Translation of control-flow statements to three-address code.

by Hrishikesh Bhattacharya, 02 CS 1010.

Most programming languages have a common set of statements that define the control flow of a program written in that language.These statements are :

1.Assignment : A single statement assigning some expression to a variable. After executing this statement, the control flows to the immmediate next statement in the sequence.

2.if<condition>then<then-part>else<else-part> : Control flows to either the then-part or the else-part depending on whether the condition is true or false.

3.while<condition>do <loop> : Control remains within the loop until the condition becomes false.

4.<block of statements> : a group of statements put within a begin ... end block marker.

The grammar for these statements is given by :

S
->
if B then S

|
if B then S else S

|
while B do S

|
begin L end

|
A /*assignment*/

L
->
L S

|
S

To aid the generation of the code, two new marker nonterminals M and N are introduced.

The modified grammar becomes :

S
->
if B then M S

|
if B then M S N else M S

|
while M B do M S

|
begin L end

|
A /*assignment*/

L
->
L M S

|
S

M
->
'epsilon'

N
->
'epsilon'

B is a Boolean expression.

Attributes are defined as follows:

S.nextlist : List of quadruples with jumps to the quadruple succeeding S

L.nextlist : The same, where L is a group of statements.

The nonterminal N iss ued as it permits the generation of a jump after the 'then' in if-then-else. The atribute N.nextlist holds the quadruple number for this statement.

Actions :

S
->
if B then M S1

{

backpatch (B.truelist,M.quad)

S.nextlist = mergelist(B.falselist,S1.nextlist)

}

S
->
if B then M1S1N else M2S2

{

backpatch (B.truelist,M1.quad)

backpatch (B.falselist,M2.quad)

S.nextlist = mergelist(S1 .nextlist,mergelist(N.nextlist,S2.nextlist))

}

S
->
while M1B do M2S1

{

backpatch(S1.nextlist,M1.quad)

backpatch(B.truelist,M2.quad)

S.nextlist = B.falselist

emit('goto' M1.quad)

}

S
->
begin L end

{

S.nextlist = L.nextlist

}

S
->
A

{

S.nextlist = <nil>

}

L
->
L1 M S

{

backpatch(L1.nextlist,M.quad)

L.nextlist = S.nextlist

}

L
->
S

{

L.nextlist = S.nextlist

}

code translation:

begin

while a > b do

begin

x = y + z

a = a - b

end

x = y - z

 end

becomes

1. if a>b goto 3

2. goto 8

3. t1 = y + z

4. x = t1

5. t2 = a - b

6. a = t2

7. goto 1

8. t3 = y - z

9. x = t3

