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A new dynamic growth model reveals how 
citation networks evolve over time, pointing 
the way toward reformulated scientometrics. 

BY TANMOY CHAKRABORTY, SUHANSANU KUMAR,  
PAWAN GOYAL, NILOY GANGULY, AND ANIMESH MUKHERJEE 

A CONSENSUS IN the literature is that the citation profiles 
of published articles follow a universal pattern—
initial growth in number of citations the first two to 
three years following publication with a steady peak 
of one to two years and then decline over the rest of 
the lifetime of the article. This observation has long 
been the underlying heuristic in determining major 
bibliometric factors (such as quality of publication, 

growth of scientific communities, 
and impact factor of publication 
venue). Here, we analyze a dataset 
of 1.5 million computer science pa-
pers maintained by Microsoft Aca-
demic Search, finding the citation 
count of the articles over the years 
follows a remarkably diverse set of 
patterns—a profile with an initial 
peak (PeakInit), with distinct mul-
tiple peaks (PeakMul) exhibiting a 
peak later in time (PeakLate) that is 
monotonically decreasing (MonDec), 
monotonically increasing (MonIncr), 
and cannot be categorized into any 
other category (Oth). We conducted 
a thorough experiment to investigate 
several important characteristics of 
the categories, including how indi-
vidual categories attract citations, 
how categorization is influenced 
by year and publication venue, how 
each category is affected by self-cita-
tions, the stability of the categories 
over time, and how much each of the 
categories contribute to the core of 
the network. Further, we show the 
traditional preferential-attachment 
models fail to explain these citation 
profiles. We thus propose a novel dy-
namic growth model that accounts 
for both preferential attachment and 
the aging factor in order to replicate 
the real-world behavior of various 
citation profiles. This article widens 
the scope for a serious reinvestiga-
tion into the existing bibliometric in-
dices for scientific research, not just 
for computer science. 

On the 
Categorization 
of Scientific 
Citation 
Profiles in 
Computer 
Science 

 key insights
˽˽ Analyzing a massive dataset of 

scholarly papers revealed six distinctive 
citation profiles for papers, ranging 
from a single peak to multiple peaks to 
peaks that increase monotonically or 
decrease over time. 

˽˽ Following characterization of the profiles, 
we found major modifications of the 
existing bibliographic indices could better 
reflect real-world citation history. 

˽˽ Unlike existing network-growth models, 
these profiles can be reproduced but 
only if they account for “preferential 
attachment” and “aging.” 

http://dx.doi.org/10.1145/2701412
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Quantitative analysis in terms of 
counting, measuring, comparing 
quantities, and analyzing measure-
ments is perhaps the main tool for un-
derstanding the impact of science on 
society. Over time, scientific research 
itself (by recording and communicat-
ing research results through scientific 
publications) has become enormous 
and complex. This complexity is today 
so specialized that individual research-
ers’ understanding and experience are 
no longer sufficient to identify trends 
or make crucial decisions. An exhaus-
tive analysis of research output in 
terms of scientific publications is of 
great interest to scientific communi-
ties that aim to be selective, highlight-
ing significant or promising areas of re-
search and better managing scientific 
investigation.5,24,25,27 Bibliometrics, or 
“scientometrics,”3,22 or application of 
quantitative analysis and statistics to 

publications (such as research articles 
and accompanying citation counts), 
turns out to be the main tool for such 
investigation. Following pioneering 
research by Eugene Garfield,14 cita-
tion analysis in bibliographic research 
serves as the fundamental quantifier 
for evaluating the contribution of re-
searchers and research outcomes. Gar-
field pointed out a citation is no more 
than a way to pay homage to pioneers, 
give credit for related work (homage 
to peers), identify methodology and 
equipment, provide background read-
ing, and correct one’s own work or the 
work of others.14 

