
1. TCP Simulation over UDP 
 

Implement the TCP protocol on top of the UDP Datagram Delivery Service. Refer to the 
Diagram Below. 
 

Processes 1 and 2 are two user-level processes exchanging data between themselves using your 
TCP services. 

Host 1 
User Process 1 

 
 

Application Data Buffer 

Host M 
Process M 

 
 Simulates Network/Physical Layer 
 Delays Datagrams 
 Drops Datagrams 
 Corrupts Datagrams 
 Delivers Datagrams Out-Of-Order 

Host 2 
User Process 2 

 
 

Application Data Buffer

Your TCP Layer 
 Exports functions to the Application Layer – functions analogous to socket(), connect(), listen(), 

accept(), read(), write(), close() 
 Implements the TCP State Machine (Stevens, TCP/IP Illustrated, Volume 1) 
 Implements the Sliding Window Flow Control Protocol 

UDP Sockets Interface (Provided by the Kernel) 

Ordered Byte Stream Ordered Byte Stream 

Your TCP Segments Your TCP Segments 

UDP Datagrams 

UDP Datagrams - 
Altered



Since on a LAN, UDP is practically as reliable as TCP, we need another process M to 
simulate the Network Layer and Physical Layer. It introduces various anomalies in the UDP 
Datagrams. This process should be invisible to the actual communicating processes. 



2. FTP Client/Server 
 

 
FTP Client/Server should provide the following facilities: 
 

a. Separate connections for data and control. 
b. Local Commands (on the client machine): 

i. lls (the initial l stands for local) 
ii. lpwd 
iii. lcd 

c. Remote commands (on the server machine): 
i. ls -l 
ii. pwd 
iii. cd 

d. Data transfer commands 
i. Get 
ii. Put 
iii. Mget 
iv. Mput 

e. Authentication 
i. Connect to remote server and logon with username/password. 

f. Resume Facility 
i. If a file upload/download gets interrupted, next time around the 

upload/download of this file should resume from the point at which it was 
left off. 

g. Never use character by character transfer – use block transfers. 
h. Ensure high throughput of data through socket – investigate. 

 
Refer to RFC 959, http://www.faqs.org/rfcs/rfc959.html. You need not implement all of the 
protocol as specified in this document. You can simplify the protocol. 

 

http://www.faqs.org/rfcs/rfc959.html


3. File Synchronization 
 

Consider the following scenario: 
 
1. You work on a laptop at home and on a PC in the lab. You frequently need to 

manually copy files between the laptop and PC to ensure that both the machines 
have all their files synchronized (i.e., same files, same versions, etc, diagram below). 

 

 
 
In the diagram above, both the machines have the latest copies of each file, except for 
b.c, which was updated independently on both the machines – this is a conflict (if b.c was 
modified only on the PC, however, it would have been copied to the laptop). 
 
2. You are a lab administrator and need to synchronize files among all the machines 

under your control. 
 
Write a file synchronization application. 

a. The architecture can be peer to peer or centralized – whichever seems suitable 
to you. 

b. Given a list of IP’s and a top directory (e.g. /home/usr1/data above), the 
application must recursively synchronize all the files starting from the top 
directory. 

c. At the end of a run, it should generate a report – list the conflicts and the files 
copied (Source? Destination?). 

d. In case of conflicting files the report should show the diff. 
e. If there are two entirely different files with the same name, the application should 

be able to point this fact out to the user. 
f. It should handle both scenarios 1 (two machines) and 2 (multiple machines) 

efficiently). 

After Synchronization 

Laptop 
(/home/usr1/data/) 

 
a.text 
b.c 

PC 
(/backup/usr1/data/) 

 
d.pdf 
b.c 

PC 
(/backup/usr1/data/) 

a.text 
d.pdf 
b.c 

PC 
(/backup/usr1/data/)

a.text 
d.pdf 

Before Synchronization 

b.c 



 
4. A Network File Sharing Application 

 
a. A number of workstations with files/directories that are shared. 
b. A number of client processes running on each of the workstations. 
c. Facilities on the client side: 

i. Add shares. 
ii. Remove shares. 
iii. Connect to a central server. 
iv. Maintain a local index of the files that are shared. 

d. There will be a central server facilities: 
i. Database of users. 
ii. List of connected users. 
iii. Browse files belonging to individual users. 
iv. General file search. 
v. Search for alternatives – i.e. same file with different names (think of 

some digest, e.g. CRC). 
e. File download from one user to another MUST be peer to peer. 
f. Points about the architecture of the application. 

i. The central server should not maintain the entire database of the files 
shared on the network. 

ii. When an individual connects to the central server, the latter retrieves an 
index of files shared from that client. 

iii. Suppose a download is in progress. If the connection to the central 
server is lost, the download should still continue (benefits of peer to peer 
download). 


