Lecture notes of 16th August,2005

 Subject: Compiler Construction

 Topic: Syntax Analysis & Error Recovery

 Prepared by: Sourish Chaudhuri (03CS1035)

Syntax Analysis
· Checks the grammar.
· Parse tree production.
· Outputs Errors
Error recovery is not a necessity in a compiler. But it is given as an aid to the user so that he can have a look at all the errors at once.

1. Panic Mode:
 In case of an error like:

 a=b+c

 d=e+f;
 The compiler will now discard all subsequent tokens till a “;” is encountered. This is a crude method but often turns out to be the best method.

2. Phrase level recovery:

 Again, in case of an error like the one above, it will report the error, generate the “;” and continue.

3. Error Production:

If we have a production rule like:

 E->+E|-E|*A|/A

Then, a=+b;

 a=-b;

 a=*b;
 a=/b;

Here, the last two are error situations.

 Hence, once it encounters *A, it sends an error message asking the user if he is sure he wants to use a unary “*”.

· Logical errors are only debugged while compiling.

4. Global Correction:

Suppose we have a line like this:

THIS IS A OCMPERIL SCALS.

To correct this, there is an attractor, which checks how different tokens are from the initial inputs, checks Hamming distances to see which the closest attractor to the incorrect token is.

 This is more of a probabilistic type of error correction.

Grammar:

Suppose we have the following production rules for a grammar:

E->E.AE

E->(E)

E->-E

E->number

A->+

A->-

A->*

A->/

The grammar is defined by the following:

 Terminals/Non-terminals/Production Rules/Start State
Terminals: Lower case letters, or words in bold; Punctuations, operators or parentheses.
Non-Terminals: Uppercase letters, or words in italics.

Ambiguity of a grammar: Can a grammar be ambiguous??
 if(a>b) then

if(c>d) then

printf(“\nHELLO.\n”);

 else

printf(“\nKEINHello.\n”);

stmt->if cond then stmt else stmt|if cond then stmt

stmt

________________|__________________

|

|

|

 |

if

cond

then

stmt

_________________________|__________________

|
|

|

|

|

 |

if
cond

then

stmt

else

stmt

stmt->matched stmt|unmatched stmt

m stmt->if cond then (m stmt) else (m stmt)|other stmt(terminal)

um stmt-> if cond then stmt|if cond then m stmt else um stmt.

Left Recursion(single step or multiple step)

· A->Aα|B
Parser might end up going into infinite loop.

To prevent that:

· A->βR

· R->αA|ε