A citation network represents 
the knowledge graph of science, in 
which individual papers are knowl-
edge sources, and their intercon-
nectedness in terms of citation 
represents the relatedness among 
various kinds of knowledge; for in-

stance, a citation network is consid-
ered an effective proxy for studying 
disciplinary knowledge flow, is used 
to discover the knowledge backbone 
of a particular research area, and 
helps group similar kinds of knowl-
edge and ideas. Many studies have 
been conducted on citation net-
works and their evolution over time. 
There is already a well-accepted be-
lief among computer science schol-
ars about the dynamics of citations 
a scientific article receives following 
publication: initial growth (growing 
phase) in number of citations within 
the first two to three years follow-
ing publication, followed by a steady 
peak of one to two years (saturation 
phase), and then a final decline over 
the rest of the lifetime of the article 
(decline and obsolete phases) (see 
Figure 1).15–17 In most cases, this ob-
servation is drawn from analysis of 
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a limited set of publication data,7,13 
possibly obfuscating some true char-
acteristics. Here, we conduct our ex-
periment on a massive bibliographic 
dataset in the computer science do-
main involving more than 1.5 mil-
lion papers published worldwide 
by multiple journals and proceed-
ings from 1970 to 2010 as collected 
by Microsoft Academic Search. Un-
like earlier observations about pa-
per citation profiles, we were able to 
define six different types of citation 
profiles prevalent in the dataset we 
label PeakInit, PeakMul, PeakLate, 
MonDec, MonIncr, and Oth. We ex-
haustively analyzed these profiles to 
exploit the microdynamics of how 
people actually read and cite the pa-
pers, controlling the growth of the 
underlying citation network unex-
plored in the literature. This categori-
zation allows us to propose a holistic 
view of the growth of the citation net-
work through a dynamic model that 
accounts for the accepted concept of 
preferential attachment,1,2,26 along 
with the aging factor20 in order to 
reproduce different citation profiles 
observed in the Microsoft Academic 
Search dataset. To the best of our 
knowledge, ours is the first attempt 
to consider these two factors to-
gether in synthesizing the dynamic 
growth process of citation profiles. 

Our observations not only help re-
formulate the existing bibliographic 
indices (such as “journal impact fac-
tor”) but enhance general bibliometric 
research (such as “citation link pre-
diction,” “information retrieval,” and 
“self-citation characterization”), re-
flecting several characteristics: 

Citation trajectory. In earlier studies, 
an article’s citation trajectory was as-
sumed by the research community to 
increase initially, then follow a down-
ward trajectory; 

Six trajectories. Analyzing the mas-
sive dataset of computer science pa-
pers, we identified six distinct citation 
trajectories; and 

Revisit. Since citation profiles can 
be categorized into at least six different 
types, all measures of scientific impact 
(such as impact factor) should be revis-
ited and updated.

Massive Publication Dataset 
Most experiments in the literature 

Figure 1. Hypothetical example showing the traditional view by computer science scholars 
of the citation profiles of scientific papers following publication. 
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Figure 2. Systematic flowchart of the rules for classifying training samples. 
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on analyzing citation profiles have 
worked with small datasets. In our 
experiment, we gathered and ana-
lyzed a massive dataset to validate 
our hypothesis. We crawled one of the 
largest publicly available datasets,a 
including, as of 2010, more than 4.1 
million publications and 2.7 million 
authors, with updates added each 
week.9 We collected all the papers 
published in the computer science 
domain and indexed by Microsoft 
Academic Searchb from 1970 to 2010. 
The crawled dataset included more 
than two million distinct papers 
that were further distributed over 24 
fields of computer science, as catego-
rized by Microsoft Academic Search. 
Moreover, each paper included such 
bibliographic information as title, 
unique index, author(s), author(s) 
affiliation(s), year of publication, 
publication venue, related field(s), 
abstract, and keyword(s). In order to 
remove the anomalies that crept in 
due to crawling, we passed the data-
set through a series of initial prepro-

a	 http://academic.research.microsoft.com
b	 The crawling process took us approximately 

six weeks, concluding in August 2013.

cessing stages. The filtered dataset in-
cluded more than 1.5 million papers, 
with 8.68% of them belonging to mul-
tiple fields, or “interdisciplinary” pa-
pers; the dataset is available at http://
cnerg.org (see “Resources” tab). 

