies [2, 3] have shown that segmentation can potentially lead
to better IR performance. Till date, almost all the works on query segmentation
have dealt with flat or non-hierarchical segmentations, as shown below:

windows xp home edition | hd video | playback

where pipes (|) represent flat segment boundaries. In flat segmentation, it is hard
to specify the appropriate granularity or the expected length of the segments.
For example, human annotators (or algorithms) that prefer shorter segments
may split the first segment into windows xp and home edition, while others
may choose not to break the sequence video playback. This leads to confu-
sion amongst annotators leading to low inter-annotator agreement for manually

labeled segments [1, 4], and in turn, makes evaluation of query segmentation a
difficult problem [3]. Instead of evaluating against human annotated data, a bet-
ter approach to evaluation of segmentation, therefore, is to use segmented queries
directly in IR or some similar application and calculate the respective perfor-
mance gains. To this end, Saha Roy et al. [3] have recently proposed a framework
which estimates the potential of a segmentation strategy in improving IR. While
their oracle-based approach might be useful in evaluating the potential of an al-
gorithm, it does not tell us how exactly one can use the segmentation information
for harnessing this potential during the retrieval process.

Nevertheless, the issue of an “ideal” granularity creates confusion in a retrieval-
based setting. First, whether longer or shorter segments should be preferred
purely depends on the query and document pair in question during the search
process. Hence, a flat segmentation algorithm consistently adopting either of the
two strategies (long or short segments) will fail in several contexts. Next, when
the generated segment (say, windows xp home edition) is matched only par-
tially in the document (say, as office xp home edition or windows xp pro

edition), a flat segmentation algorithm relying on exact (or approximate) string
matching fails to understand that the latter case is much more relevant than the
former. These difficulties of granularity associated with flat segmentation can be
effectively addressed if we allow nesting or embedding of segments inside big-
ger segments. For instance, instead of a flat segmentation, our running example
query could be more meaningfully represented as follows:

(((windows xp) home) edition) ((hd video) playback)

Fig. 1. Nested segmentation tree.

Here, the atomic segments – windows xp and hd video, are progressively
joined with other words to produce larger segments – windows xp home, windows
xp home edition, and hd video playback. We shall refer to this process as
nested (or hierarchical) query segmentation. The hierarchy in this form of syn-
tactic analysis is better visualized through a nested segmentation tree as shown
in Fig. 1. It is intuitive from this representation that windows xp and hd video

are non-negotiable (atomic units) when it comes to matching within documents,

and the strength of ties between word pairs can be said to weaken as they move
farther in terms of the (unique) path through the tree. This observation forms
the basis of our re-ranking scheme that addresses the issue of non-exact segment
matching in documents.

In this work, we develop an algorithm and an evaluation methodology for
nested query segmentation that can actually be used to apply nested segmenta-
tion to IR (unlike the oracle-based framework proposed by Saha Roy et al. [3]).
Our nested segmentation algorithm is based on some very simple yet powerful
local statistical and linguistic information. Through a detailed evaluation of the
various aspects involved and using two different datasets, we demonstrate that
nested segmentation is not only a more informative representation of the query,
but also can be exploited to gain better IR performances especially for slightly
long queries (≥ 3 words). Note that nested segmentation (or chunking), which is
a very intuitive representation of natural language (NL) sentences [5] and more
specifically phrase structure grammar, has hardly been used for representing
queries. A possible reason for the low attention paid to this problem could be
that the deduction of hierarchical structure in NL sentences heavily relies on ac-
curate part-of-speech (POS) tagging of the words and an underlying grammar.
More importantly, such an analysis adds a non-trivial runtime overhead during
query processing. Furthermore, there is no prevalent notion of grammatical syn-
tax for Web search queries which could provide a sound basis for a hierarchical
query structure.

Approach. In absence of linguistic cues, we adopt a purely statistical ap-
proach. The intuitions behind our approach are as follows. State-of-the-art flat
segmentation algorithms involve a word association score optimization over all
the words of the query, and hence flat segments contain vital information that
should be utilized effectively. Our objective is to discover more detailed query
structure by finding interesting relationships within flat segments, and between
different flat segments. Structure within flat segments is determined by an ex-
haustive search over lower order constituent n-grams, and such an approach is
feasible in this context because the lengths of flat segments rarely exceed five
words. The relative strengths of bigrams straddling flat segment boundaries is
exploited in inferring the relationships between different flat segments. Relevant
bigram statistics, again, are already available. These strategies help us discover
the hierarchical structure within a query, which is subsequently harnessed dur-
ing document re-ranking. This document re-ranking strategy, in turn, is our
instrument for directly applying nested segmentation to improve result quality.

Contributions. This paper is the first to harness the power of deep query
structure through nested segmentation and use it to improve ranking. A high-
light of our approach is a principled way of dealing with cases where certain
words of a query (segment) are absent in the documents, i.e., an exact match
of a segment is not found. Specifically, in this research, keeping the above per-
spectives in mind, we (a) develop an unsupervised and lightweight technique
for nested segmentation that uses query logs as the only resource; (b) design
a deterministic document re-ranking strategy exploiting the nested representa-

tion of the query; (c) demonstrate that the use of nested segmentation can lead
to significant improvement in document re-ranking over the state-of-the-art flat
segmentation strategies; and (d) we also extend the framework proposed in Saha
Roy et al. [3] to nested segmentation and show that nested segmentation indeed
has a much higher potential for IR improvement than its flat counterpart. To
ensure reproducibility of results, we are sharing the nested segmentations of our
queries along with the complete generation and IR evaluation code4.

Organization. Sec. 2 discusses current techniques in flat query segmenta-
tion, their limitations, and the corresponding benefits of nested segmentation.
Basic concepts and necessary terminology are defined in Sec. 3. Sec. 4 presents
our algorithm for generating nested segmentations. Next, in Sec. 5, we discuss the
technique for using nested segmentation to improve result ranking. We describe
datasets used in Sec. 6. Sec. 7 describes the experimental results and observa-
tions. In Sec. 8, we report the method for extension of the evaluation framework
by Saha Roy et al. [3] to nested segmentation. Sec. 9 reviews research on prox-
imity and dependence models, indirectly related to this work. Sec. 10 concludes
the paper by summarizing our contributions and highlighting promising future
research directions.

2 Issues with Flat Segmentation

Query segmentation was proposed by Risvik et al. [6], where the authors used
frequencies and mutual information of n-grams learnt from query logs to come
up with meaningful segmentations for queries. The next ten years saw a plethora
of work on segmentation using diverse resources like Wikipedia titles [4], click-
through data [2] and query logs [7], while using distinct algorithmic approaches
like eigenspace similiarity [8], conditional random fields [9] and expectation maxi-
mization [4, 2]. Query segmentation has also been applied to domains other than
Web search, like patent search [10] and product search [11, 12]. Unsupervised
methods [13, 4, 8, 14–16, 2, 7, 3, 12] have outnumbered supervised techniques [17,
18, 9, 19, 20], as the latter relies on human annotations for training which is
quite expensive to obtain in large volumes. Moreover, it is always difficult to
achieve good query coverage from various domains in the datasets used for su-
pervised learning [12]. Bergsma and Wang [17] had released a set of 500 human
annotated queries sampled from the 2006 AOL query log [21], which facilitated
comparison of various segmentation algorithms based on matching metrics. Sub-
sequently, Hagen et al. [16] created a much larger and cleaner dataset of 53, 437
queries5 (Webis-QSeC-10) which was accompanied by ten segmentation anno-
tations each, collected through the Amazon Mechanical Turk6 crowdsourcing
platform. Currently, ' 10% of this dataset is publicly available. Subsequent re-
search has identified several limitations and issues with validation against human

4 http://cse.iitkgp.ac.in/resgrp/cnerg/qa/nestedsegmentation.html, Ac-
cessed 24 Oct 2015

5 http://www.webis.de/research/corpora, Accessed 24 Oct 2015
6 https://www.mturk.com/mturk/welcome, Accessed 24 Oct 2015

segmentations, and an alternative and more appropriate framework for evaluat-
ing query segmentation has been proposed [3].

2.1 Limitations of flat segmentation

There are two important conceptual deficiencies of flat segmentation [16, 2, 7, 3,
4]: its definition and its use in IR. These two issues are, in fact, very closely re-
lated because it seems impossible to posit a definition of a segment without an IR
model in place. More often than not, the definition of segmentation is presented
vaguely as grouping of “semantically meaningful units” together [4]. Ultimately,
it is the segmentation strategy that provides an implicit definition of the concept.
Needless to say, such definitions and guidelines leave out scope for a subjective
interpretation of segments leading to low inter-annotator agreement on manually
annotated queries (' 58 − 73% on most metrics [4]). See [1, 3] for issues with
evaluation against human annotations. However, the problem is deeper than just
being an outcome of imprecise definition. Rather, it stems from the fact that the
notion of segments cannot be defined in the absence of an IR model – because
unlike NL, there are no cognitive correlates of segments, like phrases or clauses,
in queries. At best, an annotator can be asked to group multiword (named) en-
tities together, which drastically reduces the scope of segmentation and makes
it equivalent to the problem of (named) entity identification in queries.

Second, there is no clear consensus on the best use of segmentation in re-
trieval or ranking models, although there have been proposals such as the use
of dependence models [18], language models [2] and double quotes [1, 3]. A com-
monly assumed restrictive principle in this context is that the words of the same
segment must appear adjacent to each other in the document. This has resulted
in the use of double quotes (as operators to ensure exact matches) to surround
segments in several experimental frameworks [17, 1, 3]. However, putting quotes
around all segments degrades performance [16]. While use of quotes for certain
segments yields better results [3], detection of these segments at runtime is still
a hard task. Finally, the use of exact segment matching leaves the following im-
portant question unanswered: how does one deal with the situation when the
exact segment is only partially found in the document? A “segment found/not
found” type of binary scoring would not be the best choice, as we have seen
through our running example that some of the words may be entirely replace-
able (edition) while others are not (windows). Current proposals of using flat
segmentation for IR [18, 2, 1, 3] do not provide guidelines for handling such cases
explicitly. Quoting-based strategies severely limit the scope of segmentation and
effectively narrow it down to multiword entity detection.

2.2 Advantages of nested segmentation

The aforementioned problems are manifestations of the deeper issue of granu-
larity at which segmentation needs to be done, i.e., whether to prefer longer or
shorter segments, and whether this choice is context-sensitive. These problems

vanish if we allow hierarchical or nested segmentation, where the human an-
notator or the algorithm is allowed to mark meaningful units in a hierarchical
fashion and is required to go as deep as possible preserving the semantics of
the query [22]. This will result in multi-level segmentation where at the lowest
level, we will have multiword expressions for which quoting or exact matching
would make sense during retrieval (e.g., windows xp and hd video in Fig. 1),
whereas at higher levels it would make more sense to semantically interpret the
unit and employ less strict matching where the terms are expected to be closer
in a relevant document but not necessarily adjacent to each other (e.g., between
hd video and playback).

Nesting is conceptually identical to hierarchical chunking [5] or phrase struc-
ture parsing of NL sentences. Chunking involves breaking NL sentences into
syntactic units, and has significant benefits in parsing and understanding of NL
text. Nesting has been widely used in NL to better represent internal structure
within a bigger chunk. For example, a complex noun phrase ((a flight) (from

Indianapolis) (to Houston)) can be parenthesized by marking smaller units.
Thus, similarly nesting query segments can effectively resolve the problem of
granularity. In the context of queries, a straightforward algorithm for nested
segmentation would be to continue splitting a query or segments until certain
boundary conditions are met. However, we show that this approach overlooks
the rich local structures present in the query which can be used to customize
nested segmentation.

Huang et al. [23] introduce a simple algorithm for hierarchical query segmen-
tation as an application for Web scale language models. However, they do not
suggest how nested segmentation can be used in IR. It is worth mentioning that
term proximity models [24] and term dependence models [25], which are based
on the fundamental assumption that certain query terms are expected to occur
in close proximity in the relevant documents, are obliquely related to the concept
of segmentation, because terms that are within a segment or appear closer in a
segmentation tree are expected to appear closer in the relevant documents. We
borrow some of these ideas to build our re-ranking framework. In our results,
we also show the potential benefits of combining nested segmentation with the
state-of-the-art term proximity model [26].

3 Terms and definitions

We now formally define the types of segmentation and the different distances
which will be used to build up the algorithms and re-ranking models in the
subsequent sections.

