HTTP

Hypertext Transfer Protocol (HTTP) is a communications protocol for the transfer of information on
internets and the World Wide Web. Its original purpose was to provide a way to publish and retrieve
hypertext pages over the Internet. HTTP can be implemented on top of any other protocol on the
Internet, or on other networks. HTTP only presumes a reliable transport.

HTTP is a request/response standard between a client and a server. A client is the end-user, the
server is the web site. The client making an HTTP request - using a web browser, spider, or other
end-user tool - is referred to as the user agent. The responding server - which stores or creates
resources such as HTML files and images - is called the origin server.

To know more about HTTP protocol you can read up the following links:

http://www.w3.org/Protocols/rfc2616/rfc2616.html
http://www.lincoln.edu/math/rmyrick/ComputerNetworks/InetReference/102.htm

In this assignment, you first need to implement a simple HTTP protocol by developing a Client and a
Server which communicates through HTTP-type messages over a TCP connection. The server is a
TCP concurrent server. The client will send HTTP requests to the server. The server will parse the
messages and respond accordingly.

An HTTP request consists of a method name describing the operation, a resource name (an URI)
describing the object in which the method is to be applied, and optional data. For ease of completion
in this assignment you must implement only the following HTTP method:

GET: Retrieves the specified resource from the server. (ex. the contents of a file).

You can read more about HTTP request messages here:
http://www.w3.org/Protocols/rfc2616/rfc2616-sec5.html#sec5

In the next part, you need to implement a HTTP Proxy that can act as a proxy server between the
client and the server. Further along the line, you will implement a very simple implementation of
server load balancing called Round - Robin DNS.

The details of the you have to implement are as follows. The format of HTTP requests and responses
are also given in these details. Please note that although we are trying to implement a subset of the
HTTP protocol set, the protocol must be strictly adhered to. We will be testing your client against a
standard HTTP proxy server, and then test the server using a standard browser. Hence, again, please
make sure these programs follow the protocol strictly.

While implementing the DNS Load balancing, you will need to setup a domain name for the server.
Since the dns requests will usually go to our server, we can come up with any name, as long as the
dns server returns an IP for that domain.

HTTP Server:

The web server you will implement is a simple file server.
A sample URL like http://www.customwebsite.org:53007/index.html has 4 parts,

 the protocol specifier (http://),

+ the server domain name (www.customwebsite.org),

+ the port of the web server (53007),

+ and the file to be retrieved (index.html).
When a server starts running, the current directory is treated as the document root, so assume that if
the server starts on a folder, all documents are relative to it. On receiving a HTTP request from the
client the server parses through the request, prepares the reply message (it can also make an error

message as reply) and sends it to the client who requested for it. The format of the reply message is
described in the Client section. The Server must print on the command window every request
message it receives (in exact format received).

HTTP Client:

The client is a command line based web browser. The format of an actual http request message is
given here:
http://www.w3.org/Protocols/rfc2616/rfc2616-sec5.html#sec5.

However, for simplicty, we will use a simpler format for the request message. It is similar to an HTTP
request, but does not have many of the fields that are not required for us.The format is as follows:

Request = Request-Line CRLF
(Request-Header CRLF)*
CRLF
Message-Body

Request-Line = Method-Name <space> Request-URI <space> HTTP/1.0 CRLF
Request-Header = Header-Name ":" <space> Header-Content CRLF

Method-Name can be GET, HEAD, POST, PUT, DELETE, etc. In this assignment we will be only
considering the GET method. Every HTTP request/response line must be terminated using a CRLF
(carriage return, line feed) which can be represented in C/C++ as the 2 characters "\r\n"

The method to be implemented here is GET. <space> stands for a single space character. Request-
URI is the URI of the resource on which the method is to be applied. We send HTTP/1.0 as we try to
implement the HTTP/1.0 specifications.

The Request-Line is followed by 0 or more HTTP Headers. These Request-Headers are of the format
<name>: <content> CRLF

For a simple GET request, assume that the client will further send the following headers:

Host: <domain-name-of-server>

User-Agent: <a-string-that denotes your user-agent, can be anything>

Connection: close

For POST, PUT and some other methods, an additional Content-Length: <length-in-bytes> header is
also added. In that case the HTTP request will contain a message body, whose size is specified by
the Content-Length header. The message body contains the actual optional data.