Categorization of Citation Profiles 
Since our primary focus was analyz-
ing a paper’s citation growth following 
publication, we needed an in-depth 
understanding of how citation num-
bers vary over time. We conducted an 
exhaustive analysis of citation pat-
terns of different papers in our data-
set. Some previous experimental re-
sults9,14 showed the trend followed by 
citations received by a paper following 
publication date is not linear in gen-
eral; rather, there is a fast growth of 
citations within the first few years, fol-
lowed by exponential decay. This con-
clusion is drawn mostly from analysis 
of a small dataset of the archive. Here, 
we first took all papers with at least 
10 years and a maximum of 20 years 
of citation history, then followed a se-
ries of data-processing steps. First, to 
smooth the time-series data points in 
a paper’s citation profile, we used five-
year-moving-average filtering; we then 

scaled the data points by normalizing 
them with the maximum value pres-
ent in the time series, or maximum 
number of citations received by a pa-
per in a particular year; finally, we ran 
a local-peak-detection algorithmc to 
detect peaks in the citation profile. We 
also applied two heuristics to specify 
peaks: the height of a peak should be 
at least 75% of the maximum peak-
height, and two consecutive peaks 
should be separated by more than two 
years. Otherwise we treated them as a 
single peak (see Figure 2). 

We found most papers did not fol-
low the traditional citation profile 
mentioned in the earlier studies, as 
in Figure 1; rather, we identified the 
six different types of citation profiles 
based on the count and position of 
peaks in a profile. We defined six types 
of citation profiles, along with individ-
ual proportions of the entire dataset: 

PeakInit. Papers with citation-count 
peaks in the first five years following 

c	 The peak detection algorithm is available as 
a Matlab Spectral Analysis http://www.math-
works.in/help/signal/ref/findpeaks.html; we 
used MINPEAKDISTANCE=2 and MINPEAK-
HEIGHT=0.75 and the default values for the 
other parameters.

Figure 3. Citation profiles for the first five categories we obtained from analyzing the Microsoft Academic Search citation dataset (top panel) 
and how it compared with the results obtained from the model (bottom panel). 
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Each frame corresponds to each category; Oth does not follow a consistent pattern and is not shown. In each frame, a citation belt is formed by the 
lines Q1 (green line) and Q3 (blue line) representing the first quartile (10% points are below the line) and third quartile (10% points are above the 
line) of data points, respectively, or effectively 80% points are within the citation belt. The red line within the citation belt represents the average 
behavior of all profiles corresponding to that category. In the top panel, for each category, one representative citation profile is shown at the middle 
of the belt (broken black line). The color coding in the bottom panel is similar to the top panel, though the broken lines are the results we obtained 
from our model. 
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MonDec. Simulation and computer 
education have the largest proportion 
of papers in the MonDec category, and 
bioinformatics and machine learning 
have the smallest; and 

PeakLate. Security and privacy, as 
well as bioinformatics, have the largest 
proportion of papers in the PeakLate 
category, and simulation and the Web 
have the smallest. 

Categories in Citation Ranges 
One aspect of analyzing scientific pub-
lications is determining how accept-
able they are to the research commu-
nity. A paper’s acceptability is often 
measured by raw citation count; the 
more citations an article receives from 
other publications, the more it is as-
sumed to be admired by researchers 
and hence the greater its scientific 
impact.6 In our context, we ask, which 
among the six categories includes 
papers admired most in terms of ci-
tations? To answer, we conducted a 
study in which we divided total cita-
tion range into four buckets (ranges 
11–12, 13–15, 16–19, 20–11,408) such 
that each citation bucket included an 
almost equal number of papers. For 
a deeper analysis of the highest cita-
tion range, we further divided the last 
bucket (20–11,408) into four more 
ranges, obtaining seven buckets alto-
gether. We then measured the propor-
tion of papers contributed by a par-
ticular category to a citation bucket 
(see Figure 5). Note in each citation 
bucket, we normalized the number of 
papers contributed by a category by to-
tal number of papers belonging to that 
category. The figure is a histogram of 
conditional probability distribution, 
the probability a randomly selected 
paper falls in citation bucket i given 
that it belongs to category j. Normal-
ization was required to avoid popula-
tion bias across different categories. 
Note the higher citation range is occu-
pied mostly by the papers in the Peak-
Late and MonIncr categories, followed 
by PeakMul and PeakInit. Also note 
the MonDec category, which has the 
smallest proportion in the last citation 
bucket, shows a monotonic decline 
in the fraction of papers as citation 
range increases. This initial evidence 
suggests a general and nonintuitive 
interpretation of citation profiles; if a 
paper does not attract a large number 

publication (but not the first year) fol-
lowed by an exponential decay (propor-
tion = 25.2%) (see Figure 3a); 

PeakMul. Papers with multiple 
peaks at different time points in their 
citation profiles (proportion = 23.5%) 
(see Figure 3b); 

