Question 3.

Quicksort is a fast sorting algorithm which sorts a given set of elements in ascending or descending order. Below there is an implementation framework of quick sort.

The main subroutine is ‘partition’. It takes an array and defines a lower bound, an upper bound and a pivot integer. The subroutine rearranges the portion of the array within the lower bound and the upper bound in such a way that the pivot element gets its proper position in that sub-array. So, after partitioning a sub-array we get some elements which are placed before the pivot, are less than or equal to the value of the pivot and the rest of the elements which are greater than the pivot are placed after the pivot (right side).

For example , if the array 23 12 26 15 89 1 76 13 are partitioned against the pivot 26 and (assuming 0 and 1 are the lower bound and the upper bound), after partitioning , you will get

an array like - (23 12 13 15 1) 26 (76 89).

The quick sort repeatedly calls this partitioning procedure on each of the sub arrays produced after partitioning.

Below there is a framework of the implementation of quick sort. Fill the blanks with appropriate code blocks.

1. Complete the following function. It actually implements the partition algorithm. Two pointers are set up – one pointing at the end and one pointing at the beginning of the array. They are used to traversed the array only once.

int partition(int x[], int lb, int ub)

{

// x is the array to be partitioned

int a, down, temp, up;

// a is the element whose final position is sought

// i.e. first element is considered as the pivot

a = x[lb];

up = ub;

down = lb;

while(down < up)

{

while(x[down] <= a && down < ub)

// move up the array

while(x[up] > a)

// move down the array

--

if(down < up)

{

 // interchange x[down] and x[up]

--

--

} // end if

} // end while

x[lb] = x[up];

x[up] = a;

return up;

}

2. If the partition function is called with the input array

12 1 14 2 15 3 17 1 18 7 178 1

then what will be the output ?

3. Complete the following function. It calls the partition subroutine and gets two sub arrays and then again it recursively calls the partition subroutine on the two sub arrays. It continues until the length of the sub-arrays are 1.
void quicksort(int *x, int lb, int ub)

{

int j=0;

 if(lb >= ub)

// array is sorted

 j = ---

 //call the partition subroutine
 if(lb < j)

//call quicksort recursively

--
 if(j < ub)

//call quicksort recursively

--
 return;

}

4. In the following program the input is taken from the user in the array x. If x is supplied in the program as

X = {12, 1, 12, 13, 29 , 16, 24, 17 , 28 , 27, 18}

Then write the output of the array after the partition subroutine is called 2 times. The partition subroutine will be called by the first quicksort (first time) and the second quicksort (2nd time).
int main()

{

int num_ele=0, *x=NULL, i=0;

printf("\nThis is a program to demonstrate QUICKSORT.");

printf("\n\nPlease enter the number of elements you want to sort: ");

scanf("%d", &num_ele);

x=(int*)calloc(num_ele, sizeof(int));

// x is the input array to be sorted

printf("\n");

for(i = 0; i < num_ele; i++)

{

printf("Please enter element: ");

scanf("%d", &x[i]);

}

printf("\n");

quicksort(x, 0, num_ele-1);

printf("The sorted array is:\n\n");

for(i = 0; i < num_ele; i++)

printf("%d\t", x[i]);

printf("\n\n");

system("pause");

return 0;

}