3.1 Types of segmentation

Flat segmentation. A flat segmentation of an n-word query q = t1t2 . . . tn
is defined as the original query q augmented with a set of decisions bi, i =
1, 2, ..., (n−1), where bi is 1 if there is a segment boundary between query terms

ti and ti+1, and 0 otherwise (boundaries are present before the first and after the
last words). Each sequence of terms between two segment boundaries is called
a flat segment. In general, a flat segment corresponds to a meaningful semantic
unit within the query. We define the default flat segmentation for any query as
the case when all the query words are in different segments (windows | xp |

home | edition | hd | video | playback). The assumption in the default
case is that “a query is a bag of words” without any linear dependence between
successive terms. This is conceptually equivalent to an unsegmented query. In
this text, words and terms refer to the same concept.

Nested segmentation. A nested segmentation for a query q is defined as a
recursive partitioning of q such that each partition is either an indivisible (possi-
bly multiword) unit or another nested segment. The partitions are marked using
parentheses in this paper, and so a nested segmentation is represented as a com-
plete parenthesization of the words in q. For example, (((windows xp) home)

edition) ((hd video) playback) is a possible nested segmentation for the
corresponding query. The default nested segmentation of a query is the case
where each word is in its own segment and there is no further hierarchy. For ex-
ample, (windows) (xp) (home) (edition) (hd) (video) (playback) is the
default nested segmentation for our example query. The default assumption here
is again that the query is a bag of words without any semantic relations or hi-
erarchy between them, and is conceptually equivalent to an unsegmented query.
By convention, parentheses are always present around single words, and at the
ends of the query.

Note that this definition does not enforce a strict binary partitioning of the
query; it is often possible that an atomic unit is composed of more than two
words (bed and breakfast). Further, the query can also be made of multi-
ple disparate concepts, like (price comparison) (ps3) (nintendo) (xbox),
of which more than two elements (ps3, nintendo and xbox) can conceptually be
at the same level. This hierarchical partitioning can be obtained through a top-
down or a bottom-up approach. In the top down approach, one divides the query
into multiple parts, and then proceeds to divide each of these parts till atomic
units are obtained. In the bottom up approach, one first groups the atomic units
together, and then successively grows these units to form bigger segments till
the entire query is one segment. In our hybrid method (Sec. 4), we start with an
input flat segmentation and apply both top-down and bottom-up approaches to
find smaller and larger units in the query respectively. The splitting and joining
processed involved can be performed without any ordering constraints.

A nested segmentation tree is an alternative representation of nested segmen-
tation, where query terms are leaf nodes and every multiword segment is repre-
sented by an internal node whose children include all and only nodes correspond-
ing to words or other segments that constitute this segment. Fig. 1 graphically
illustrates this concept. This tree representation not only provides an intuitive
visualization of nested segmentation, but is also useful in defining the topological
distance between a pair of words in the query, as described in Sec. 3.2.

3.2 Types of distances

Tree distance. The tree distance td(t1, t2;n(q)) between two terms t1 and t2
in n(q), the nested segmentation of a query q, is defined as the shortest path
(i.e., the number of hops) between t1 and t2 (or vice versa) through the nested
segmentation tree for q. A tree ensures a unique shortest path between t1 and t2,
which is through the common ancestor of t1 and t2. For example, td(xp, video;
n(q) in Fig. 1) = 7. The minimum possible tree distance between two terms is
two. We hypothesize that term pairs having low tree distance must appear close
together in the document. Note that td between t1 and t2 can vary for the same
q, depending on n(q).

Query distance. The query distance qd(t1, t2; q) between two terms t1 and
t2 in a query q is defined as the difference between the positions of t1 and t2 in q,
or equivalently, the number of intervening words plus one. For instance, in our
original example, the distance between xp and video is 4. In special cases when
the same word appears multiple times in a query (johnson and johnson home

page), each term instance is treated as distinct during pairwise term distance
comparisons.

Document distance. The distance between a pair of words in a document
can be considered as the difference in the positions of the two words in the doc-
ument, or equivalently, the number of intervening words plus one. Since a pair
of words can occur multiple times in a given document, the notion of distance,
so defined, is ambiguous. Consequently, various proximity heuristics have been
proposed in the past to compute the effective distance between two words in
a document [27, 24]. These include the minimum, maximum and mean of the
distances between all paired occurrences of the two words in the document. Let
t1 and t2 be two terms in the query q, which are also present (matched) in a
retrieved document D. Cummins and O’Riordan [24] have shown that amongst
the various proximity heuristics, minimum distance has the highest inverse cor-
relation with document relevance, i.e., the lower the minimum distance between
t1 and t2 in D, the higher the chances that D is relevant to q. However, past mea-
sures do not directly reward a document if it has multiple instances of t1 and t2
occurring within low distances of each other. Let there be k instances of ordered
pairwise occurrences of t1 and t2 (ordered pairs of positions of t1 and t2, (p1,
p2) where p1 < p2) in D at minimum distances disti = dist1, dist2, . . . , distk,
such that the disti-s are in ascending order. We combine the ideas of minimum
distance and multiple occurrences of a term pair to formulate the following def-
inition of accumulative inverse document distance (AIDD) for t1 and t2 in D:

AIDD(t1, t2;D)t1 6=t2 =
1

dist1
+

1

dist2
+ . . .+

1

distk
(1)

By this method, a document with several (t1, t2) pairs near to each other
will have a high AIDD. Using the inverse of individual distances instead of the
normal form has the nice property of not being sensitive to very high outlier
distances. Taking the inverse makes the quantity very close to zero, mitigating
its effect on the final sum. Since our concept is based on minimum distance,

Table 1. Recursive joining and splitting of flat segments as a general strategy for
nested segmentation. All text except new segment markers are greyed out.

Step Structural representation of the query

Input flat seg windows xp home edition | hd video | playback

Parenthesized (windows xp home edition) (hd video) (playback)

Split ((windows xp home) (edition)) (hd video) (playback)

Split (((windows xp) (home)) (edition)) (hd video) (playback)

Join (((windows xp) (home)) (edition)) ((hd video) (playback))

Join and output ((((windows xp) (home)) (edition)) ((hd video) (playback)))

we do not need a document length normalizer. A threshold on k is nevertheless
necessary to avoid considering all pairwise distances of t1 and t2, as distant
pairs could be semantically unrelated. We study the impact of variation in k
in Sec. 7.1. To avoid scoring unrelated occurrences of a term pair, we consider
matches only if (t1, t2) occur within a given window size, win, i.e., we do not use
di when it exceeds some window win.

We compute the pairwise distances using position vectors (pv) of a and b
in D [24]. For example, pv(a) = {1, 5, 10} and pv(b) = {2, 3} mean that a has
occurred in positions one, five and ten and b in two and three (in D), respectively.
We currently ignore sentence boundaries while computing AIDD. Such a style of
computation of pairwise distances can lead to re-counting of specific instances of
a and b. For example, the three minimum distance pairs in this case would be (1,
2), (1, 3) and (5, 3). Here, with patterns like "... a a b b b c..."), one could
address the problem by choosing the optimum distance pair (a, b) using dynamic
programming. This entails search in exponential time over the entire document,
limited by the number of occurrences of the less frequent word. However, such
an approach has been shown to be less effective than the simple case when re-
counting is tolerated (see [24] for a more detailed discussion). Moreover, such
patterns are quite rare in running text of documents.

For all the above distances, when the same word appears multiple times in
a query, each word instance is treated as distinct during pairwise comparisons.

4 Algorithm

The goal behind devising a principled nested segmentation strategy is to dis-
cover deep syntactic relationships in a query, which are often present within a
flat segment, and also between multiple flat segments. We do not propound sim-
ple top-down (begin with the query as a single unit and continue splitting till
all units are single words) or bottom-up (begin with each word as a single unit
and continue merging till the whole query becomes one unit) approaches for
deducing the hierarchical structure in a query because such methods are näıve
and do not involve any optimization step over all the words of the query. State-
of-the-art flat segmentation algorithms [16, 2, 3] involve principled optimization

criteria leading to discovery of flat segments, and a good nesting strategy should
exploit this knowledge to the best capacity. There are three primary constraints
or features of a query segmentation algorithm that need to be considered before
designing an algorithm. First, the accuracy and robustness (i.e., reasonable per-
formance on a wide variety of queries); second, the speed (segmentation is an
online process and therefore to be practically useful it must have a very short
turnaround time); and third, lack of annotated data. It might be worthwhile to
elaborate a little on this last point. It may be argued that if we can get suf-
ficient queries annotated by human experts for nested segmentation [22], the
data could be used for supervised learning of nesting algorithms. Indeed, most
NL parsing algorithms do rely on supervised learning on human-annotated tree-
banks. However, there is an important difference between these two cases. NL
parsing is guided by an underlying (context-free or phrase structure) grammar
which linguists have designed through years of systematic analysis of NLs. The
annotators, who are themselves trained linguists, use the knowledge and frame-
work of the grammar to annotate the tree structure for sentences. Likewise, the
parsing algorithms search in the space of all possible parse trees that conform
to this grammar. Queries do not follow grammatical rules, or at the least no
such grammar has been formulated or deciphered till date. Neither do we have
annotators who are experts or native speakers of the “query language”. There-
fore, structural annotation of queries [28–30] has always been subjective, often
leading to low inter-annotator agreement. Moreover, creation of annotated data,
for example, the treebanks for NLs, takes a tremendous amount of time and
effort. It is also not straightforward to ascertain whether NL parsing algorithms
can be efficiently adapted for fast online processing.

Overview. Most flat segmentation algorithms for queries are based on some
kind of word n-gram statistics that are either learnt from documents or from
query logs [6, 15, 16, 2, 7]. Since computation of n-gram statistics does not require
annotated data, this turns out to be a scalable and robust approach that is also
quite fast in practice [6]. Therefore, we devise nested segmentation strategies
that are based on this simple yet powerful philosophy of n-grams. Since flat
segmentation is a well-researched problem, we develop our algorithm for nested
segmentation by starting with a flat segmentation of the query and trying to
split within a flat segment and join adjacent flat segments recursively. Since flat
segments are rarely longer than four to five words, nesting can be done rather fast
with some clever manipulations of low order n-gram statistics (n = 2, 3). Thus,
in our setup, given a flat segmentation for a query as input, a nesting strategy
consists of the following two steps: (a) Split individual flat segments recursively
till atomic units are obtained; (b) Join adjacent flat segments recursively till
the whole query is one single unit. The split and the join steps are independent
of each other and can be performed in any order. This process is illustrated
in Table 1 and Fig. 2 with the help of our running example. In particular,
we use the state-of-the-art unsupervised algorithm for obtaining the initial flat
segmentation [3], with joining and splitting strategies with n-gram scores that
are described below.

Fig. 2. Approach for nested query segmentation.

4.1 Splitting flat segments

Our main motivation for designing simple segment nesting strategies stems from
the fact that most flat segmentation algorithms compute scores for n-grams
as a key step of their respective methods (generally n ≤ 5) [16, 7, 4]. In doing
so, most often the scores of the contiguous lower order n-grams (n − 1, n −
2, . . .) are also known. We exploit these scores to deduce the structure within
a flat segment. In this work, we specifically use the state-of-the-art CSR (Co-
occurrence Significance Ratio) measure [31] to score n-grams. In principle, any
word association measure can be used to score n-grams for this purpose (see [31]
for an in-depth review of word association measures). Let |ni| denote the length
of the n-gram ni in words. We note that for several word association measures,
it is not necessary that score(ni) < score(nj) if |ni| > |nj |, i.e., shorter n-grams,
even though more frequent, do not necessarily achieve higher word association
scores than longer n-grams.

Lower order n-grams are always more frequent than their extensions, and
almost always obtain higher scores. Usually, bigrams get the highest scores as
unigrams are assigned trivial values. However, this does not mean that flat seg-
ments cannot be longer than two words; this is because the final score assigned
to a segmentation is a combination of the constituent n-gram scores. For exam-
ple, the bigram a b is always more frequent than the trigram a b c and hence
score(a b) > score(a b c). But it may well happen that in a five-word query
<a b c d e>, score(a b c) ? score(d e) > score(a b) ? score(c d) ? score(e),
where ? is any combination operator, and subsequently the former segmentation
emerges as the one with the higher score and a b c is grouped as a segment.
Techniques resort to suitable normalizations for longer segments to increase their

base scores [16], or attempt to match (partially or fully) multiword entities from
lists to directly prefer longer chunks [4, 3].