PeakLate. Papers with few citations 
at the beginning, then a single peak af-
ter at least five years after publication, 
followed by an exponential decay in 
citation count (proportion = 3.7%) (see 
Figure 3c); 

MonDec. Papers with citation-count 
peaks in the immediate next year of 
publication followed by monotonic de-
crease in the number of citations (pro-
portion = 1.6%) (see Figure 3d); 

MonIncr. Papers with monotonic in-
crease in number of citations from the 
beginning of the year of publication 
until the date of observation or after 
20 years of publication (proportion = 
1.2%) (see Figure 3e); and 

Oth. Apart from the first five types, 
a large number of papers on average 

receive fewer than one citation per 
year; for them, the evidence is not 
significant enough to assign them to 
one of the first five categories, so they 
remain as a separate group (propor-
tion = 44.8%). 

The rich metadata in the dataset 
further allowed us to conduct a sec-
ond-level analysis of the categories for 
multiple research fields in computer 
science. We thus measured the per-
centage of papers in different catego-
ries for each of the 24 research fields 
after filtering out all papers in the Oth 
category. We noticed that while for all 
other fields, the largest fraction of pa-
pers belong to the PeakMul category, 
for the Web this fraction is maximum 
in the PeakInit category (see Figure 4). A 
possible reason could be since the Web 
is mostly a conference-based research 
field, the papers in PeakInit generally 
dominate the field, as discussed later, 
in light of three observations: 

Web. Most Web-related papers fall 
into the PeakInit category; 

Figure 4. Percentage of papers in six categories for various research fields in computer science; 
the pattern is generally consistent, except for World Wide Web. 
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Figure 5. Contribution of papers from each category in different citation buckets.  
The entire range of citation value in the dataset is divided into seven buckets in which the 
contribution of papers from a particular category is normalized by the total number  
of papers in that category. 
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of citations within the immediate few 
years following its publication, it does 
not necessarily mean it will continue 
to be low impact through its lifetime; 
rather its citation growth rate might 
accelerate and could indeed turn out 
to be well accepted in the literature of 
computer science. We further explain 
this behavior in the next section. 

Characterizing Different 
Citation Profiles 
The rich metadata information in the 
publication dataset further allowed us 
to understand the characteristic fea-
tures of each of the six categories at 
finer levels of detail. 

Influence of publication year and 
venue on categorization. One might 
question whether this categorization 
could be influenced by the time (year) a 
paper is published; that is, papers pub-
lished earlier might be following the 
well-known behavior, whereas papers 
published more recently might indi-
cate a different behavior. To verify cat-
egorization is not biased by publication 
date, we measured the average year of 
publication of the papers in each cate-
gory. Table 1, second column, suggests 
the citation pattern is not biased by year 
of publication, since average years cor-
respond roughly to the same time pe-
riod. On the other hand, the mode of 
publication in conferences differs sig-
nificantly from that of journals, and the 
citation profiles of papers published in 
these two venues are expected to differ. 
To analyze venue effect on categoriza-
tion, we measured the percentage of 
papers published in journals vis-à-vis 
in conferences for each category, as in 
Table 1, third and fourth columns, re-
spectively. We observed while most of 
the papers in the PeakInit (64.35%) and 
MonDec (60.73%) categories were pub-
lished in conferences, papers in Peak-
Late (60.11%) and MonIncr (74.74%) 
were published mostly in journals. If a 
publication starts receiving more atten-
tion or citations later in its lifetime, it is 
more likely to have been published in 
a journal and vice versa, reflecting two 
trends: 

Conferences. Due to increasing pop-
ularity of conferences in applied do-
mains like computer science, confer-
ence papers get quick publicity within 
a few years of publication and likewise 
quick decay of that popularity; and 

Journals. Though journal papers 
usually take time to be published and 
gain popularity, most journal papers 
are consistent in attracting citations, 
even many years after publication. 

Another interesting point from 
these results is that although the exist-
ing formulation of journal impact fac-
tor14 is defined in light of the citation 
profile, as in Figure 1, most journal 
papers in PeakLate or MonIncr do not 
follow such a profile at all; at least for 
papers in PeakLate, the metric does 
not focus on the most relevant time-
frame of the citation profile (mostly 

the first five years after publication). 
In light of our results, the appropri-
ateness of the formulation of biblio-
graphic metrics (such as journal im-
pact factor) are doubtful; for example, 
a journal’s impact factor15 at any given 
time is the average number of cita-
tions received per paper published 
during the two preceding years. 

