Mini-Assignments

Answer preparation - 03CS1003

1. Write the regular expression for variable names. Assume that the variable name can start with alphabets or underscore and can also have digits but _____ is not a variable. (First 2 correct submissions accepted)

The regular expression is :

(_)* alphabet (alphabet | digit | _)*

2. Write the regular expression to represent an ip address. (First 5 correct submissions accepted)

The regular expression for an ip will be

 (D)(.)(D)(.)(D)(.)(D)

Where,

D = (0|1|2|3|4|5|6|7|8|9) +

(1|2|3|4|5|6|7|8|9)(0|1|2|3|4|5|6|7|8|9) +

(1)(0|1|2|3|4|5|6|7|8|9)(0|1|2|3|4|5|6|7|8|9) +

(2)(0|1|2|3|4)(0|1|2|3|4|5|6|7|8|9) +

(2)(5)(0|1|2|3|4|5)

3. Given |r| the length of the regular expression, and |x| is the length of the input string write down the time and space complexity to test whether the string belongs to the regular expression or not by an (a) NFA and (b) DFA. (First 7 correct submissions accepted)

NFA : Space complexity : O (|r|)

 Time complexity : O (|r| * |x|)

DFA : Space complexity : O (2|r|)

Time complexity : O (|x|)
4. Show the two trees produced by the grammar S-> aSbS | bSaS | epsilon. (First 10 correct submissions accepted)

the parse trees are

 S -> aSBS -> aebS -> ab(aSbS) -> ab(aebe) = abab

 and

 S -> aSbS -> a(bSaS)be -> a(beae)b = abab

Where , e=epsilon

5. Given the grammar
E -> T E'
E' -> + T E' | epsilon
T -> F T'
T' -> * F T' | epsilon
F -> (exp) | id
Construct for Recursive Predictive Parsing, minimum state transition diagram for the rules
T -> F T'
T' -> * F T' | epsilon
(First 10 correct submissions accepted)

The simplified finite automaton for T would be as follows :

States={1,2,3}

start state={1}

final state={3}

transition function :

d(1,F)=2

d(2,*)=1

d(2,epsilon)=3

However , we can implement the automaton by eliminating state 3 as well ,

in which case state 2 will become the final state .

States={1,2}

start state={1}

final state={2}

transition function :

d(1,F)=2

d(2,*)=1

6. Write down the CFG to detect the following. (a). occurence of balanced parentheses (b). strings over alphabet {a,b} such that every 'a' is followed by a 'b'. (First 10 correct submissions accepted)

CFG for matched parenthesis :

S -> (S) | SS | epsilon

 if epsilon is also considered a matching parenthesis

else if epsilon is not considered a matching parenthesis ,

S -> (A)

A -> (A) | AA | epsilon

CFG for the second problem where each 'a' must be followed by a 'b' :

S -> Ab

A -> a | Ab | Aba

7. Given the grammar S -> iEtSS' | a
S'-> eS
E -> b.
Prepare the first and follow list and the LL(1) parsing table. (First 20 correct submissions accepted)

The CFG

S (iEtSS’ | a

S’(eS | ε

E (b

	
	nullable
	 FIRST

Excluding ε
	 FOLLOW

	 S
	 F
	 i,a
	 $, e

	 S’
	 T
	 e
	 $, e

	 E
	 F
	 b
	 T

Predictive parsing rules

	
	 a
	 b
	 i
	 e
	 t
	 $

	 S
	 S (a
	
	 S (iEtSS’
	
	
	

	 S’
	
	
	
	 S’ (eS

 S’ (ε
	
	 S’ (ε

	 E
	
	 E (b
	
	
	
	

8. Given the grammar
S -> A
A -> T | A + T | A - T
T -> F | T * F | T / F
F -> P | P ^ F
P -> id | (A)
Prepare the operator precedence table. (First 23 correct submissions accepted)

	
	$
	(
)
	Id
	^
	*
	/
	+
	-

	$
	
	<
	<
	<
	<
	<
	<
	<
	<

	(
	>
	<
	=
	<
	<
	<
	<
	<
	<

)
	>
	
	>
	>
	>
	>
	>
	>
	>

	Id
	>
	
	>
	>
	>
	>
	>
	>
	>

	^
	>
	<
	>
	<
	<
	
	
	
	

	*
	>
	<
	>
	<
	<
	>
	>
	
	

	/
	>
	<
	>
	<
	<
	>
	>
	
	

	+
	>
	<
	>
	<
	<
	<
	<
	>
	>

	-
	>
	<
	>
	<
	<
	<
	<
	>
	>

Operator Precedence Table
The precedence relations which have been left blank could not be determined by the specified rules .

