Tuesday 8/11/05

 Reconstructing the basic block

Lets start with the node representing 4*i. this node has two identifiers attached t1 and t3. Let us pick t1 to hold the value 4*i ,

So the first reconstructed statement is

 t1 := 4*i

 The second node considered is labeled t2. Statement constructed from this node is

 t2 :=a [t1]

 Node considered next is labeled t4 from which we generate the statement

 t4 :=b [t1]

The later statement uses t1 as an argument rather than t3 because t1 is the name chosen to carry the value 4*i.

Now we considered the node t5 .

 t5:=t2*t4

For the node labeled t6, prod, we select prod to carry the value since that identifier and not t6 will be needed outside the block.

Like t3 temporary t6 disappears. Next statement generated is

 prod:=prod+t5

Similarly we choose i rather than t7 to carry the value i+1. The last two statements generated are

 i : = i+1

 if i <= 20 go to (1)

 GENERATING THE CODE FROM DAGS

Rearranging the order

 Consider the following basic block whose dag representation is shown in the figure

t1= a + b

t2=c + d

t3=e – t2

t4=t1-t3

[image: image1]
Assuming that only two registers namely r1 and r0 are available the code sequence we get is as follows

 Step by step translation Optimized

 A Heuristic ordering for DAGS

Heuristic Ordering Algorithm

The algorithm applied to the tree of the figure drawn above yields the order from which the code of the table above was produced. A more complete example considers the DAG of the figure drawn below:

(1) while unlisted interior nodes remain do begin

(2) select an unlisted node n, all of whose parents have been listed ;

(3)
list n;

(4) while the leftmost child m of n has no unlisted parents

 and is not a leaf do

 /* since n was just listed , m is not yet listed*/

 begin

(5) list m;

(6) n = m

 end

 end

Initially the only node with no unlisted parents is 1, so we set n = 1 at line (2) and list 1 at line (3). Now the left argument of 1 , which is 2 , has its parents listed, so we list 2 and set n = 2 at line (6). Now, at line (4) we find the leftmost child of 2 , which is 6 , has an unlisted parent , 5. Thus we select new n at line (2), and node 3 is only candidate. so we list 3 and then proceed down its left chain , listing 4 , 5 and 6. this leaves only 8 among the interior nodes , sp we list that . The resulting list is 1234568. so the suggested order of evaluation is 8654321 . This ordering corresponds to the sequence of 3 address statements:

t8 = d + e

t6 = a + b

t5 = t6 – c

t4 = t5 * t8

t3 = t4 – e

t2 = t6 + t4

t1 = t2 * t3

This will yield optimal code for the DAG in our machine whatever the number of registers, if the code generation algorithm is used.

It should be noted that in this example our ordering heuristic never had any choices to make a step (2), but in general it may have many choices.

Optimal ordering for trees

 Optimal order here means the order that yield the shortest instruction sequence over all instruction sequences that evaluate the tree. This algorithm modifies to take into account register pairs and other target machine vagaries.

The labeling algorithm

 We use the term “left leaf” to mean a node that is a leaf and the left most descendent of its parent. All other leaves are referred to as “right leaves”.

 Labeling can be be done by visiting node in a bottom up order so that a node is not visited until all its children all labeled. The order in which the first three nodes are created is suitable if the parse tree is used as intermediate code, so in this case the labels can be computed as syntax directed translation. The algorithm below is for computing the label at node n. in the important special case that n is a binary node and its children have labels l1 and l2, formula of line (6) reduces to

 label (n) = max (l1, l2) if l1 != l2

 l1 + 1 if l1 == l2

Algorithm:

(1) if n is a leaf then

(2) if n is leftmost child of its parents then

(3) Label (n) = 1

(4) else label (n) = 0

else begin /* n is an interior node */

(5) let n1, n2 , …. , nk be the children of n ordered by label ,

 so label (n1) >= label (n2) >= ….>= label (nk) ;

(6) label (n) = max (label(ni) + i - 1)

end

Example:

 Consider the tree in the first figure shown above. A postorder traversal of the nodes visits the nodes in the order a b t1 e c d t2 t3 t4. Postorder is always an appropriate order in which to do the label computations. Node a is labeled 1 since it is a left leaf. Node b is labeled 0 since it is a right leaf. Node t1 is labeled 1 because the labels of its children are unequal and the maximum label of a child is 1. Figure below shows the labeled tree that result. It implies that two registers are needed to evaluate t4 and, in fact two registers are needed just to evaluate t3.

[image: image2]
Submitted By:

Parang Saraf (03CS1008)

Pawan Singh Faujdar (03CS3006)

t4

t4

t4

t4

t4

t4

t4

t4

t4

2

1

2

1

0

1

1

1

0

a

e

d

d

d

4

3

1

12

11

7

5

2

8

6

9

10

t4

a0

b0

e0

c0

d0

t3

t2

 t1=a + b MOV a, R0 t2 = c + d		 MOV c, R0

 ADD b, R0					 ADD d, R0

 t2 = c + d		 MOV c, R1		 t3 = e – d 		 MOV e, R1

			 ADD d, R1					 SUB R0, R1

 t3 = e – t2		 MOV R0, t		 t1 = a + b		 MOV a, R0

			 MOV e, R0					 ADD b, R0

			 SUB R1, R0				

 t4 = t1 – t3		 MOV t1, R1		 t4 = t1 – t3		 SUB R1, R0

 			 SUB R0, R1