We adopt a simple greedy approach in this research. The n-gram that has
the highest CSR score within a flat segment (where the number of words in the
n-gram is less than the number of words in the corresponding flat segment) is im-
mediately grouped together as a unit, i.e. a sub-segment. In this work, we restrict
n to a maximum of three, i.e. we search for highest scoring bigrams and trigrams
exhaustively within a flat segment. We define a sub-segment as a smaller seg-
ment created by the division of a larger segment. Recursively, this newly grouped
sub-segment’s left and right n-grams (possibly null) and the sub-segment itself
are processed in the same greedy fashion till every string to be processed cannot
be divided further. Also, we allow scope for extending a sub-segment by one
word from its left or right to incorporate elements. (if the resultant (n+1)-gram
is the highest scoring candidate), provided it does not interfere with existing seg-
ment boundaries. For example, in the flat segment windows xp home edition,
windows xp home has the highest CSR among the five possible n-grams (two
trigrams and three bigrams). Thus, it is grouped together first. Since edition

cannot be processed further, we repeat the search within windows xp home

and group windows xp inside it. For the flat segment the legend of zelda

twilight princess, we have legend of zelda grouped first (with legend of

being grouped inside it in a subsequent step) followed by twilight princess.
This results in the following embedded structure for the original flat segment:
(the) ((legend of) zelda) (twilight princess).

Optimized Approach (O). In this approach, every possible way of break-
ing a flat segment is considered, such that the constituent sub-segments are 1-,
2- or 3-grams only, and the partitioning that leads to the best combined score
is selected7. These partitions are assumed to be the atomic units of the base
flat segment. If a flat segmentation is purely based on an optimal combination
of individual segment scores, then each segment, by itself, is an optimal way
of combining its constituent words. In such a case, the optimized strategy of
splitting would not have any effect on a flat segment. On the other hand, if a
flat segment is deduced through matching against a list of named entities or a
domain-specific multiword lexicon, getting smaller strings based on the scores
is likely. Also note that it is quite possible that the greedy and optimized ap-
proaches produce the same final output.

4.2 Joining flat segments

Joining flat segments is essential to completing the nested segmentation tree,
which in turn ensures a path between every pair of words in the query. At first
sight, it seems that for making decisions about joining of two flat segments with
m and n words respectively, one needs to have (m + n)-gram statistics. How-
ever, we found an elegant way to join segments using two simple local statistics
explained next.

7 Addition is the combination operator for the scores owing to the logarithmic space
in which they are defined [16, 7].

Bigram statistics of words at segment boundary. The bigram at a flat
segment boundary, i.e. the last word of a flat segment and the first word of the
next flat segment, can be effectively used to take the segment joining decision.
In our running example, if we wish to decide whether to join windows xp home

edition and hd video, or hd video and playback, we check the relative order
of the scores of the (ordered) bigrams formed by the underlined words only. The
bigram with the higher score (in this case video playback) dictates which pair
should be joined. This process is similarly repeated on the new parenthesized
segments obtained until the whole query forms one unit. It is not difficult to
think of cases where this greedy local and context insensitive approach will
fail, and we do not claim that using bigrams only is sufficient in this process.
Nevertheless, as we shall see, it works quite well in practice. In this research, we
use the well-established concept of pointwise mutual information (PMI) [16] to
score bigrams. Let B = <w1 w2> be a bigram constituted of words w1 and w2.
We define PMI(B) as follows:

PMI(B) = log2
p(w1w2)
p(w1)p(w2) (2)

where p(w1w2), p(w1) and p(w2) refer to the probabilities of occurrence of B,
w1 and w2 in the query log, i.e. the number of queries each of them are present in,
normalized by the total number of queries in the log. Again, for simplicity and
for preserving query-specific structures, associated probabilities are computed
from query logs only [7].

Determiners, conjunctions and prepositions. It often happens that the
last (or the first) word in a segment is a determiner, conjunction or preposi-
tion (DCP)8. In these cases, it is almost always meaningful to combine such a
segment with the next segment (or the previous segment) to make a meaningful
super-segment (a larger segment created by the joining of two smaller segments).
Examples are (bed and) (breakfast) and (sound) (of music). In our algo-
rithm, we prioritize such cases over the bigram scores during the joining process.

4.3 Measures of word association

We need to assign scores to n-grams in direct proportion to their internal bind-
ing or association strength. We score n-grams using the state-of-the-art word
association measure CSR (Co-occurrence Significance Ratio) [31]. The measure
was parallely adapted for query segmentation in Mishra et al. [7]. The novelty of
this technique is that a decision is made on the significance of an n-gram only on
the basis of the number of queries (in this context) which contain all the terms
of the n-gram, thus disallowing frequently misleading unigram statistics to in-
terfere with the decision. The CSR for an n-gram N , in the context of queries,
is defined as (Eq. 3)

CSR(N) =
2(N − E(X)2)

k
(3)

8 List used from http://bit.ly/157MWzP, Accessed 26 Oct 2015.

where N and k are the numbers of queries in which the words of N appear in
the correct order (also, no intervening words) and any order (also, any number of
intervening words allowed) respectively, and E(X) is the expectation of random
variable X =

∑
iXi which models the number of times the words of N appear in

the correct order in a query, and is computed as E(X) =
∑
i Pi. The probability

of [Xi = 1] under the bag-of-words null model for queries, Pi, is given by (Eq. 4)

Pi =
(li − n+ 1)!

li!
(4)

We note that the CSR in this context is computed using only a query log
as the input resource. This keeps our method lightweight. Since queries are
generally shorter than NL sentences, only bigrams and trigrams are considered.
N is considered to be a statistically significant multiword expression (MWE)
if CSR(N) is greater than a significance threshold δ, where δ is chosen to be
0.6k [7]. Note that δ is specific to every MWE and there is no global threshold.
Choosing δ in such a way allows us to be more selective with the lexicon of
MWEs with respect to statistical significance than a global threshold. CSR for
unigrams is defined to be zero, since their observed and expected frequencies are
equal. CSR uses the Hoeffding’s inequality to derive its test of word association
significance [31, 32, 7].

5 Using nested segmentation in IR

Use of flat query segmentation in IR has been based upon the concept of proxim-
ity, which states that two words that are in the same segment should also occur
within a short distance of each other in relevant documents; whereas words in dif-
ferent flat segments need not necessarily occur close to each other [6]. A stricter
but more popularly assumed and experimented version of this hypothesis is that
words within a flat segment should occur next to each other exactly in the same
order in the relevant document as in the query [4]. This is typically implemented
through the use of double quotes around segments, which most search engines
interpret as an instruction for exact phrase match. As discussed earlier, this
severely limits the scope of query segmentation and often results in misleading
conclusions [3]. There is no obvious analogy between quoting of flat segments
and that of nested segments, because it is unclear as to which level of nesting
the quotes should be applied. More importantly, quoting is against the basic
philosophy of nested segmentation because then we are not harnessing the true
benefits of the hierarchical representation of the query terms. Nevertheless, see
Sec. 8 on how the concept of quoting can be generalized in the context of nested
query segmentation.

The flexibility of nested segmentation in comparison to the flat version can
be best utilized through more informed matching of query words in the docu-
ment. The important intuition that we try to leverage here is the fact that while
research on term proximity has made successive improvements on how to best

Table 2. Penalty cases for query word pairs.

Tree distance Document distance Penalty

Low Low Low
Low High High
High Low X
High High X

X marks represent don’t care conditions.

match query expressions in the document [24, 26], which query expressions mat-
ter more for proximity matching is still not very well-answered. We try to close
this gap by using the nested segmentation tree. Here, we directly use the tree in-
formation to improve document-based term proximity. As an additional step, we
use expressions generated by nested segmentation as input to a state-of-the-art
term proximity model to reap potential benefits. We now describe these tech-
niques of using nested segmentation for improving IR. Note that our IR setup
can be used an evaluation framework for nested query segmentation approaches
in the future when there will be multiple competing algorithms at hand.

5.1 Re-ranking strategy using tree

Here we define a score Re-rank Status Value9 (RrSV) of every document D
that was retrieved and ranked by in response to an unsegmented query q. The
RrSV for each such document is determined based on the following principle –
A pair of words that have a low tree distance in the nested representation of the
query should not have a high document distance. In other words, while re-ranking
a document, the document distance (Eq. 1) between a pair of words should be
penalized by a factor inversely proportional to their tree distance. We recall that
tree distance between two words a and b in a query q, td(a, b;n(q)) is the path
between a and b in the nested segmentation (n(q)) tree of q, and the document
distance between a and b in a document D, AIDD(a, b;D), is defined by Eq. 1.
The RrSV for a document D is thus defined as

RrSVD =
∑

ti,tj∈q∩D
ti 6=tj

td(ti,tj ;n(q))<δ

AIDD(ti, tj ;D)

td(ti, tj ;n(q))
(5)

where ti-s are query terms matched in the document and n(q) is the nested
segmentation for q. However, we do not wish to penalize the case when the words
are close by in the document and are relatively far in the tree. This is because
it is always preferable to have all query words close by in the document [24].
Rather, we want to penalize a document only when specific word pairs (those
that have a low tree distance) have high document distance. These situations

9 The nomenclature is inspired by the Retrieval Status Value (RSV) of a document
with respect to a query, which is a term that is popular in IR literature [33].

and the corresponding desired penalties are presented in Table 2. This analysis
drives us to create a tree distance threshold (cut-off) parameter δ. In other
words, if td(a, b;n(q)) < δ, only then is the word pair a and b considered in the
computation of RrSV . We shall examine the effect of varying δ in Sec. 7.1.

The set of documents retrieved by a search engine by issuing the unseg-
mented query will be re-ranked in descending order of this RrSV . Let the ranks
assigned to the document D by the original ranker and our re-ranking strategy
be Rorig(D) and Rnew(D) respectively. Then, according to our strategy, for two
documents D1 and D2, if RrSVD1 > RrSVD2 , then Rnew(D1) < Rnew(D2), i.e.
D1 will be ranked higher up in the new ranked list than D2. The intuition here is
that if a document D1 accumulates a higher value of RrSV than document D2,
then D1 has a relatively higher number of occurrences of query terms having a
low tree distance close together inside its text than D2.

Aggregation of original and new ranks Let each document D in the initial
result list that we wish to re-rank, have an original rank Ro(D). The set of
documents that we re-rank are originally retrieved from a collection in response
to an unsegmented query using well-established IR ranking principles based on
term frequencies and inverse document frequencies, and we wish to give due
weight to the old ranks. The new rank obtained by the documents when sorted
in descending order of RrSV only is Rn(D). We aggregate or fuse these ranks in
the following manner to obtain an aggregated score Srank−agg for every document
D [34] as shown below:

Srank−agg(D, Rorig, Rnew, w) =

(
w × 1

Rnew(D) + 1

)
+

1

Rorig(D) + 1
(6)

where the weight w (assigned to the new rank) is a heuristically tuned scaling
factor representing the relative “importance” of the new ranking. The docu-
ments are finally ranked in descending order of Srank−agg to produce the fi-
nal aggregated rank Rfinal. Formally, if Srank−agg(D1) > Srank−agg(D2), then
Rfinal(D1) < Rfinal(D2), i.e. D1 will be ranked higher up in the final aggre-
gated ranked list than D2 (ties in the final score are broken arbitrarily). Setting
w to zero or a very large value nullifies the effects of the new and original ranking
respectively. The effect of varying w is examined in Sec. 7.1.

There are several other approaches to rank aggregation and one of several
proposed approaches could produce the best results in a given setup. However,
that is not the focus of this research and we adopt one of the relatively recent,
simple and popular techniques in this work that allows us to tune the effects of
the original and new rankings.

Re-ranking baselines We now introduce three baselines for comparing the
performance of our re-ranking strategy for nested segmentation. Flat segmenta-
tion is the first of these baselines, where we extend our notion of using pairwise

term proximity to words within flat segments. The other two baselines are nat-
ural variants of the re-ranking equation (Eq. 5) that require investigation – one
where only document distances are considered, and the other where the tree
distance is replaced by the simple query distance.

Flat segmentation. This re-ranking technique is based on the notion that
words within a flat segment are expected to appear near each other in the relevant
documents [4]. Let q be a query that has p flat segments – S1 to Sp. The RrSV
computation in this case is restricted only to intra-segment term pairs, i.e.,

RrSVD =
∑p

k=1

∑
ti,tj∈Sk∩D,ti 6=tj

AIDD(ti, tj ;D) (7)

We systematically experimented with three flat segmentation algorithms (Ha-
gen et al. [16], Mishra et al. [7] and Saha Roy et al. [3]) where the algorithm by
Saha Roy et al. [3] produced marginally better results. Hence, results involving
flat segmentations, unless otherwise mentioned refer to the algorithm in Saha
Roy et al. [3]. Results for nested segmentation, unless otherwise mentioned, use
the corresponding flat segmentation outputs as the start states. Effect of choos-
ing different flat segmentation algorithms is examined in Sec. 7.1.

