 Three Address Code Generation-1(27-09- 03-10)

 Prepared by 03CS1012 and 03CS1001

Three address code:

 Three address code is a sequence of statements of the general form x=y op z,where x,y,z are names,constants or compiler generated temporaries and op stands for any operator such as fixed or floating point arithmetic operator or a logical operator on boolean valued data. If we have an expression like x=y+z*k then we have a three address code as follows:

t1=z*k;

x=y+t1;

Types of Three address statements:

• Assignment statements:They are of the form x:=y op z where op is a binary arithmetic or logical operation

• Assignment Instructions:They are of the form x:=op y where op is an unary operation like unary plus,unary minus shift etc....

• Copy statements:They are of the form x:=y where the value of y is assigned to x

• Unconditional Jump goto L:The three address statement with label L is the next to be executed.

• Conditional Jumps such as if x relop y goto L:This instruction applies a relational operator (<,>,<=,>=) to x and y and executes the statement with label L if the conditional statement is satisfied. Else the statement following if x relop y goto L is executed

• param x and call p,n for procedure calls and return y where y representing a returned value is optional. The typical use is as the three address statements

 param x1

 param x2

 param x3

 .

 .

 param xn

 call p,n

generated as a part of the three address code for call of the procedure p(x1,x2,x3,....xn)

where n are the number of variables being sent to the procedure

Three address code structure:

It is a quadruple of an operator,an operand,an assignment and a destination

Three address code generation:

Suppose we have the grammar

 S->id:=E

 E->E+E | E*E | -E | (E) | id

Grammar Rule
Action Statements

S->id:=E
S.code :=E.code || gen(id.place”:=”E.place)

E->E1+E2
E.place=newtemp()

E.code:=E1.code || E2.code || gen(E.place “:=” E1.place '+' E2.place)

E->E1*E2
E.place=newtemp()

E.code:=E1.code || E2.code || gen(E.place “:=” E1.place '*' E2.place)

E-> -E1
E.place=newtemp()

E.code := E1.code || gen(E.place ':=” '-' E1.place)

E->(E1)
E.place=E1.place

E.code=E1.code

E->id
E.code=' '

E.place=id.place

Here E.code stands for the three address code generated by E and E.place stands for the variable name