Effect of self-citation on categoriza-
tion. Another factor often affecting cita-
tion rate is “self-citation,”12 which can 
inflate the perception of an article’s or 
a scientist’s scientific impact, particu-
larly when an article has many authors, 

Figure 6. Fraction of self-citations per paper in different categories over different time  
periods after publication and fraction of papers in each category migrating to the  
Oth category due to removal of self-citations, assuming different category thresholds. 

PeakMul PeakLate MonDec MonIncr OthPeakInit

Time (in year) after publication

Fr
ac

ti
on

 o
f 

S
el

f-
ci

ta
ti

on
s

0.25

0.2

0.15

0.1

0.05

0
2 4 6 8 10 12 14 16 18 20

Table 1. Mean publication year Y (its standard deviation (σ(Y)) and the percentage of papers  
in conferences and journals for each category of a citation profile. 

Category Mean publication year (σ(Y)) % of conference papers % of journal papers

PeakInit 1994 (5.19) 64.35 35.65

PeakMul 1991 (6.68) 39.03 60.97

PeakLate 1992 (6.54) 39.89 60.11

MonDec 1994 (5.44) 60.73 39.27

MonIncr 1993 (7.36) 25.26 74.74

Table 2. Confusion matrix representing the transition of categories due to the removal of  
self-citations. 

Category PeakInit PeakMul PeakLate MonDec MonIncr Oth

PeakInit 0.72 0.10 0.03 0.01 0 0.15

PeakMul 0.02 0.81 0.04 0 0.10 0.11

PeakLate 0.01 0.06 0.86 0 0.01 0.06

MonDec 0.05 0.14 0 0.41 0 0.35

MonIncr 0 0.02 0.01 0.01 0.88 0.09

A value x in the cell (i, j) represents x fraction of papers in category i would have been placed in 
category j if self-citations were absent from the entire dataset. Note no row is specified for the Oth 
category, as papers in this category never move to other categories through deletion of citations. 
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the fraction of papers in each category 
migrating to Oth due to our removal 
of self-citations (see Figure 6). The re-
sult agreed with the Table 2 observa-
tion that the MonDec category is most 
affected by self-citations, followed 
by PeakInit, PeakMul, and PeakLate. 
This result indicates the effect of self-
citations is due to the inherent charac-
teristics of each category, rather than 
to the predefined threshold setting 
of the category boundary, following 
three trends: 

Authors. Authors tend to cite their 
own papers within two to three years of 
publication to increase visibility; 

Conference papers. The MonDec and 
PeakInit categories, or mostly confer-
ence papers, are strongly affected by 
self-citation; and 

Visibility. Self-citation is usually 
seen soon after publication in an at-
tempt to increase publication visibility. 

Figure 6 reflects how self-citations 
are distributed across different time 
periods for individual categories; we ag-
gregated all self-citations and plotted the 
fraction of self-citations following pub-
lication. As expected, for the MonDec 
category we found most self-citations 
are “farmed” within two to three years 
of publication. A similar observation 
holds for both the PeakInit and Oth 
categories. Note, PeakInit and Mon-
Dec are composed mostly of confer-
ence papers. We conclude conference 
papers are the most affected by self-
citations. However, the characteristics 
of the highly cited categories (such as 
MonIncr and PeakLate) are mostly 
consistent through the years, show-
ing these categories are less depen-
dent on self-citation. 

Stability of Different Categories 
The number of citations for a paper 
changes over time depending on the 
paper’s effect on the scientific commu-
nity that might change the shape of the 
citation profile. Studying the temporal 
evolution of each citation profile can 
help researchers understand the stabil-
ity of the categories individually. Since 
we know the category of papers with 
at least 20 years of citation history, we 
further analyzed how the shape of the 
profile evolves over those 20 years. Fol-
lowing publication of a paper at time 
T, we identified its category at time T + 
10, T + 15 and T + 20 based on the heu-

increasing the possible number of self-
citations;11,29 there have thus been calls 
to remove self-citations from citation-
rate calculations.29 We conducted a 
similar experiment to identify the effect 
of self-citation on the categorization of 
citation profiles. We first removed a ci-
tation from the dataset if the citing and 
the cited papers had at least one author 
in common, then measured the fraction 
of papers in each category migrating to 
some other category due to this remov-
al. Table 2 is a confusion matrix, where 
labels in the rows and the columns rep-
resent the categories before and after 
removing self-citations, respectively. 