Document distances only. This strategy is based on the principle that
proximities between all pairs of query terms are equally important. The re-
ranking score is thus simplified as:

RrSVD =
∑

ti,tj∈q∩D,ti 6=tj

AIDD(ti, tj ;D) (8)

Document and query distances. This method assumes that only terms
close by in the query are required to be near each other in the document, and
thus takes into account the query distance qd. Hence, Eq. 5 is suitably modified
as shown below:

RrSVD =
∑

ti,tj∈q∩D,ti 6=tj

AIDD(ti, tj ;D)

qd(ti, tj ; q)
(9)

5.2 Nesting with a term proximity model

Another intuitive way of using nested segmentation for IR would be to integrate
the richer query representation with a term proximity models. Very recently,
Vuurens and de Vries [26] presented an approach that is more robust than exist-
ing models and on an average performed equal or better than existing proximity
and dependence models across collections. They analyzed how co-occurring query
words can be used to assess document relevance based on their distance in the
text, which is used to extend a unigram ranking function with a proximity model
that accumulates the scores of all occurring term combinations.

Their method CPE (Cumulative Proximity Expansions) extends the KLD [35]
scoring function for query terms with a proximity model that scores every pos-
sible combination of two or more query terms, independently. An expansion is

any subset of the query terms. For instance, windows xp, windows home, xp

edition playback, and so on are expansions generated from our running ex-
ample query. The computations are done as shown below:

PROX(m,D) =
∑
qi∈m

log(1 +
tfm,D

µ.P (qi|C)
) (10)

tfm,D =
∑

o∈#uw(m,D)

|m| − 1

|o| − 1
(11)

CPE(q,D) = KLD(q,D) +
1

|q|
∑

m∈P>1(q)

PROX(m,D) (12)

where m refers to an expansion of the query terms, D is the document where
term proximities are being analyzed, qi is a query term in m, µ is the Dirichlet
prior parameter, C refers to the document collection, o is an unordered occur-
rence span of m in D, P>1 refers to the set of all expansions of q which are
at least two words long; |m|, |o|, |q| are the lengths of the expansion, span and
query respectively. For overlapping occurrence candidate spans, the shortest or
leftmost span is selected.

The default proximity model (Eq. 12) uses the power set of all possible expan-
sions, where stopwords have been removed from the input query string. However,
Vuurens and de Vries show that a variation CPES (S = Stopword) outperforms
the default CPE model. In CPES, an expansion is valid if it has a stopword with
non-stopwords both to its left and right, or if it has a stopword that is at a query
boundary (beginning or end).

The nested representation of the query can be easily interpreted to generate
a set of such expansions. Specifically, we consider each parenthesized unit in the
nested segmentation to be an expansion. Additionally, the rule of conditionally
considering stopwords as in CPES can be applied. For CPENS, we do not con-
sider an expansion if it has a stopword without non-stopwords on both sides,
while excluding query start or end stopwords. We hypothesize that this strategy
would have a comparable IR performance, while bringing about a large decrease
in the number of expansions, reducing computational overhead. We refer to such
schemes as CPEN (N = nest) and CPENS (CPES stopword heuristic applied).
We also explore strategies CPEF and CPEFS (F = flat) for flat segmentation,
which are analogous to CPEN and CPENS. For CPEF, the expansions are lim-
ited to flat segments. Table 3 shows expansions by the different methods for the
query (((our lady) of) lourdes) ((seven hills) church) and our lady

| of lourdes | seven hills | church, where our and of are stopwords.

6 Datasets

We will now describe the datasets that we have used. We divide this section into
two parts: (a) data needed for performing nested segmentation of queries, and
(b) data needed to apply and evaluate our strategies with respect to IR.

Table 3. Expansions by different methods.

Method Expansions

CPE [26] lady lourdes, seven hills, . . ., lady lourdes seven,

lourdes seven hills, . . ., lady lourdes seven hills,

lady lourdes hills church, . . ., lady lourdes seven

hills church; Total: 26

CPES [26] our lady, lady lourdes, . . ., our lady church, lady of

lourdes, . . ., our lady lourdes hills, lady of lourdes

hills, . . ., lady of lourdes seven hills, lady of

lourdes seven church, . . ., our lady of lourdes seven

church, our lady of lourdes hills church, . . ., our

lady of lourdes seven hills church; Total: 58

CPEF our lady, of lourdes, seven hills, church; Total: 4

CPEN our lady, our lady of, our lady of lourdes, seven

hills, seven hills church; Total: 5

CPEFS our lady, seven hills, church; Total: 3

CPENS our lady, our lady of lourdes, seven hills, seven

hills church, our lady of lourdes seven hills church

6.1 For performing nested segmentation

As discussed, our nested segmentation algorithm requires a query log as the only
resource, for computing various n-gram scores. For our experiments, we use a
query log sampled from Bing Australia10 in May 2010. This raw data slice con-
sists of 16.7M (M = Million) queries (4.7M unique). We subsequently extract
11.9M queries from the raw data such that the queries are composed of ASCII
characters only and are of length between two and ten words. The justifica-
tion for imposing a filter based on query length is as follows. Segmentation of
one word queries is not meaningful. Even though nested segmentation is useful
only for queries of length three and above, two word queries are often useful
for learning scores for significance statistics about bigrams. On the other hand,
very long queries (having more than ten words) are typically computer gener-
ated messages or excerpts from NL text, and need separate query processing
techniques. There are 4.7M unique queries among the extracted 11.9M queries
– but in order to preserve log properties arising out of the natural power law fre-
quency distribution of queries, we retain duplicates for all experiments. We use
the Porter Stemmer to stem the queries before the computation of the n-gram
scores. Scoring of n-grams was performed using the state-of-the-art word associ-
ation measure CSR (Co-occurrence Significance Ratio) [31] measure (Sec. 4.3).

Table 4. Details of datasets used.

Dataset Number of Avg. words Avg. RJs Search

Name queries per query per query* engine

SGCL12 500 5.29 28.34 Lucene

TREC-WT 75 3.43 34.39 Indri

* for top 100 results

6.2 For re-ranking documents

In order to ensure the replicability of our results, we report our IR evalua-
tion on publicly available datasets only (Table 4) and use open source retrieval
systems. Relevant supplementary material and code for this paper have al-
ready been shared publicly at http://cse.iitkgp.ac.in/resgrp/cnerg/qa/

nestedsegmentation.html, Accessed 24 October 2015.
SGCL12. Saha Roy et al. [3] released a dataset of 500 queries11 with associ-

ated URLs and relevance judgments (RJs) (approx. 30/query, 0−2 scale, average
rating of three annotators). The corpus contains around 14, 000 Web documents.
We shall refer to this dataset as SGCL12 (author last name initials and year).
SGCL12 was built for evaluating various flat segmentation algorithms and con-
sists of slightly longer queries (five to eight words) where segmentation is mean-
ingful from an IR perspective. The authors also showed that flat segmentation
can potentially lead to substantial nDCG improvement on SGCL12. Hence this
dataset is very appropriate for evaluating nested segmentation, and to show im-
provements over flat segmentation. Note that the queries in the SGCL12 dataset
also have flat segmentation annotations from various algorithms and human ex-
perts. We use the commercially popular open source Apache Lucene v3.4.012

(basic TF-IDF retrieval model, used in default configuration; v3.4.0 chosen for
comparability of certain results with Saha Roy et al. [3]) to search this collec-
tion. The first 250 queries were used as the development set for tuning model
parameters (k, win, δ and w) and the last 250 queries were used as the test set.

TREC-WT. TREC topics, especially those belonging to the Web Track
(WT) and the Million Query Track (MQT) (last held in 2009) are the ideal
proxy for real Web search queries. However, the topics of WT are very short
(average length of 2.32 words for 201213) and therefore, not very appropriate for
evaluation of nested segmentation14. The issue with the MQT (2009)15 is the
sparseness of RJs, which is more acute for slightly longer queries. We pulled out
the 500 longest queries from the MQT (2009) having at most ten words. 491 of

10 https://www.bing.com/?cc=au, Accessed 29 December 2015.
11 http://bit.ly/ZS0ybI, Accessed 27 Oct 2015
12 http://lucene.apache.org/core/, Accessed 24 Oct 2015
13 http://trec.nist.gov/data/web2012.html, Accessed 24 Oct 2015
14 Nested segmentation can only benefit queries with at least three words.
15 http://trec.nist.gov/data/million.query09.html, Accessed 24 Oct 2015

these queries had no associated RJ. Moreover, of all the queries that have length
greater than or equal to five words, only 42 have at least one RJ. Nevertheless,
in order to conduct nested segmentation experiments on the widely used TREC
data, we accumulated queries from the 2009 to 2012 Web Track (the ideal proxy
for Web search queries), and retained the queries that had three or more words
(100 queries out of a total of 200)16. The highest number of words in this query
set is five, even though it would have been better to have longer queries for truly
appreciating the benefits of nested segmentation. Relevance judged documents
for these queries are present in the ClueWeb09 Category B collection; we used
the open source Indri17 to search this collection through the provided API (used
in default configuration) and retrieved the top 100 documents. The queries for
which there are no relevant documents in the top 100 results were removed from
the dataset. We will refer to the remaining set of 75 queries as the TREC-WT
(available at http://goo.gl/ffgYfi, Accessed 24 Oct 2015). These queries, on
an average, had around 34 RJs within the top 100 results (Table 4). RJs for
all TREC-WT queries, downloadable from the respective track websites (qrels),
have been appropriately collapsed to a 3-point scale (0, 1, 2). 35 queries were
used as the development set for tuning model parameters and the remaining 40
queries were used as the test set, and the results are averaged over ten random
35-40 splits (see http://bit.ly/13StKUN, accessed 24 Oct 2015, for the 75 query
TREC-WT set).

7 Experiments and results

In this section, we first report the specifics of our experimental setup and present
the detailed results about our re-ranking strategy. In particular, we report the
results of the following experiments: (a) effectiveness of nested segmentation over
flat segmentation, (b) comparison with past work, (c) effect of query lengths,
(d) effect of re-ranking strategies, (e) effect of parameter tuning, (f) effect of
algorithmic variants, and (g) comparison with term proximity models.

Experimental setup. We used the outputs of three recent flat segmenta-
tion algorithms [16, 2, 7, 3] as input to the nested segmentation algorithm and
final nested segmentations for these queries were obtained. Documents are re-
trieved using the unsegmented queries, and subsequently re-ranked using the
proposed technique (Sec. 5) and the baselines (Sec. 5.1). Results are compared
in terms of normalized Discounted Cumulative Gain (nDCG) and Mean Aver-
age Precision (MAP). nDCG was computed for the top 5, 10 and 20 documents
(the Ideal Discounted Cumulative Gain (IDCG), the denominator in nDCG, was
computed using the optimal ranking from all judgments for the query). For com-
puting MAP, URLs with ratings > 0 were considered as relevant. MAP values
are computed on the top-30 documents for SGCL12 and the top-40 documents
for TREC-WT (depending upon the approximate pool depth of 28 and 34 re-
spectively (Table 4)). For each dataset, the four parameters (Table 11) were

16 Nested segmentation only benefits queries ≥ 3 words long.
17 http://www.lemurproject.org/indri/, Accessed 24 Oct 2015

Table 5. Some algorithmic nested segmentations.

Seg Query

Flat garden city shopping centre | brisbane | qld

Nested ((garden city) (shopping centre)) (brisbane qld)

Flat the chronicles of riddick | dark athena

Nested (the ((chronicles of) riddick)) (dark athena)

Flat sega superstars tennis | nintendo ds game

Nested ((sega superstars) tennis) ((nintendo ds) game)

Flat samurai warriors 2 empires | walk throughs

Nested (((samurai warriors) 2) empires) (walk throughs)

Flat as time goes by | sheet music

Nested (as (time goes) by) (sheet music)

optimized using the grid search technique for maximizing nDCG@10 on the de-
velopment set and the best set of values were applied on the test set, which are
reported in this section. Our proposed re-ranking method is found to be robust
to parameter variation, as shown later in the text.

