Type Checking contd..

· As said in the earlier lecture type checking can be of two types :-

· Static 

· Dynamic

· A simple example has been also shown to give a simple elucidation about the way it can be done.

· As we already know the data types in any programming language are limited and further complicated data structures can be generated out of them by combining the basic data types into Data Structures.

· These generated types(those generated using Data Structures and pointers and other facilities provided by the language) can be given names. And if that is the case then two types of type equivalence arise:-

1. Name Equivalence

2. Structural Equivalence

· Name Equivalence :-   Two structure types are said to be name equivalent if they are declared from a similar type of data structure or are declard from each other.
typedef int Val ;

typedef int Total ;

In this simple C-language declaration the compiler identifies the types Val and Total as the same data type and any assignments or operations involving both Val and Total are allowed and permitted to be valid.

· Structural Equivalence:- As the name suggests, two types or structures are said to be structurally equivalent if they contain the same building structure types in them and in the same order. In other words this equivalence is done on the basis of content of the structure.
typedef struct {

   Val   array[20] ;   /*The Val type is declared earlier*/

   char  alpha ;

   float  *xyz  ;

} struct1 ;

typedef struct{

    total flag[20] ;  /*the total type is declared earlier too*/

    char a ;

    float *return_value ;

) struct2 ;

In the above two structures, though the types of the structure apparently different and the internal structure is named differently the two structures struct1 and struct2 are of the same structural type and thus any operations between these two structures is allowed.

Now we go ahead to see how a compiler recognizes two types of structurally equivalent structures. The basic understanding being that if two structures have the same dag then the two types are said to be structurally equivalent.

The algorithm for verification of structural equivalence of dags is as follows:-

function dag_equivalence ( s, t)

{  

     if s & t are of same basic type 

        return true 

     if s represents array( I1 , T1) and t represents array ( I2, T2)

        if I1 = I2 ( dag_equivalence(T1, T2)



        else return false 

                            if s represents T1*T2 and t represents T3*T4


        then (dag_equivalence (T1, T3) AND dag_equivalence(T2,T4))

        if s represents T1(T2 and t represents T3-> T4
        then (dag_equivalence(T1,T3)  AND  dag_equivalence(T2, T4))

   }

Peephole Optimization 

· A statement-by-statement code-generation strategy often produces target code that contains redundant instructions and suboptimal constructs. The quality of such target code can be improved by applying “optimizing” transformations to the target program.
· Here optimization is a misleading term because the most optimum code is not generated through the process called peephole optimization.
· Peephole optimization can be called a small but effective technique for locally improving the target code. It is called so because at any time optimization is done by looking at a small sequence of target instructions called the peephole and replacing the code by faster or shorter code whenever possible.
· The general practice being that each optimization results in spawning additional opportunities for code improvisation. And thus repeated passes over the code can be done to get the maximum benefit of this type of optimization.
· Some of the characteristic transformations in the code is listed below.
· Redundant-instruction optimization
· Flow-of-control optimizations
· Algebraic simplifications
· Use of machine idioms
· Removal of unreachable code
· Redundant-instruction optimization:-
       Just look at the following code:-

MOV  R0, a

MOV a, R0

This code can be improved by removing the second instruction which is         redundant. Many such instructions may exist which are redundant and thus their removal can result in better code which  is both shorter and faster.

· Flow of control optimization:-

Now take, for example, the following code

(n)Goto L1

 .

 .

(n+k)L1 : goto L2

This code can be replaced by the following code. Notice how one instruction is skipped when the flow of control reaches the line number (n).

 (n)Goto L2

  .

  .

 (n+k) goto L2

· Algebraic Simplifications :-
x = x + 0 ;

x = x * 1 ;

Pow( x, 2) ;   /*can be replaced by “(x*x)”*/

Statements such as these can always be omitted or substituted as required for they end up doing no productive work and eat up the valuable CPU working time.

· Use of Machine Idioms :-
The target language may have hardware instructions to implement certain specific operations efficiently. And detecting situations such as these can result in a far more efficient code than the other ways optimizations. A good example can be that several hardwares support the single instruction INC x. Which serves to increment the value of x which otherwise would have taken at least 3 micro-instructions.

--Babu Puran Kalapala

   (03CS1031)

all the very best for your end semester examinations 

All the very best for ur End-Semester examination…. Do well..

