Three Address Code Generation

--- BackPatching

A sample program is as follows:

begin

while (a>b) do

begin

x = y+z

a = a-b

end

x = y-z

end

The Three address code for the above simple program is as follows:

1. if (a>b) goto 3

2. goto 8

3. t1 = y+z

4. x = t1

5. t2 = a-b

6. a = t2

7. go to 1

8. t3 = y-z

9. x = t3

This above Three address code can be very easily generated using a two pass compiler. First we construct a syntax tree for the input. In the first scan we won’t be able to write the destination of the goto statements. So we traverse the tree in a depth first order and fill the blanks of the goto statements.

Our objective is to convert the two pass compiler into a one pass compiler. The main problem with generating the intermediate code for Boolean statements and Conditional constructs in the case of a Single pass compiler is that we are not in a position to decide the label to be executed next if there are any jump statements in the program.
This problem can be dealt with in a very nice way by leaving the destinations of the jump statements unspecified for the time being and filling them at a later stage. This process of filling of the labels of jump statements at a later stage is called Backpatching.

The process of backpatching is clearly illustrated with the above example.
1. M1.quad = 1

2. (i) if (a>b) goto E.truelist = {1}

 (ii) goto

E.falselist = {2}

3. M2.quad = 3

4. E.place = y

5. E.place = z

6. (iii) t1=y+z
 [E(id1+id2

E.place = newtemp ()

Emit (E.place`:=` id1.place`+` id2.place)]

 7. (iv) x=t1

8. S.nextlist = NIL = {}

9. L.nextlist = S.nextlist = {}

10. M.quad = 5

11. E.place = a

12. E.place = b

13. (v) t2 = a-b

14. (vi) a = t2

15. S.nextlist = {}

16. L.nextlist = {} Backpatch {L.nextlist, M.quad}

 No backpatching since L.nextlist = {}

17. S.nextlist = {}

18. Backpatch {E.truelist, M2.quad} [{1, 3}]

(i) if (a<b) goto 3

Backpatch {S.nextlist, M1.quad}

i.e. Backpatch {{}, 1}

S.nextlist = E.falselist {2}

(vii) goto 1

19. L.nextlist = S.nextlist = {2}

Therefore L.nextlist = {2}

 20. M.quad = 8

 21. E.place = y

 22. E.place = z

 23. (vii) t3 = y-z

 24. (ix) x=t3

 25. S.nextlist = {}

26. Backpatch {L.nextlist, M.quad}

 i.e. Backpatch {2,8}

 L.nextlist = {}

 (ii) goto 8

27. S.nextlist = {}