7.1 Improvements over flat segmentation

To provide readers with a qualitative feel of nested segmentation outputs on
typical queries, we provide some representative nested segmentations generated
by our algorithm for SGCL12 queries in Table 5. Tables 6 and 7 presents our
main findings – the performance of nested segmentation in comparison with
unsegmented queries and flat segmentation. Since the TREC-WT dataset was
quite small compared to SGCL12, we report average values over ten runs with
random train-test splits of 35 and 40 queries respectively, while preserving the
query word length distribution. For each algorithm, Flat refers to the baseline
re-ranking strategy (Sec. 5.1) when applied to the query (flat) segmented by the
corresponding algorithm, and Nested refers to the proposed re-ranking strategy
(Sec. 5.1) when applied to the nested segmentation of the query (Sec. 4) gener-
ated when the corresponding flat segmentation was used as the start state. We
observe that nested segmentation, when using the proposed re-ranking scheme,
significantly outperforms the state-of-the-art flat segmentation algorithms in all
the cases. Importantly, improvements are observed for both the datasets on all
the metrics. This indicates that one should not consider proximity measures for
only the pairs of terms that are within a flat segment. Thus, our experiments pro-
vide evidence against the hypothesis that a query is similar to a bag-of-segments.
We also note that both the flat and nested segmentations perform better than
the unsegmented query, highlighting the general importance of query segmenta-
tion. Henceforth in this paper, because of its superior performance over the other
flat segmentation methods, we will assume the input flat segmentation for our

Table 6. Performance comparison of flat and nested segmentations on SGCL12 and
TREC-WT datasets (Part 1).

Dataset Algo Hagen et al. [16] Li et al. [2]

SGCL12 Unseg Flat Nested Flat Nested

nDCG@5 0.6839 0.6815 0.6982 0.6913 0.6989

nDCG@10 0.6997 0.7081 0.7262† 0.7144 0.7258†

nDCG@20 0.7226 0.7327 0.7433† 0.7366 0.7437†

MAP 0.8337 0.8406 0.8468† 0.8404 0.8469†

TREC-WT Unseg Flat Nested Flat Nested

nDCG@5 0.1426 0.1607 0.1750† N. A.* N. A.

nDCG@10 0.1376 0.1710 0.1880† N. A. N. A.

nDCG@20 0.1534 0.1853 0.1994† N. A. N. A.

MAP 0.2832 0.2877 0.3298† N. A. N. A.

The higher value among flat and nested segmentations is marked in bold. Statistical significance of
nested segmentation (under the one-tailed paired t-test, p < 0.05) over flat segmentation and the

unsegmented query is marked using †.
* We are unable to report the performance of Li et al. [2] on TREC-WT due to unavailability of
outputs and code, and associated difficulties in reimplementation due to use of proprietary data.

nested segmentation algorithm as the output by Saha Roy et al. [3]. The algo-
rithm in Saha Roy et al. will be the assumed method for the flat segmentation
results, unless otherwise mentioned.

7.2 Comparison with past work

For comparing our algorithm with past work, we reimplement the nested segmen-
tation strategy of Huang et al. [23], which is based on SPMI (Segment Pointwise
Mutual Information). This is shown in the last column in Table 7. A query (and
its segments thereafter) is iteratively split into two halves based on an SPMI
threshold until the minimum SPMI reaches a suitably tuned termination thresh-
old. We emphasize again that Huang et al. do not provide any methodology
for using nesting for IR. It is observed that their method is outperformed by
most nesting strategies on all the metrics. We observed that while the average
tree height is 2.96 for our nesting strategy, the same is about 2.23 for Huang et
al. (SGCL12). Note that due to the strict binary partitioning at each step for
Huang et al., one would normally expect a greater average tree height for this
method. Thus, it is the inability of Huang et al. to produce a suitably deep tree
for most queries (inability to discover fine-grained concepts) that is responsible
for its somewhat lower performance on the metrics. Most importantly, all nesting
strategies faring favorably (none of the differences for Huang et al. with other
nesting methods are statistically significant) with respect to flat segmentation
bodes well for the usefulness of nested segmentation for IR in general.

Table 7. Performance comparison of flat and nested segmentations on SGCL12 and
TREC-WT datasets (Part 2).

Dataset Algo Mishra et al. [7] Saha Roy et al. [3] Huang et al. [23]

SGCL12 Unseg Flat Nested Flat Nested Nested

nDCG@5 0.6839 0.6977 0.6976 0.6746 0.7000† 0.6996

nDCG@10 0.6997 0.7189 0.7274 0.7044 0.7268† 0.7224

nDCG@20 0.7226 0.7389 0.7435 0.7321 0.7433† 0.7438

MAP 0.8337 0.8411 0.8481† 0.8423 0.8477 0.8456

TREC-WT Unseg Flat Nested Flat Nested Nested

nDCG@5 0.1426 0.1604 0.1752† 0.1603 0.1767† 0.1746

nDCG@10 0.1376 0.1726 0.1882† 0.1707 0.1884† 0.1845

nDCG@20 0.1534 0.1865 0.2000† 0.1889 0.2010† 0.1961

MAP 0.2832 0.3003 0.3284† 0.3007 0.3296† 0.3263

The higher value among flat and nested segmentations is marked in bold. Statistical significance of
nested segmentation (under the one-tailed paired t-test, p < 0.05) over flat segmentation and the

unsegmented query is marked using †.

Table 8. Break-up of nDCG gains (over unsegmented query) by length (SGCL12).

Nested (flat) segmentation for SGCL12

Length #Q #Gain Q #Gain Q% A. G.

5 387 235(193) 60.72(49.87) +0.1103(+0.0887)
6 91 58(42) 63.74(46.15) +0.1006(+0.0772)
7 14 9(6) 64.29(42.86) +0.1401(+0.1166)
8 8 4(3) 50.00(37.50) +0.0414(+0.1061)

7.3 Effect of query length

To understand the potential of nested segmentation, it is important to see for
how many queries in each length group it results in improved retrieval perfor-
mance. In Tables 8 and 9, we report the number of queries of a particular length
in our datasets (#Q), the number among these Q that show a positive gain in
nDCG@10 (#Gain Q), the associated percentage of queries and the average
nDCG@10 gain (A. G.) computed over all queries of a particular length that
show performance improvement over the original unsegmented query. We ob-
serve that for almost all length groups, nested segmentation improves a strong
majority of the queries. The mean improvement is slightly more for queries
in the medium length zone (5- and 6-word queries). We found longer queries
in our data (like you spin my head right round right round and eternal

sunshine of the spotless mind watch online) contain song lyrics or long
named entities that require exact document matches and hence nesting is often
not required, and may be detrimental in certain cases. Corresponding figures
for flat segmentation (figures in parentheses) are observed to be lower. It would
have been ideal if we had a substantial number of queries for each query length
in our datasets.

Table 9. Break-up of nDCG gains (over unsegmented query) by length (TREC-WT).

Nested (flat) segmentation for TREC-WT

Length #Q #Gain Q #Gain Q% A. G.

3 52 22(21) 42.31(40.38) +0.1695(+0.1868)
4 14 9(9) 64.29(64.29) +0.2842(+0.2071)
5 9 5(4) 55.56(44.44) +0.3156(+0.2987)

Table 10. Performance of re-ranking strategies.

Dataset SGCL12 TREC-WT

Metric Doc Query Tree Doc Query Tree

nDCG@5 0.7006 0.6963 0.7000 0.1700 0.1665 0.1767†

nDCG@10 0.7193 0.7255 0.7268† 0.1801 0.1798 0.1884†

nDCG@20 0.7404 0.7441 0.7433 0.1923 0.1886 0.2010†

MAP 0.8398 0.8472 0.8477† 0.3237 0.3189 0.3296†

The highest value among the Doc, Query and Tree re-ranking strategies is marked in boldface.
Statistical significance of the Tree strategy under the one-tailed paired t-test (p < 0.05) over the

lowest value among the three is marked using †.

In the current Web search scenario, slightly longer queries are generally
harder to solve, with keyword matches retrieving several spurious results. To
be specific, the percentage of long queries (≥ 5 words) in our Bing Australia
query log is 26.65% (distinct queries only) – a significant number when the total
search volume is considered. Thus, we can no longer undermine the impact nested
segmentation can have in Web search. In total, while ' 49% queries are bene-
fited by flat segmentation for SGCL12 and ' 45% for TREC-WT, the numbers
rise to ' 61% for SGCL12 and ' 48% for TREC-WT in case of nested segmen-
tation. Importantly, the mean improvements (over the unsegmented queries) in
nDCG@10 for benefited queries are 0.1084 for SGCL12 and 0.2185 for TREC-
WT in case of nested segmentation; corresponding values for flat segmentation
are lower: 0.0876 (SGCL12) and 0.2053 (TREC-WT). We note that these num-
bers are similar for the algorithm of [23].

7.4 Comparison of re-ranking strategies

Table 10 compares re-ranking strategies, where Doc refers to the baseline re-
ranking method that uses only document distances (Eq. 8), Query refers to the
scheme using document and query distances (Eq. 9), Tree refers to the proposed
re-ranking strategy using the nested segmentation tree (Eq. 5). We observe that
scaling AIDD by the tree distance generally improves the results over the un-
scaled version. This shows the importance of the tree distance in bringing out
the relationship between query terms. In other words, the nested segmentation
tree provides a more principled and meaningful estimation of proximity between

Table 11. List of parameters used in re-ranking.

Notation Parameter

k No. of minimum distances considered
win Window size
δ Tree distance cut-off
w New rank weight

query terms, which can be systematically exploited during re-ranking of docu-
ments for significant performance gains. We observed that the number of queries
on which Doc, Query and Tree perform the best are 102, 94, 107 (SGCL12, 250
test queries) and 30, 29.7, 30.8 (TREC-WT, 40 test queries, averaged over ten
splits) respectively. The numbers do not add up to 250 (SGCL12) or 40 (TREC-
WT) because multiple models may produce the best output for the same query.
Thus, the Tree model helps greater numbers of queries for both datasets.

7.5 Parameter tuning

We now systematically study the effect of variation of the four tunable parame-
ters on the re-ranking performance. Table 11 lists the tunable parameters. Vari-
ation patterns on the development set of SGCL12 and TREC-WT are reported
in Figs. 3 and 4. Doc and Query refer to the baseline re-ranking strategies using
only document, and document and query distances respectively (Sec. 5.1). Tree
refers to the proposed re-ranking method based on the nested segmentation tree
(Sec. 5.1). Wherever applicable, the Tree re-ranking model outperforms the Doc
and Query models systematically. From plots (Fig. 3 (a) and (b), we see that
preferred values of k and win are five and four respectively for SGCL12 (and
one and three for TREC-WT), and increasing them further brings semantically
unrelated word pair occurrences into the RrSV computations. Figs. 3 show the
effect of varying δ – the tree distance cut-off value; very low δ essentially means
ignoring the tree hierarchy, and thus leads to poor performance for SGCL12.
For SGCL12, the result stabilizes for δ ≥ 5, and increasing delta further almost
has no effect on the results as there are very few word pairs that will have a
tree distance greater than five or six for a typical query. Thus, having this pa-
rameter in the system setup is optional; but if one chooses to use δ for finer
control on the results, one must be careful as to not set it to a very low value.
However, we note that δ = 3 is ideal for TREC-WT, and greater δ is applicable
only for ' 30% of the queries, which are of length greater than three words. Fi-
nally, setting the new rank weight w to two is found to be the best for SGCL12.
Setting w to zero logically translates to ignoring the new ranking, and would
result in the performance of the original query, which is always poorer than
when re-ranking is applied (Unseg in Tables 6 and 7). Using a large value for w
(' 1, 000) implies ignoring the old ranking. This is found to produce the best
results for TREC-WT, emphasizing the importance of our re-ranker. Thus, one

0 1 2 3 4 5 6 7

0.74

0.76
nD
C
G
@
10

Top-k minimum distances

 Doc
 Query
 Tree

0 2 4 6 8 10 12 14 16 18

0.756

0.763

0.770

nD
C
G
@
10

Window size win

 Doc
 Query
 Tree

(a) (b)

3 4 5 6 7 8
0.750

0.755

0.760

0.765

0.770

nD
C
G
@
10

Tree distance cut-off

 Tree

1 2 3 4 5 6 7 8 9 10 Very high

0.756

0.762

0.768

nD
C
G
@
10

New rank weight w

 Doc
 Query
 Tree

(c) (d)

Fig. 3. Parameter tuning for SGCL12: (a) k (b) win (c) δ (d) w (e) k (f) win. For
examining a particular parameter for a specific re-ranking strategy, others are fixed at
the point of global maximum.

should decide on the weights to assign to the original ranker and that derived by
the nested representation of the query after an empirical analysis on a relevant
tuning set.

Our overall algorithm entails the systematic exploration of certain variations;
for example, using other word association measures for splitting or joining, using
an optimized splitting strategy instead of a greedy one, or whether the preference
to DCP is required. We experimented with 16 such variations and found the
version reported in this paper to the best among these; however, no statistically
significant difference was observed among quite a few strategies. The results are
omitted here due to the paucity of space.

