 PUSHKAR PRASAD 03CS1014

 ARCHISMAN DAS 03CS1011

 MUKESH AGGARWAL 03CS3008

 LL PARSER

 To form an LL parser, we should have knowledge of two terms,

 1.FIRST

 2. FOLLOW

1) FOLLOW :

Let A be any grammar symbol of a grammar G. Then we associate with each grammar symbol A the set FIRST(A). The implication of this set is that the grammar symbol A can in some steps of transition produce the elements of the set FIRST(A) as the first terminal or epsilon(e).

In other words,

If 'a' is any string of grammar symbols, let FIRST(e) be the set of terminals

that begin the string derived from . If a=*=>e then add e to FIRST(a).

Rules :-

1) If X is a terminal , then FIRST(X) is {X}

2) If X--> e then add e to FIRST(X)

3) If X is a nonterminal and X-->Y1Y2Y3...Yn , then put 'a' in

FIRST(X) if for some i, a is in FIRST(Yi) and e is in all of

FIRST(Y1),...FIRST(Yi-1);

In other words, Y1...Yi-1=*=>e .

If e is in all of FIRST(Yj) for all j=1,2....n, then add e to

FIRST(X).This is so because all Yi's produce e, so X definitely produces e.

2) FOLLOW :

FOLLOW is defined only for non terminals of the grammar G.

It can be defined as the set of terminals of grammar G , which can immediately follow the non terminal in a production rule from start symbol. NB : we dont include epsilon in FOLLOW

 In other words, if A is a nonterminal, then FOLLOW(A) is set of

 terminals 'a' that can come/appear immediately to the right of A in some

 sentential form, i.e. The set of terminal s 'a' such that there exists a

 derivation of the form S=*=> aAaz for some a and z (which can be

 strings ,or empty).

 Rules :-

1) If S is the start symbol, then add $ to the FOLLOW(S).

2) If there is a production rule A--> aBz then everything in FIRST(z)

 except for e is placed in FOLLOW(B).

3) If there is a production A--> aB , or a poduction A--> aBz where

FIRST(z) contains e then everything in FOLLOW(A) is in FOLLOW(B).

/**/

 Example : Consider the following grammar

 S-> aABe

 A-->Abc | b

 B--> d

 Find the FIRST and FOLLOW for each nonterminal of the grammar.

 Solution : - See next page

 Steps :

1) Find for every non terminal if it is nullable.

2) Find FIRST for every nonterminal using rules described earlier.

3) Using the information got from calculations in steps 1 and 2

one could calculate FOLLOW for every nonterminal by rules described earlier.

 Neither A, nor B is nullable. /*Check*/

 To calculate FIRSTs

 a) To calculate FIRST(S) :

 From rule S-->aABe , we get 'a' belongs to FIRST(S)

 No other rule will help give an element in FIRST(S).

 So, FIRST(S)={a}

 b) To calculate FIRST(A) :

 From rule A-->Abc , we can't add any element

 From rule A-->b , we know that 'b' belongs to FIRST(A)

 No other rule will help give an element in FIRST(A).

 So, FIRST(A)={b}

c) To calculate FIRST(B)

 From rule B-->d , we add 'd' to FIRST(B)

 No other rule will help give an element in FIRST(B).

 So, FIRST(B)={d}

 To calculate FOLLOWs

 a) To calculate FOLLOW(S)

 Since S is start symbol, add $ to FOLLOW(S)

 From rule S-->aABe , we dont get any contribution to the

 FOLLOW(S) /*See rules 2 and 3 for FOLLOW*/

 From rule A-->Abc , since no where we see any symbol S, so

 no contribution to FOLLOW(A) is found in this rule.

 From rule A-->b , again no contribution.

 From rule B-->d, again no contribution.

 Hence FOLLOW(S)={$}

 b) To calcuate FOLLOW(A) :

 From rules A-->b , B-->d we get no contribution.

 From rule S-->aABe we expect to get some contribution.

 How?

 See rule 2 of forming FOLLOW(on page 2)

 As per that , we can add everything in FIRST(Be) in FOLLOW(A)

 except for epsilon.

 FIRST(Be)=FIRST(B) /*since B is not nulable*/

 ={d}

 So add 'd' to FOLLOW(A).

 Since Be is not nullable, so we can't use the rule 3 (See page 2)

 For rule A-->Abc , we do get some contribution straight away.

 From rule 2(page 2), 'b' belongs to FOLLOW(A)

 No other rule will help give an element in FOLLOW(A).

 Hence FOLLOW(A)={d,b}

To calculate FOLLOW(B)

Only rule S-->aABe contributes.

By rule 2 , 'e' belongs to FOLLOW(B).

Hence FOLLOW(B)={e}

 /***/

 Now onto LL parser .

 What does LL signify ?

 The first L means that the scanning takes place from Left to right.

 The second L means that the Left derivation is produced first.

 The prime requirements are : -

1) Stack

2) Parsing Table

3) Input buffer

4) Parsing program .