Note papers in MonDec are strongly 
affected by the self-citation phenome-
non. Around 35% of papers in MonDec 
would have been in the Oth category if 
not for self-citations. However, this 
percentage might be the result of the 
thresholding we impose, as discussed 
earlier, when categorizing papers; pa-
pers with fewer than or as many as 10 
citations in the first 10 years follow-
ing publication are considered to be 
in Oth category. Looking to verify the 
effect of thresholding on inter-cate-
gory migration following removal of 
self-citations, we varied the category 
threshold from 10 to 14 and plotted 

Figure 7. Alluvial diagram representing evolution of papers in different categories and the 
flows between categories at time T + 10, T + 15, and T + 20. 

PeakMulPeakInit PeakLate MonDec MonIncr Oth

Timeline after publication at T
T+10 T+15 T+20

The colored blocks correspond to different categories. Block size indicates number of papers in a 
category, and the shaded waves joining the regions represent flow of papers between the regions, 
such that the width of the flow corresponds to the fraction of papers. The total width of incoming 
flows is equal to the width of the corresponding region. 

Figure 8. Multi-level pie chart for years 2000, 2004, 2007, and 2010, showing the composition 
of each category in different ks-shell regions, where colors represent different categories  
and the area covered by each colored region in each ks-shell represents the proportion of 
papers in the corresponding category in that shell. 

2010200720042000

PeakMulPeakInit PeakLate MonDec MonIncr Oth

The innermost shell is the core region, and the outermost shell is the periphery region. For better 
visualization of the different regions, we divided the total number of shells identified from the 
citation network in each year into six broad shells; the core-periphery structure in each year thus 
has six concentric layers. 
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ristics discussed earlier. We hypoth-
esize a stable citation category tends 
to maintain its shape over a paper’s 
entire published timeline. The colored 
blocks of the alluvial diagram28 in Fig-
ure 7 correspond to the different cat-
egories for three different timestamps. 
We observed that apart from the Oth 
category, which indeed includes a ma-
jor proportion of all the papers in our 
dataset, MonDec seemed the most 
stable, followed by PeakInit. However, 
papers we assumed to belong in the 
Oth category quite often turned out to 
be MonIncr papers at a later time. This 
analysis demonstrates a systematic 
approach to explaining the transition 
from one category to another with in-
creased numbers of citations. 

Core-Periphery Analysis 
Although Figure 5 indicates the influ-
ence of different categories in terms 
of raw citation count, it neither ex-
plains the significance of the papers in 
each category forming the core of the 
network nor gives any information re-
garding the temporal evolution of the 
structure. For a better and more de-
tailed understanding of that evolution, 
we performed k-core analysis8,21 on the 
evolving citation network by decom-
posing the network for each year into 
its ks-shells such that an inner shell 
index of a paper reflects a central posi-
tion in the core of the network. 

We constructed a number of aggre-
gated citation networks in different 
years—2000, 2004, 2007, and 2010—
such that a citation network for year Y 
included the induced subgraph of all 
papers published at or before Y. For 
each such network, we then ran sev-
eral methods, starting by recursively 
removing nodes with a single inward 
link until no such nodes remained in 
the network. These nodes form the 
1-shell of the network, or ks-shell index 
ks = 1. Similarly, by recursively remov-
ing all nodes with degree 2, we derived 
the 2-shell. We continued increasing k 
until all nodes in the network were as-
signed to one of the shells. The union 
of all shells with index greater than or 
equal to ks is the ks-core of the network, 
and the union of all shells with index 
smaller or equal to ks is the ks-crust of 
the network. The idea is to show how 
the papers in each category (identified 
in 2000) migrate from one shell to an-

other after attracting citations over the 
next 10 years. It also allowed us to ob-
serve the persistence of a category in a 
particular shell. 