7.6 Investigation of variations in algorithm

Our overall algorithm entails the systematic exploration of certain variations.
First, instead of a greedy approach, one can opt for an optimized strategy to
split a flat segment. In this approach, every possible way of breaking a flat seg-
ment is considered, such that the constituent sub-segments are 1-, 2- or 3-grams

0 1 2 3 4 5 6 7
0.14

0.16

0.18

0.20

nD
C
G
@
10

Top-k minimum distances

 Doc
 Query
 Tree

0 2 4 6 8 10 12 14 16 18
0.190

0.195

0.200

0.205

nD
C
G
@
10

Window size win

 Doc
 Query
 Tree

(a) (b)

3 4 5 6 7
0.198

0.201

0.204

nD
C
G
@
10

Tree-distance cut-off

 Tree

1 2 3 4 5 6 7 8 9 10 Very high

0.17

0.18

0.19

0.20

0.21

nD
C
G
@
10

New rank weight w

 Doc
 Query
 Tree

(c) (d)

Fig. 4. Parameter tuning for TREC-WT: (a) k (b) win (c) δ (d) w. For examining a
particular parameter for a specific re-ranking strategy, others are fixed at the point of
global maximum.

only, and the partitioning that leads to the best combined score is selected18.
These partitions are assumed to be the atomic units of the base flat segment.
If a flat segmentation is purely based on an optimal combination of individual
segment scores, then each segment, by itself, is an optimal way of combining
its constituent words. In such a case, the optimized strategy of splitting would
not have any effect on a flat segment. On the other hand, if a flat segment is
deduced through matching against a list of named entities or a domain-specific
multiword lexicon, getting smaller strings based on the scores is likely. Note that
it is quite possible that the greedy and optimized approaches produce the same
final output.

Second, one can use CSR for scoring bigrams for joining smaller segments
instead of MI. This gives rise to two choices in the joining phase. Third, the
definition of MI can be appropriately extended to score n-grams when n > 2 [6],
and can thus be used during the splitting process instead of CSR. This gives to

18 Addition is the combination operator for the scores owing to the logarithmic space
in which they are defined [16, 7].

Table 12. Nested segmentation strategies that have been developed.

Strategy label Strategy details

SGMJM Greedy (G) splitting (S) with MI (M), Joining (J) with MI
SGMJMD Greedy splitting with MI, Joining with MI and preference to DCP
SOMJM Optimized (O) splitting with MI, Joining with MI
SOMJMD Optimized splitting with MI, Joining with MI and preference to DCP

SGCJC Greedy splitting with CSR (C), Joining with CSR
SGCJCD Greedy splitting with CSR, Joining with CSR and preference to DCP
SOCJC Optimized splitting with CSR, Joining with CSR
SOCJCD Optimized splitting with CSR, Joining with CSR and preference to DCP

SGCJM Greedy splitting with CSR, Joining with MI
SGCJMD Greedy splitting with CSR, Joining with MI and preference to DCP
SGMJC Greedy splitting with MI, Joining with CSR
SGMJCD Greedy splitting with MI, Joining with CSR and preference to DCP

SOCJM Optimized splitting with CSR, Joining with MI
SOCJMD Optimized splitting with CSR, Joining with MI and preference to DCP
SOMJC Optimized splitting with MI, Joining with CSR
SOMJCD Optimized splitting with MI, Joining with CSR and preference to DCP

two choices during the splitting phase. Fourth, joining segments may be purely
on the basis of bigram scores and DCP (preference to determiners, conjunctions
and prepositions during joining, Sec. 4.2) need not be considered during the
merging process. This leads to two more choices during the joining phase. We
shall systematically represent and refer to these nested segmentation strategies
as SUV JXY , where U is G or O for greedy and optimized approaches for splitting
flat segments respectively, V and X are C or P respectively for CSR and MI
scores for splitting and joining respectively. Y is D if DCP is considered during
joining, else null. Thus, SGCJM refers to the case where greedy splitting is done
using CSR scores, and joining is done using MI scores without considering DCP.
If DCP is considered, the corresponding representation will be SGCJMD. In this
manner, we have 2× 2× 2× 2 = 16 combinations in all for nested segmentation
(greedy or optimized splitting, splitting or joining with MI or CSR scores and
optional preference to DCP) for each input flat segmentation. Choice of these
different nesting strategies is examined here.

The best performance of these variants are computed by appropriately tuning
model parameters on the development set, and reported in Fig. 5. We observe
that the proposed nesting strategy SGCJPD outperforms all the other nested
segmentation strategies for both SGCL12 and TREC-WT (there are three other
strategies with comparable performance for TREC-WT). In general, it is ob-
served that during splitting, greedy approaches work better. This is due to the
fact that the greedy approaches are almost always able to split a multiword seg-
ment further leading to deep nested structures that are more informative. On
the other hand, while joining, giving preference to DCP turns out to be a better
choice. Interestingly, MI scores are more useful for joining segments and CSR
scores are better at splitting segments. This also falls in line with the assump-
tions underlying the usage of these scoring methods; the concept of MI is more

S_GP J_P

S_GP J_PD

S_OP J_P

S_OP J_PD

S_GC J_C

S_GC J_CD

S_OC J_C

S_OC J_CD

S_GC J_P

S_GC J_PD

S_GP J_C

S_GP J_CD

S_OC J_P

S_OC J_PD

S_OP J_C

S_OP J_CD

0.746 0.748nDCG@10

N
es

tin
g

St
ra

te
gy

S_GP J_P

S_GP J_PD

S_OP J_P

S_OP J_PD

S_GC J_C

S_GC J_CD

S_OC J_C

S_OC J_CD

S_GC J_P

S_GC J_PD

S_GP J_C

S_GP J_CD

S_OC J_P

S_OC J_PD

S_OP J_C

S_OP J_CD

0.24 0.26nDCG@10

N
es

tin
g

St
ra

te
gy

(a) (b)

Fig. 5. Performance examination of algorithm variations on both datasets: (a) SGCL12
(b) TREC-WT.

Table 13. Examination of named entities.

Method SGCL12 TREC-WT

No nesting in NE 0.7617 0.1569
Full Nesting 0.7611 0.1569

Higher values in columns marked in bold.

meaningful for examining relative strengths of pairs of words only, and thus has
been more frequently used for marking segment breaks (and hence non-breaks)
by observing MI scores of adjacent word pairs [13, 16]. In contrast, CSR is aimed
at grading how well a group of words gel together as an expression. However,
we observe that differences between strategies are not statistically significant,
which highlights the flexibility of the algorithm outline. Henceforth in this text,
a nested output will refer to the SGHJPD scheme on the flat segmentation pro-
duced by Saha Roy et al. [3] (if not mentioned otherwise).

Effect of named entities. It becomes evident from the superior perfor-
mance of the tree distance that whenever possible, giving more weight to exact
matches of query word sequences in documents leads to better performance.
To strengthen this hypothesis, we examined the effect of not applying nesting
to named entities (NE) where exact matches are almost always preferable. In
this setup, all nodes of a named entity, like lord of the rings, are assumed
to be on the same tree level. Hierarchical structure is deduced in the remain-

Table 14. Performance of SDM and FDM.

Data SGCL12 TREC-WT

Model Doc Query Tree Doc Query Tree
(DD) (DQ) (DT) (DD) (DQ) (DT)

SDM 0.7449 0.7449 0.7451 0.1962 0.2026 0.2091
FDM 0.7410 0.7429 0.7467 0.2010 0.2010 0.2023

Higher values in columns (each dataset) marked in bold.

ing parts of the query (like a preceding how to view and succeeding movie

trailer online) as usual. We manually marked the named entities in all the
575 queries of our datasets and the remainder of the query was segmented us-
ing the SGHJMD strategy. Results show that indeed, treating named entities as
a single unit with no deeper structure, does lead to slightly better nDCG@10
(0.7617 from 0.7611 for SGCL12, no difference for TREC-WT since only two
queries have a different nested segmentation when NEs are treated as a single
unit). We note that a large majority (390 out of 500) of the queries in SGCL12
have at least one named entity of at least three words.

SDM and FDM. Metzler and Croft [25] propose that terms in a query can
either be independent of each other (IDM, the independence model), adjacent
words may depend on each other (SDM, the sequential dependence model) or
all words may depend on each other (FDM, the full dependence model). The
concept has been very popular since then and we evaluate each re-ranking strat-
egy aligned to these ideas. For each strategy, the pairwise proximity measures
are computed both for adjacent query term pairs only (SDM), and for all term
pairs (FDM). The unsegmented query corresponds to an IDM. Table 14 shows
the comparison between SDM and FDM.

A very important observation is that neither model gives the best results
in all cases. This means that assuming dependence between all pairs of query
terms is not always meaningful, and spurious linkages should not be considered
during the ranking process. On the other hand, it need not imply that adjacent
term pairs are only those that matter. We believe that the ideal dependence
model for queries is somewhere in between SDM and FDM, and term pairs need
to be rewarded or penalized on something more than just query distance. We
note that the SDM for Query is the same as the SDM for Doc since the qd is
1 for SDM. The SDM for the Hyb is the same as the SDM for Tree because,
in essence, the former is given by (|DD − qd|+ 1)/td; when qd = 1 (SDM), this
reduces to |DD|/td (Tree strategy), where DD is the document distance.

The SPMI algorithm. For comparing our algorithm with past work, we
reimplement the nested segmentation strategy of Huang et al. [23] (Sec. 2.2),
which is based on SPMI (Segment Pointwise Mutual Information). A query (and
its segments thereafter) is iteratively split into two halves based on an SPMI
threshold until the minimum SPMI reaches a termination threshold. We empha-
size again that Huang et al. do not provide any methodology for using nesting
for IR. While evaluating their algorithm, Huang et al. observed that the anchor

Table 15. Comparison with Huang et al. [23].

Dataset SGCL12 TREC-WT

Metric Proposed Huang et al. Huang et al. Proposed Huang et al. Huang et al.
Algo (Anno) (IR) Algo (Anno) (IR)

nDCG@10 0.7284 0.7224 0.7240 0.1884 0.1845 0.1918

MAP 0.8481 0.8456 0.8461 0.3296 0.3263 0.3368

The highest values in rows (for each dataset) are marked in bold.

text language model, obtained using the Microsoft Web n-gram Services19, per-
formed better than title, body and query models. Hence, we choose the anchor
text language in our experiments as well, for fairness and comparability. The
tunable parameter in their algorithm is the SPMI termination threshold, say
α, which is required for stopping further nesting. As suggested in their paper,
α needs to be tuned by optimizing one of the three matching metrics (Exact
match, Cover, Violation) against manual annotations. Since the authors do not
specify the best of these metrics, we choose to maximize Exact match. For this
purpose, we ask three human annotators A, B and C to discover and annotate
important phrasal segments from the queries of SGCL12 and TREC-WT [23].
The annotators were Computer Science undergraduate and graduate students
between 22− 28 years of age, each issuing around 20− 30 Web queries per day.
Using this policy, we observed a slightly poorer performance of their algorithm
with respect to our proposed strategy. Subsequently, for fairness, we also tuned
α to maximize the nDCG@10 value on the development set. Results are pre-
sented in Table 15. Values obtained for the three annotators were quite close
to each other, and hence only their average is reported. Tuning α using manual
annotations and nDCG@10 is indicated by Anno and IR respectively.

Our algorithm is slightly superior to Huang et al. on both nDCG@10 and
MAP on SGCL12, while being slightly inferior on nDCG@5 and nDCG@10
(SGCL12). We recollect that the SPMI threshold for Huang et al. was chosen so
as to maximize nDCG@10, and hence the lower IR performance is not due to the
choice of an unsuitable threshold. We observed that while the average tree height
is 2.96 for our method, the same is about 2.23 for Huang et al. (SGCL12). Note
that due to the strict binary partitioning at each step for Huang et al., one would
normally expect a greater average tree height for this method. Thus, it is the in-
ability of Huang et al. to produce a suitably deep tree for most queries (inability
to discover fine-grained concepts) that is responsible for its somewhat lower per-
formance on the metrics. Huang et al., however, perform better on TREC-WT
on both the metrics. More importantly, both nesting strategies faring favorably
(none of the differences are statistically significant) bodes well for the usefulness
of nested segmentation for IR in general. The tree height distributions for the
two algorithms are given in Table 16 (IR optimization for α in Huang et al.).

Table 16. Height distributions for nested segmentation tree. Values denote the num-
bers of queries for each algorithm that attain a tree height equal to the column headers.

Dataset Algorithm 1 2 3 4 5

SGCL12 Proposed 0 99 327 71 3
Huang et al. 59 292 124 23 2

TREC-WT Proposed 15 46 13 1 0
Huang et al. 37 30 7 1 0

Table 17. Nesting expansions in proximity model for SGCL12.