 Input buffer contains the string to be parsed, followed by $,

 a symbol used to indicate end of the input string. The stack indicates a

 sequence of grammar symbols with $ on the bottom,indicating bottom of

 the stack. Initially, the stack contains the start symbol of the grammar

 on the top of $. The parsing table is a 2-D array M[A,a] where A

 is a nonterminal, and a is a terminal or the symbol $.

 How to control the parser?

1. If X=a=$, parser halts, string accepted.

2. If X=a !=$, parser pops X, and advances the input pointer to point to next input symbol.

3. If X is a nonterminal, the program consults entry M[X,a] of the parsing table M. Replace the top of stack(X) with production rule cossesponding to entry in table.If entry = ERROR, call error recovery routine.

 Construction of predictive parsing table :

 To construct parsing table, the following algo must be used :

 Algorithm to construct predictive parsing table :

1. For each production A-->a of grammar G , do steps 2 and 3

2. For each terminal 'a' in FIRST(a) , add A--> a in M[A,a].

3. If e is in FIRST(a) , add A--> a to M{A,b] for each terminal b in FOLLOW(A). If e is in FIRST(a) , and $ is in FOLLOW(A), then add A-->a to M{A,$].

4. Make each undefined entry as “ERROR”, i.e. An error entry.

 /**/

 Example :

 Consider the grammar G :

 E-->TE'

 E'-->+TE' | e

 T--> FT'

 T'-->*FT' | e

 F-->(E) | id

 Calculate the FIRST and FOLLOW . The following table is obtained.

	
	Nullable?
	FIRST
	FOLLOW

	 E
	 No
	 Id , (
	 $,)

	 E'
	 Yes
	 +
	 $,)

	 T
	 No
	 Id , (
	 + , $,)

	 T'
	 Yes
	 *
	 + , $,)

	 F
	 No
	 Id , (
	 + , * , $,)

 Using the algo to obtain the parsing table, we find the folowing

 table.

	
	id
	+
	*
	(
)
	$

	 E
	 E-->TE '
	
	
	 E-->TE'
	
	

	 E'
	
	 E'-->+TE'
	
	
	E'-->e
	 E-->e

	 T
	 T-->FT '
	
	
	 T-->FT'
	
	

	 T '
	
	 T '-->e
	 T'-->*FT'
	
	 T' -->e
	 T'-->e

	 F
	 F-->id
	
	
	 F-->(E)
	
	

From this table, any input belonging to this grammar G can be parsed.

 Let id+id*id be the input.

 Then parsing proceeds as given in next page.

	stack
	Input buffer

	 $E
	 id+id*id$

	 $E'T'
	 Id+id*id$

	 $E'T'F
	 Id+id*id$

	 $E'T'id
	 Id+id*id$

	 $E'T'
	 +id*id$

	 $E'
	 +id*id$

	 $E'T+
	 +id*id$

	 $E'T
	 id*id$

	 $E'T'F
	 id*id$

	 $E'T'id
	 id*id$

	 $E'T'
	 *id$

	 $E'T'F*
	 *id$

	 $E'T'F
	 id$

	 $E'T'id
	 id$

	 $E'T'
	 $

	 $E'
	 $

	 $
	

	 The input is accepted
	

	
	

Thus, we can easily construct an LL parser with 1 lookahead.

Since one look ahead is involved, we also call it an LL(1) parser.

 /**/

 Requirement to form an LL(1) parser :

1) No ambiguity in gramar

2) No left factoring in grammar

3) If A-->a | b is a production in the grammar, then FIRST(a) and FIRST(b), where a, b is any string , should be mutually exclusive, i.e. , they should have nothing in common.

4) If A-->a | b, and FIRST(A) contains epsilon, then FOLLOW(A) and FIRST(b) should not coincide.Here a, b are any string of grammar symbols.

5) If A-->a | b| c , then at most one of a, b, c should be nulable.

 In this way, if the precautions are taken, one could make a grammar for

 which an LL parser could be developed.

 However not all grammars could be parsed by LL parsers.

 Next topic is LR parsers, which are more powerful than LL.

Here is another example

 /***/

Example: S --> iEtSS’ | a

S’ --> eS | €

E --> b

	Non-Term
	Sym a
	Sym b
	Sym e
	Sym i
	Sym t
	Sym $

	 S
	S--> a
	
	
	S-->iEtSS’
	
	

	 S’
	
	
	S -->€

S’-->eS
	
	
	S’-->€

	 E
	
	E-->b
	
	
	
	

The grammar is ambiguous and it is evident by the fact that we have two entries corresponding to M[S’,e] containing S -->€ and S’ -->eS.This ambiguity can be resolved if we choose S’-->eS i.e associating the the else’s with the closest previous “then”.

LL(1) grammars have distinct properties.No ambiguous grammar or left recusive grammar can be LL(1).A grammar is LL(1) if and only if whenever a production A--> C | D the following conditions hold:

1)For no terminal a both C and D derive strings beginning with a.Thus First(C) != First(D)

2)At most one of C or D can derive €

3) If C* € then D doesnot derive any string beginning with terminal Follow(A).

 /***/

