KAPIL GUPTA
03CS1023

Ambiguity in Grammar and Error recovery

· Every ambiguous grammar fails to be LR.
· Certain types of ambiguous grammar are useful in the specification and implementation of the languages.

· For language constructs like expressions an ambiguous grammar provides a shorter more natural specification than any equivalent unambiguous grammar.

· Used in isolating common occurring syntactic constructs for special case optimization.

· We can specify disambiguating rules that allow only one parse tree for each sentence. So that overall language construct still remains unambiguous.
Using Precedence and Associativity to Resolve Parsing Conflicts :
Consider arithmetic expressions in programming languages with operator + and * .

Grammar rules:

E (E + E | E * E | (E) | id

 ---- (1)
The corresponding unambiguous grammar is:

E (E + T | T

T (T * F | F

 ---- (2)
F ((E) | id
This unambiguous grammar generates the same language but gives lower precedence to + over * and makes both operators left associative.
Benefits of using ambiguous grammar:

· Using ambiguous grammar makes us able to change the associativities or/and precedence levels of + and * without disturbing the productions of (1) or the number of states in the resulting parser.
· Parser for (2) will spend substantial fractions of its time reducing by the production E (T, T(F .Whose sole function is to enforce associativity and precedence.

Sets of LR (0) for augmented grammar:

I0 :
E’ (.E

I5 :
E (E * .E

E (.E + E

E (.E + E

E (.E * E

E (.E * E

E (.(E)

E (.(E)

E (.id

E (.id
I1 :
E’ (E .

I6 :
E ((E.)

E (E. + E

E (E. + E

E (E . * E

E (E. * E
I2 :
E ((.E)

I7 :
E (E + E.

E (E. + E

E (E. + E

E (.E * E

E (E. * E

E (.(E)

E (.id

I8 :
E (E * E.

E (E. + E

I3 :
E (id.

E (E.* E
I4 :
E (E + .E

I9 :
E ((E).

E (.E + E

E (.E * E

E (.(E)

E (.id

Since the grammar is ambiguous parsing actions conflict will occur. The states corresponding to items I7 and I8 will generate these conflicts. These conflicts can be resolved using the precedence and associativity information for + and *.
Consider the input id + id * id which causes a parser based upon above states to enter state 7 after processing id + id; in particular parser reaches configuration

Stack

Input

 0 E 1 + 4 E 7

* id $

Assuming that * takes precedence over +, we know that the parser should shift * on to the stack, preparing to reduce the * and its surrounding id’s to an expression. On the other hand, if + takes the precedence over *, we know that parser should reduce E + E to E.

Thus the relative precedence of + followed by * uniquely determines how the parsing conflict between reducing E (E + E and shifting on * in state 7 should be resolved.

Similarly if the input has been id + id +id the parser would still reach the configuration in which it had stack 0 E 1 + 4 E 7 after processing input id + id .
On input + there is again shift/reduce conflict in state 7. Now, however, the associativity of the + operator determines how this conflict should be resolved.

If + is left associative, the correct action should to reduce by E (E + E i.e the id’s surrounding the first + must be grouped first.

So, we can choose from the conflict which rule should be given preference according to our requirements. Proceeding in this way we get the unambiguous parsing table as follows

	STATE
	Action

Id + * () $
	goto

	0
	s3 s2
	1

	1
	 s4 s5 accp
	

	2
	s3 s2
	6

	3
	 r4 r4 r4 r4
	

	4
	s3 s2
	8

	5
	s3 s2
	8

	6
	 s4 s5 s9
	

	7
	 r1 s5 r1 r1
	

	8
	 r2 r2 r2 r2
	

	9
	 r3 r3 r3 r3
	

Unambiguous Parsing table for ambiguous grammar (1)
ERROR RECOVERY IN LR PARSING
An LR Parser will detect an error when it consults parsing table and finds an error entry. A canonical parser will never make even a single reduction before announcing an error. The SLR and LALR parsers may take several reductions before announcing an error, but they will never shift an erroneous input into the stack..

We can implement two modes of recovery :

· Panic Mode: We scan down the stack until a state s with a goto on a particular non-terminal A is found. Zero or more input symbols are then discarded until a symbol a is found that can legitimately follow A. The parser then stack the state goto[s, A] and resume normal parsing. Normally there may be many choices for the non terminal A. Normally these would be non-terminals representing major program pieces, such as an expression, statement, or block.
· Phrase Level Recovery: It is implemented by examining each error entry in the LR parsing table and deciding on the basis of language the most likely program error that give rise to that error entry in the LR parsing table. An appropriate error procedure than can be implemented; presumably the top of the stack and/or first input symbols would be modified in a way deemed appropriate for each error.
As an example consider the grammar (1).

The parsing table contains error routines that have effect of detecting error before any shift move takes place.

Error routines :
e1:
This routine is called from states 0,2,4 and 5, all of which the beginning of the operand, either an id of left parenthesis. Instead an operator, + or *, or the end of input was found.
Action: Push an imaginary id on to the stack and cover it with a state 3. (the goto of the states 0, 2, 4 and 5)

Print: Issue diagnostic “missing operand”
	STATE
	Action

 id + * () $
	goto

	0
	 s3 e1 e1 s2 e2 e1
	1

	1
	 e3 s4 s5 e3 e2 acc
	

	2
	 s3 e1 e1 s2 e2 e1
	6

	3
	 r4 r4 r4 r4 r4 r4
	

	4
	 s3 e1 e1 s2 e2 e1
	8

	5
	 s3 e1 e1 s2 e2 e1
	8

	6
	 e3 s4 s5 e3 s9 e4
	

	7
	 r1 r1 s5 r1 r1 r1
	

	8
	 r2 r2 r2 r2 r2 r2
	

	9
	 r3 r3 r3 r3 r3 r3
	

e2:
This routine is called from states 0, 1, 2, 4 and 5 on the finding a right parenthesis.

Action: Remove the right parenthesis from the input

Print: Issue diagnostic “Unbalanced right parenthesis”
e3:

This routine is called from states 1 or 6 when expecting an operator, and an id or right parenthesis is found.

Action: Push + onto the stack and cover it with state 4.

Print: Issue diagnostic “Missing operator”
e4:

This routine is called from state 6 when the end of input is found while expecting operator or a right parenthesis.

Action: Push a right parenthesis onto the stack and cover it with a state 9.

Print: Issue diagnostic “Missing right parenthesis”
On an erroneous input id +) the sequence of configurations entered by the parser is shown below:
	STACK
	INPUT
	Error Message and Action

	0
	id +) $
	

	0 id 3
	+) $
	

	0 E 1
	+) $
	

	0 E 1 + 4
) $
	“Unbalanced right parenthesis”
e2 removes right parenthesis

	0 E 1 + 4
	$
	“missing operand”
e1 pushes id 3 on stack

	0 E 1 + 4 id 3
	$
	

	0 E 1 + 4 E 7
	$
	

	0 E 1
	$
	

[image: image1.png]

PAGE
6