Algorithm nDCG@5 nDCG@10 nDCG@20 MAP µ (nDCG) µ (MAP)

KLD 0.7268 0.7412 0.7553 0.7462 19 19
CPE 0.7563 0.7719 0.7808 0.7583 19 19

CPES 0.7627 0.7784 0.7895 0.7617 19 19
CPEF 0.7107 0.7324 0.7525 0.7512 220 1100
CPEN 0.7124 0.7326 0.7524 0.7530 150 1100
CPEFS 0.7297 0.7489 0.7665 0.7501 140 1000
CPENS 0.7368 0.7568 0.7504 0.7533 140 1000

The highest value in a metric column is marked in boldface.

7.7 Proximity model with nesting

We reimplemented the method proposed in Vuurens and de Vries [26], and eval-
uated the CPE, CPES and CPEN approaches on our datasets (Sec. 5.2). The
parameter µ (Eq. 12) was tuned separately for each method and each metric
separately on the development set. As shown in the results in Tables 17 and 18,
we found CPEN, CPENS, CPEF and CPEFS to be performing somewhat poorer
than CPE and CPES on the SGCL12 and TREC-WT datasets. This motivated
us to look into the distribution of improvements. We report the percentages of
queries where either CPES or CPEN produce the best results, and where the
two methods are equal in performance (to the fourth decimal place) in Table 19.

We find that CPEN is better than or comparable in performance to CPES
for a large chunk of the queries for both datasets (47.6% for SGCL12 and 87.8%
for TREC-WT on nDCG@10). Moreover, the major gain of CPES comes from
only around 25−30 queries (out of 250) for SGCL12. So in general it is not that
CPEN comes up with meaningless expansions which makes the CPEN aggregate
numbers lower than CPES. Rather, CPES comes up with some good expansions
which makes CPES better. It is the cumulative effect of all the expansions which
is pulling the nDCG up. The query ((bach flower) remedy) (for kids) is
a classic example, where we cannot go beyond 0.56, whereas all the expansions
in CPES together take it to 0.86. Similar observations were made for TREC-
WT queries and documents. We believe that appropriately weighting expansions
during the final scoring holds the key to performance, while keeping the required
number of expansions down.

19 http://bit.ly/bFKSxz, Accessed 27 Oct 2015

Table 18. Nesting expansions in proximity model for TREC-WT.

Algorithm nDCG@5 nDCG@10 nDCG@20 MAP µ (nDCG) µ (MAP)

KLD 0.2006 0.2150 0.3170 0.2823 1 1
CPE 0.2159 0.2476 0.3101 0.3139 1 1

CPES 0.2170 0.2481 0.3168 0.3136 1 1
CPEF 0.1552 0.1913 0.2664 0.2562 1 1
CPEN 0.1524 0.1916 0.2647 0.2556 1 1
CPEFS 0.1529 0.1882 0.2655 0.2547 1 1
CPENS 0.1524 0.1895 0.2647 0.2550 1 1

The highest value in a metric column is marked in boldface.

Table 19. Best method analysis (percentages).

Dataset SGCL12 TREC-WT

Metric CPEN Same CPES CPEN Same CPES

nDCG@5 23.2 38.4 38.4 7.0 87.3 5.8
nDCG@10 30.4 17.2 52.4 11.5 76.3 12.3
nDCG@20 32.8 3.2 64.0 27.8 49.5 22.8

MAP 25.6 35.2 39.2 37.0 34.0 29.0

The final important item to note is that CPEN generated a far lower number
of expansions for a query than CPE or CPES. This is important because each
expansion has a non-trivial processing cost (Eq. 12). We report aggregate-level
reductions in Table 20, averaged over queries with a particular query length (in
words). The last three columns report the average number of expansions gener-
ated by the corresponding methods. For SGCL12, we observe that CPEN lowers
the number of proximity expansions by 65− 80% for CPE and by 76− 84% for
CPES. The corresponding numbers for TREC-WT were between 35−65% (CPE)
and 46 − 70% (CPES). The percentage reductions for TREC-WT are smaller
owing to the shorter query lengths. Thus, integration of nested segmentation
with term proximity models based on expansion span analysis in documents
can potentially lead to comparable performance with large benefits in terms of
computational cost.

KLD as the baseline instead of Lucene. We tried another variation of
combining the term proximity model and nested segmentation. Here, we used
the KLD score as the baseline instead of Lucene. The intuition behind this ex-
periment was to have a stronger and more replicable baseline score. Specifically,
we did not re-rank the pages retrieved by Lucene, but ordered pages based on the
sum of their KLD score and the proximity expansion score as defined in Vuurens
and de Vries [26]. In this strategy, only the expansions generated by a nested seg-
mentation were considered for proximity scoring. The proximity score was mul-
tiplied by a tuning factor α. The obtained results are shown in Tables 21 and 22.
The strategy proposed here is referred to as KLD + ProxNest in the tables. The
best α was found to be 1 and 10 for SGCL12 and TREC-WT respectively. The
other optimal parameter values were found to be k = 3, win = 5, δ = 4, w = 10
(SGCL12) and k = 1, win = 3, δ = 3, w = 10 (TREC-WT). Here we find that

Table 20. Numbers of proximity expansions.

SGCL12 TREC-WT

Length CPE CPES CPEN Length CPE CPES CPEN

5 13.33 16.26 3.83 3 2.75 3.29 1.77
6 24.42 30.46 4.85 4 7.07 8.29 2.43
7 30.29 38.00 5.93 5 7.00 10.11 3.33
8 19.75 44.50 6.75 6 N. A. N. A. N. A.

The minimum value in each row for each dataset is marked in bold.

Table 21. KLD with nested segmentation and proximity model (SGCL12).

Metric KLD CPE CPES KLD + ProxNest

nDCG@5 0.7071 0.7396 0.7453 0.7389
nDCG@10 0.7217 0.7499 0.7561 0.7579
nDCG@20 0.7383 0.7642 0.7742 0.7761

MAP 0.7462 0.7564 0.7611 0.7520

The highest value in a row is marked in boldface.

CPES and KLD + ProxNest perform the best on two out of four metrics each
on both the datasets. The difference is not statistically significant in any of the
cases. Overall, we find that we cannot significantly advance the state-of-the-art
over the current term proximity model, but the proposed techniques for lever-
aging nested segmentation show promise.

Summary of results. We now summarize our main findings from this paper:
(a) Nested segmentation significantly outperforms state-of-the-art flat segmenta-
tion baselines when using segment structure to re-rank documents based on term
proximity; (b) nested segmentation improves performance for a majority of the
queries, for both datasets; (c) distances in the nested segmentation tree are more
effective at re-ranking than using only document and query distances; (d) exhaus-
tive experimentation with parameter variation shows systematic consistency of
tree distance-based re-ranking over other models; (e) comparison with previous
work [23] shows that the proposed nesting algorithm is better; (f) incorporating
expansions generated by the nested representation of the query can potentially
improve performance for the state-of-the-art term proximity model [26]; (g) ex-
ploration of fifteen algorithmic variations of our method for generating nested
segmentations shows that the proposed technique produces the best results.

8 Oracle-based Evaluation

Recently, Saha Roy et al. [3] proposed a simple and effective evaluation frame-
work for (flat) query segmentation that is based on the observation that all flat
segments need not match exactly in the relevant documents. Therefore, in this
framework (henceforth referred to as the SGCL12 framework), partially quoted
versions of a query are generated by quoting and unquoting each flat segment in-

Table 22. KLD nested segmentation and proximity model (TREC-WT).

Metric KLD CPE CPES KLD + ProxNest

nDCG@5 0.2006 0.2159 0.2170 0.2040
nDCG@10 0.2150 0.2476 0.2481 0.2402
nDCG@20 0.3170 0.3101 0.3168 0.3475

MAP 0.2823 0.3139 0.3136 0.3143

The highest value in a row is marked in boldface.

dependently20. The performance of the best partially quoted query (as reflected
by a metric, like nDCG or MAP) is taken to be the potential of the segmentation,
which could be achieved if one knew which segments should have been quoted
for a given query. Therefore, this framework is based on a hypothetical oracle
that supposedly predicts the best quoted version of a segmented query.

In this research, we extend the SGCL12 framework for nested segmentation
algorithms so that we can likewise estimate their potential as can be achieved
through quoting. In order to do so, we generalize the concept of all possible
quoted versions for nested segmentation as follows. For a given nested segmen-
tation tree of query q, we generate all possible quoted versions by quoting the
phrases (corresponding to the subtrees) rooted at each internal node indepen-
dently. For example, quoting nodes 3 and 6 (Fig. 1) would lead to the fol-
lowing query: "windows xp home" edition "hd video" playback. However,
since nested quoting is meaningless, two internal nodes x and y (say 3 and 4)
cannot be quoted simultaneously if one is the ancestor (or descendant) of the
other. Following this simple constraint, all possible quoted versions can be gener-
ated for any given segmentation tree, such as those shown in Table 23 generated
from the tree in Fig. 1. These quoted versions are then used in an IR engine
to retrieve documents. The final oracle score (on any IR metric) for the nested
segmentation is defined to be the maximum score over all the partially quoted
versions. Here, score can be measured by any standard IR evaluation metric.

Results and observations. We evaluate the above idea using the sixteen
nesting strategies on each of the three algorithmic variants of flat segmentation
examined [16, 7, 3]. Retrieval performance is tested using SGCL12, using the
Lucene (ver. 3.4.0) search system. In Table 24, we report a representative set of
oracle scores (nDCG@10) averaged over the 500 queries in the test set, for flat
segmentation strategies vis-à-vis their corresponding nested versions. We present
results for nesting scheme SGHJPD, which, like Sec. 7, yields the highest nDCGs
(all nesting schemes obtain higher scores than flat segmentations). In all rows of
Table 24, we observe statistically significant improvements over the oracle score
of the flat segmentations. Since all possible partially quoted versions of a nested
segmentation already contains all possible quoted versions generated from the
base flat segmentation, by definition the oracle score of the nested segmentation
should be greater than or equal to that of the corresponding flat segmentation

20 Please see Table 1 in Saha Roy et al. (2012) [3] for an example.

Table 23. Quoted versions for tree in Fig. 1. Only greyed versions are generated by
flat segmentation.

"windows xp home edition hd video playback"

"windows xp home edition" "hd video playback"

"windows xp home" edition "hd video playback"

"windows xp" home edition "hd video playback"

windows xp home edition "hd video playback"

"windows xp home edition" "hd video" playback

"windows xp home" edition "hd video" playback

"windows xp" home edition "hd video" playback

windows xp home edition "hd video" playback

"windows xp home edition" hd video playback

"windows xp home" edition hd video playback

"windows xp" home edition hd video playback

windows xp home edition hd video playback

Table 24. Mean oracle scores (nDCG@10).

Base Seg Flat Seg Nested Seg
Algorithm (Source: [3]) (SGCJMD)

Hagen et al. [16] 0.7670 0.7763∗
Li et al. [2] 0.7560 0.7733∗
Mishra et al. [7] 0.7510 0.7738∗
Saha Roy et al. [3] 0.7680 0.7766∗

Higher values in rows marked in bold.
∗ marks statistically significant improvement of nested segmentation over flat segmentation under
t-test and Wilcoxon Signed Ranked Test; null hypothesis rejected if p < 0.05.

algorithm. Nevertheless, it is not necessary that the oracle score for nested seg-
mentation will be significantly higher than flat segmentation. Thus, these results
further indicate the superiority of nested segmentation and its stronger IR po-
tential over flat segmentation. We also note that on SGCL12, quoting can take
the nDCG@10 to a maximum of 0.832 [3]. With our current nesting algorithms,
we are thus able to cut down the gap between the state-of-the-art and the best
achievable performance (using quotes) by about ' 13%.

9 Related Research

In essence, the nested segmentation tree specifies a complete term dependence
structure, and suggests that term pairs having a low tree distance should be in
close proximity in the document. Our research, thus, lies along the confluence
of ideas from proximity, dependence models for IR, and query segmentation.
In this section, we present a brief review of proximity and dependence mod-
els, which though are not directly related to our work, can potentially benefit

nested segmentation-based retrieval strategies. Work on segmentation has been
reviewed in Sec. 2.