In Figure 8, most papers in the Oth 
category are in the periphery and their 
proportion in the periphery increases 
over time, indicating they are increas-
ingly less popular over time. The Peak-
Mul category gradually leaves the pe-
ripheral region over time and mostly 
occupies the two innermost shells. 
PeakInit and MonDec show similar 
behavior, with the largest proportion 
of papers in inner cores in the initial 
year but gradually shifting toward pe-
ripheral regions. On the other hand, 
MonIncr and PeakLate showed the ex-
pected behavior, with their proportions 
increasing in the inner shells over time, 
indicating rising relevance over time. 
This helped us identify the temporal 
evolution of the importance of different 
categories in terms of how each of them 
contributes to the central position of a 
citation network. 

Dynamic Growth Model 
Extensive research has gone toward 
developing growth models to explain 
evolution of citation networks;19,30 
for example, models like those from 
Barabási-Albert1,2 and Price26 at-
tempt to generate scale-free networks 
through a preferential-attachment 
mechanism. Most such work seeks to 
explain the emergence of a network’s 
degree distribution. Here, we propose 
a novel dynamic growth model to 
synthesize the citation network, aim-
ing to reproduce the citation catego-
ries seen in the Microsoft Academic 
Search dataset. To the best of our 
knowledge, this model is the first of its 
kind to take into account preferential 
attachment1 and aging18,20 to mimic 
real-world citation profiles. 

As input to the model for comparing 
against the real-world citation profiles, 
we used the following distributions: 
number of papers over the years (to 
determine the number and type of pa-
pers entering the system at each time 
step) and reference distribution (to 
determine outward citations from an 
incoming node). At each time step (cor-
responding to a particular year), we se-
lected a number of nodes (papers) with 
outdegree (references) for each, as de-
termined preferentially from the refer-

Since our primary 
focus was analyzing 
a paper’s citation 
growth following 
publication, we 
needed an in-depth 
understanding 
of how citation 
numbers vary  
over time. 
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ence distribution. We then assigned the 
vertex preferentially to a particular cat-
egory based on the size of the categories 
(number of papers in each) at that time 
step. To determine the other end point 
of each edge associated with the incom-
ing node, we first selected a category 
preferentially based on the in-citation 
information of the category, then select-
ed within the category a node (paper) 
preferentially based on its attractive-
ness. We determined attractiveness by 
time elapsed since publication (aging) 
and number of citations accumulated 
till that time (preferential attachment). 
Note the formulation of the attractive-
ness in our model also varies for differ-
ent categories. 

We found remarkable resemblance 
between real-world citation profiles 
and those obtained from the model in 
Figure 3, bottom panels. Each frame of 
the figure includes three lines depict-
ing first quartile (10% points below this 
line), third quartile (10% points above 
this line), and mean behavior. We also 
compared the in-degree distributions 
obtained from the model and from the 
real dataset for different categories, ob-
serving a significant resemblance. Our 
model thus reflects a holistic view of 
the evolution of a citation network over 
time, along with the intra- and inter-
category interactions that account for 
the observable properties of the real-
world system. 

Conclusion 
Access to a massive computer science 
bibliographic dataset from Microsoft 
Academic Search made it possible for 
us to conduct an exhaustive analysis 
of citation profiles of individual pa-
pers and derive six main categories 
not previously reported in the litera-
ture. At the micro-level, we provide a 
set of new approaches to character-
ize each individual category, as well 
as the dynamics of its evolution over 
time. Leveraging these behavioral sig-
natures, we were able to design a novel 
dynamic model to synthesize the net-
work evolving over time. The model 
in turn revealed citation patterns of 
different categories, showing signifi-
cant resemblance to what we obtained 
from the real data. 

This article thus offers a first step 
toward reformulating the existing 
quantifiers available in scientomet-

rics to leverage different citation pat-
terns and formulate robust measures. 
Moreover, a systematic machine-
learning model of the behavior of 
different citation patterns has the po-
tential to enhance standard research 
methodology, including discovering 
missing links in citation networks,10 
predicting citations of scientific ar-
ticles,31 predicting high-impact and 
seminal papers,23 and recommending 
scientific articles.4 

In future work, we plan to extend 
our study to the datasets of other do-
mains, possibly physics and biology, to 
verify the universality of our categoriza-
tions. We are also keen to understand 
the micro-level dynamics controlling 
the behavior of the PeakMul category, 
which is significantly different from 
the other four. One initial observa-
tion in this direction is that PeakMul 
behaves like an intermediary between 
PeakInit and PeakLate. Also in future 
work, we would like to understand dif-
ferent characteristic features, particu-
larly for PeakMul. 	
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