TARGET CODE GENERATION- NEXT USAGE

03CS1033.

Sandeep Bandela.

In this part we will collect next-use information about names in a basic block.

The logic is simple. If the name in a register is no longer needed, then the register can be assigned to some other name.

Next-usage is defined as follows.

Lets take a 3 address statement for consideration.

Suppose three-address statement I assigns a value to x.

IF statement j has x as an intervening assignments to x,

Then we say statement j uses the value of x computed at i.

Here we consider variables in the same block.

For example take the statement of i and j ﾠfrom same block of a code.

i ﾠ:ﾠﾠﾠﾠﾠﾠﾠ x := y op z

no usage of x in these lines..

.

.

j ﾠ:ﾠﾠﾠﾠﾠﾠﾠ y:= x op zﾠﾠﾠ ﾠ ﾠﾠﾠﾠ// first usage of x after ith statement

here x is used in the second statement after j

we wish to determine the usage of each of the three-address statement ﾠx:= y op x

Our algorithm follows a backward pass to the beginning after reaching the end.

After reaching the end we scan backwards to the beginning recordingﾠ for each name of x whether x has a next use in the block and if not, whether it is live on exit from that block.

If no live variable analysis has been done, we assume that all temporary variables are live on exit.

Here is an algorithm for doing that. If we find the statement of previous occurance during backtrack.

1. Attach to statement i the information currently found in the symbol table regarding next usage and liveness of all the variables in that statement.

2. In the symbol table set x to ﾓnot liveﾔ and ﾓno next useﾔ.

3. In the symbol table, set all other variables to ﾓliveﾔ and the next uses of them to i.

We can do some sort of optimization too.

We can pack two temporaries into the same location if they are not live simultaneously

We can allocate storage locations for temporaries by examining each in turn and assigning a temporary to the first location in the field for temporaries that does not contain a live temporary.

If a temporary cannot be assigned to any previously created then we add a new location to the data area and allocate it to that temporary.

Example:

T1 ﾠ= a * a

T2 = a * b

T2 = 2 * T2

T1 = T1 + T2

T2 = b * b

T1 = T1 + T2

Here the usage of registers is minimized by optimizing.