Term Proximity Models. The notion that document relevance is directly
improved by query terms appearing close to each other has its roots in the NEAR
operator in the Boolean retrieval framework [36] by which a user can specify that
two query terms should occur near each other in the document. It has fueled
a plethora of research on term proximity over the years, and primarily involves
incorporating proximity heuristics into a traditional retrieval model to show a
performance improvement. Tao and Zhai [27] systematically explored the prox-
imity measures that had been proposed till date, and found that the minimum
document distance between any two terms of a query is best correlated with
relevance. They also make the important conclusion that any näıve combination
of the existing ranking function with a proximity measure is unlikely to be fruit-
ful. Cummins and O’Riordan [24] further propose more heuristics and show that
ideally the minimum distance between all pairs of terms should be examined.
They also propose that any particular measure is often unlikely to give the best
overall results, and that the optimal combination needs to be learnt from the
data. The proximity concept has also been generalized to term sequences rather
than pairs only [37–39], which has brought with it new challenges like assign-
ing relative weights to such sequences [37]. In fact, flat segmentation strategies
roughly fall under this philosophy, with the underlying assumption that proxim-
ities (or more strictly, adjacencies) are important only within flat segments. We
have shown in our experiments that such a model is easily outperformed, and
the tree-based model suggests which of the long range dependencies are crucial
to query semantics.

Term Dependence Models. Traditional retrieval models like BM25 as-
sume independence between query terms, even though the idea that certain
dependencies are important for efficient retrieval is hardly new, including ideas
based on tree structures [40]. Gao et al. [41] propose a language model-based
framework for predicting term dependencies by assuming that a query is gen-
erated from a document in two stages; first the linkages are formed and then
the terms that satisfy the linkage constraints. Metzler and Croft [25] propose
that term dependencies in a query can be classified into a sequential depen-
dence model (SDM), where adjacent terms are related, and a full dependence
model (FDM) where all the terms are inter-dependent. Their results show that
significant improvements in IR are possible by formally modeling dependencies
and the FDM outperforms the SDM on most corpora. Concepts of term de-
pendence [25] have also been found useful in query segmentation by Bendersky
et al. [18] and relatively newer retrieval models [42]. The nested segmentation
tree based retrieval is much less computationally intensive than Gao et al. [41]
and more informed than Metzler and Croft [25]. The tree not only encodes the
term dependencies, but also provides an effective way of weighting long range
dependencies in search queries.

10 Conclusions and Future Work

The primary contribution of this paper lies in proposing a strategy to use nested
segmentation of Web search queries for improving IR performance. We have
shown that the tree structure inherent in the hierarchical segmentation can be
used for effective re-ranking of result pages (' 7% nDCG@10 improvement over
unsegmented query for SGCL12 and ' 40% for TREC-WT). Importantly, since
n-gram scores can be computed offline, our algorithms have minimal runtime
overhead. The only resource used for performing nested segmentation is a query
log, which is always available to search engines. Thus, we believe that they can
be practically useful for large-scale Web search systems. While the concept of
flat query segmentation has been around for more than a decade, there is very
little work that show a significant IR benefit of directly applying the process.
Therefore, it has been a long standing debate whether query segmentation is at
all useful in practice for IR. Our results clearly demonstrate that hierarchical
segmentation can bring in substantial IR gains for slightly long queries. The
re-ranking strategy proposed can be used as an evaluation framework for nested
segmentation strategies in the future. Finally, we show that incorporating expres-
sions generated by nested segmentation into the latest term proximity model can
bring about a significant reduction in computational overhead, while improving
IR performance in some cases.

This research is a first systematic exploration of nested query segmentation,
that raises several open questions and can be extended in several ways. From
an IR perspective, it could be useful to assign weights to term pairs before their
tree distance is considered, and before being used as a candidate proximity ex-
pansion. The nesting algorithm and the allied document re-ranking strategy can
be improved through more sophisticated data-driven approaches. In fact, nested
query segmentation can be viewed as the first step towards query parsing, and
can lead to a generalized query grammar. We believe that our findings can make
a major impact on query understanding if effort is appropriately channelized
along these avenues.

Acknowledgments

The first author was supported by Microsoft Corporation and Microsoft Research
India under the Microsoft Research India PhD Fellowship Award.

References

1. Hagen, M., Potthast, M., Beyer, A., Stein, B.: Towards optimum query segmenta-
tion: In doubt without. In: CIKM ’12. (2012) 1015–1024

2. Li, Y., Hsu, B.J.P., Zhai, C., Wang, K.: Unsupervised query segmentation using
clickthrough for information retrieval. In: SIGIR ’11. (2011) 285–294

3. Saha Roy, R., Ganguly, N., Choudhury, M., Laxman, S.: An IR-based evaluation
framework for web search query segmentation. In: SIGIR ’12. (2012) 881–890

4. Tan, B., Peng, F.: Unsupervised query segmentation using generative language
models and Wikipedia. In: WWW ’08. (2008) 347–356

5. Abney, S.: Prosodic structure, performance structure and phrase structure (1992)
6. Risvik, K.M., Mikolajewski, T., Boros, P.: Query segmentation for web search. In:

WWW ’03 Posters. (2003)
7. Mishra, N., Saha Roy, R., Ganguly, N., Laxman, S., Choudhury, M.: Unsupervised

query segmentation using only query logs. In: WWW ’11. (2011) 91–92
8. Zhang, C., Sun, N., Hu, X., Huang, T., Chua, T.S.: Query segmentation based on

eigenspace similarity. In: Proceedings of the ACL-IJCNLP 2009 Conference Short
Papers. ACLShort ’09, Stroudsburg, PA, USA, Association for Computational Lin-
guistics (2009)

9. Yu, X., Shi, H.: Query segmentation using conditional random fields. In: Proceed-
ings of the First International Workshop on Keyword Search on Structured Data.
KEYS ’09, New York, NY, USA, ACM (2009)

10. Ganguly, D., Leveling, J., Jones, G.J.: United we fall, divided we stand: A study
of query segmentation and prf for patent prior art search. In: Proceedings of the
4th Workshop on Patent Information Retrieval. PaIR ’11, New York, NY, USA,
ACM (2011) 13–18

11. Kiseleva, J., Guo, Q., Agichtein, E., Billsus, D., Chai, W.: Unsupervised query
segmentation using click data: preliminary results. In: WWW ’10, ACM (2010)
1131–1132

12. Parikh, N., Sriram, P., Al Hasan, M.: On segmentation of ecommerce queries. In:
Proceedings of the 22nd ACM International Conference on Conference on Informa-
tion and Knowledge Management. CIKM ’13, New York, NY, USA, ACM (2013)
1137–1146

13. Jones, R., Rey, B., Madani, O., Greiner, W.: Generating query substitutions. In:
Proceedings of the 15th international conference on World Wide Web. WWW ’06,
New York, NY, USA, ACM (2006)

14. Brenes, D.J., Gayo-Avello, D., Garcia, R.: On the fly query segmentation using
snippets. In: Proceedings of the First Spanish Conference on Information Retrieval.
CERI ’10, Madrid, Spain, The First Spanish Conference on Information Retrieval
(2010)

15. Hagen, M., Potthast, M., Stein, B., Braeutigam, C.: The power of naive query
segmentation. In: Proceedings of the 33rd international ACM SIGIR conference
on Research and development in information retrieval. SIGIR ’10, New York, NY,
USA, ACM (2010)

16. Hagen, M., Potthast, M., Stein, B., Bräutigam, C.: Query segmentation revisited.
In: WWW ’11. (2011) 97–106

17. Bergsma, S., Wang, Q.I.: Learning noun phrase query segmentation. In: EMNLP-
CoNLL ’07. (2007) 819–826

18. Bendersky, M., Croft, W.B., Smith, D.A.: Two-stage query segmentation for in-
formation retrieval. In: SIGIR ’09. (2009) 810–811

19. Zhang, W., Cao, Y., Lin, C.Y., Su, J., Tan, C.L.: An error driven approach to query
segmentation. In: Proceedings of the 22nd international conference on World Wide
Web companion. WWW ’13 Companion, Republic and Canton of Geneva, Switzer-
land, International World Wide Web Conferences Steering Committee (2013)

20. Zhang, W., Cao, Y., Lin, C.Y., Su, J., Tan, C.L.: Learning a replacement model for
query segmentation with consistency in search logs. In: Proceedings of the Sixth
International Joint Conference on Natural Language Processing, Nagoya, Japan,
Asian Federation of Natural Language Processing (October 2013)

21. Pass, G., Chowdhury, A., Torgeson, C.: A picture of search. In: Proceedings of the
1st international conference on Scalable information systems. InfoScale ’06, New
York, NY, USA, ACM (2006)

22. Ramanath, R., Choudhury, M., Bali, K., Saha Roy, R.: Crowd Prefers the Mid-
dle Path: A New IAA Metric for Crowdsourcing Reveals Turker Biases in Query
Segmentation. In: ACL ’13. (2013) 1713–1722

23. Huang, J., Gao, J., Miao, J., Li, X., Wang, K., Behr, F., Giles, C.L.: Exploring web
scale language models for search query processing. In: WWW ’10. (2010) 451–460

24. Cummins, R., O’Riordan, C.: Learning in a pairwise term-term proximity frame-
work for information retrieval. In: SIGIR ’09. (2009) 251–258

25. Metzler, D., Croft, W.B.: A markov random field model for term dependencies.
In: SIGIR ’05. (2005) 472–479

26. Vuurens, J.B., Vries, A.P.: Distance Matters! Cumulative Proximity Expansions
for Ranking Documents. Inf. Retr. 17(4) (August 2014) 380–406

27. Tao, T., Zhai, C.: An exploration of proximity measures in information retrieval. In:
Proceedings of the 30th annual international ACM SIGIR conference on Research
and development in information retrieval. SIGIR ’07, New York, NY, USA, ACM
(2007)

28. Bendersky, M., Croft, W.B., Smith, D.A.: Structural annotation of search queries
using pseudo-relevance feedback. In: Proceedings of the 19th ACM International
Conference on Information and Knowledge Management. CIKM ’10, New York,
NY, USA, ACM (2010)

29. Bendersky, M., Croft, W.B., Smith, D.A.: Joint annotation of search queries. In:
Proceedings of the 49th Annual Meeting of the Association for Computational
Linguistics: Human Language Technologies - Volume 1. HLT ’11, Stroudsburg,
PA, USA, Association for Computational Linguistics (2011)

30. Sarkas, N., Paparizos, S., Tsaparas, P.: Structured annotations of web queries. In:
Proceedings of the 2010 ACM SIGMOD International Conference on Management
of Data. SIGMOD ’10, New York, NY, USA, ACM (2010)

31. Chaudhari, D.L., Damani, O.P., Laxman, S.: Lexical co-occurrence, statistical
significance, and word association. In: EMNLP ’11. (2011) 1058–1068

32. Hoeffding, W.: Probability inequalities for sums of bounded random variables.
Journal of the American Statistical Association 58(301) (1963)

33. Manning, C.D., Raghavan, P., Schtze, H.: Introduction to Information Retrieval.
Cambridge University Press, New York, NY, USA (2008)

34. Agichtein, E., Brill, E., Dumais, S.: Improving web search ranking by incorporating
user behavior information. In: SIGIR ’06. (2006) 19–26

35. Zhai, C., Lafferty, J.: A study of smoothing methods for language models applied
to information retrieval. ACM Trans. Inf. Syst. 22(2) (April 2004) 179–214

36. Keen, E.M.: The use of term position devices in ranked output experiments. J.
Doc. 47(1) (March 1991)

37. Bai, J., Chang, Y., Cui, H., Zheng, Z., Sun, G., Li, X.: Investigation of partial query
proximity in web search. In: Proceedings of the 17th international conference on
World Wide Web. WWW ’08, New York, NY, USA, ACM (2008)

38. He, B., Huang, J.X., Zhou, X.: Modeling term proximity for probabilistic informa-
tion retrieval models. Inf. Sci. 181(14) (July 2011)

39. Song, R., Taylor, M.J., Wen, J.R., Hon, H.W., Yu, Y.: Viewing term proximity from
a different perspective. In: Proceedings of the IR research, 30th European confer-
ence on Advances in information retrieval. ECIR’08, Berlin, Heidelberg, Springer-
Verlag (2008)

40. Yu, C.T., Buckley, C., Lam, K., Salton, G.: A generalized term dependence model
in information retrieval. Technical report, Cornell University (1983)

41. Gao, J., Nie, J.Y., Wu, G., Cao, G.: Dependence language model for information
retrieval. In: Proceedings of the 27th annual international ACM SIGIR conference
on Research and development in information retrieval. SIGIR ’04, New York, NY,
USA, ACM (2004)

42. Peng, J., Macdonald, C., He, B., Plachouras, V., Ounis, I.: Incorporating term
dependency in the dfr framework. In: Proceedings of the 30th annual international
ACM SIGIR conference on Research and development in information retrieval.
SIGIR ’07, New York, NY, USA, ACM (2007)