Hence, HTTP headers will always end with a double sequence of CRLF, i.e. "\r\n\r\n".

A server response message will have the following format:

Response = Status-Line CRLF
(Response-Header CRLF)*
CRLF
[message-body]

Status-Line = HTTP/1.0 <space> Status-Code <space> Reason-Phrase CRLF

The mandatory HTTP Headers in this case are :-
Accept-Ranges: bytes

Content-Length: <message-body-length>
Content-Type: text/html; charset=UTF-8
Connection: close

Status-Code is always an integer. In case the document is found, it is returned with Status-Code =
200, Reason-Phrase = "OK"

If the document is missing, we issue a 404 error, namely Status-Code = 404, Reson-Phrase = "Not
Found". In case the document is not found, the server must generate a message body which can be
something similar to :

<htmi><body>The document could not be found.</body></html|>

To read about HTTP status codes, follow this link : http://en.wikipedia.org/wiki/
List of HTTP_status_codes

"Connection: close" is a header that we will always send along with the standard HTTP headers, this
header specifies that the client does not wish to re-use the connection. HTTP/1.1 specification has a
pipelining mode where a single HTTP client can request multiple documents (http://en.wikipedia.org/
wiki/HTTP_persistent connections). To disable pipelining and yet confirm to the specs, we add this
additional header to every request and to every response.

HTTP Proxy:

The HTTP Proxy server is a HTTP client and server both in one. It acts as a server to the Client, but
as a client to the Server. When the client requests a document from the proxy server, the proxy server
must make a connection to the Server, retrieve the document and send it back to the Client.

A Proxy Server usually runs on port 8080. In this case we will use the server port as (5000 + roll. no.
of 2nd team member)

A Proxy Server must confirm to the following protocol, which is a reduced version of :-

+ Client(C) wants to retrieve http://www.customwebsite.org:53007/image.jpg via the Proxy
Server(P).

+ C does not DNS resolve www.customwebsite.org to an IP address.

* C connects to P. Let this socket connection be called cli_sockfd on the server side.

+ C sends the exact HTTP Headers as if connecting directly to the Server(S), except for a
slight modification:

Since C needs to tell P that the server(S) is example.org, instead of

GET /image.jpg HTTP/1.0

it sends

GET http://www.customwebsite.org:53007/image.jpg HTTP/1.0
i.e. the full path of the link. Note that the domain name is sent instead of the IP address.

« P waits till the client has sent all the data.

+ On completion, P first parses the headers, and then finds out the server link. It then parses
the domain www.example.org and resolves it to the IP address of the Server. Note hence
that domain resolution happens on the proxy-server side, unlike that in the case of a direct
connection. If domain resolution fails, show a 404 error page like that of the HTTP server
and close the connection cli_sockfd.

* P now acts as the client. It connects to the Server S, via a socket connection serv_sockfd.
This time it sends the same headers as the client C did, but emulating that of a client.
(Hence, the Server never knows whether it was a direct connection or via a Proxy).

+ P sends the headers, but modifying the GET request to change it to GET /image.jpg HTTP/
1.0.

+ P receives the reply back, which is HTTP headers and the document body.P closes
serv_sockfd.

+ P again toys with the HTTP headers, adding another additional header, named Via. This
denotes that the request came from the proxy server. The Via header is as follows:

http://en.wikipedia.org/wiki/List_of_HTTP_status_codes
http://en.wikipedia.org/wiki/List_of_HTTP_status_codes
http://en.wikipedia.org/wiki/HTTP_persistent_connections
http://en.wikipedia.org/wiki/HTTP_persistent_connections

* Via: <Proxy-Server-Name>
+ The HTTP headers and the body are sent in the same format as that in a HTTP Server. After
that, P closes cli_sockfd.

DNS Load Balancing:-

DNS Load Balancing is a popular feature to reduce server load. Wikipedia link: http://en.wikipedia.org/
wiki/Round_robin_DNS
We will implement DNS load balancing using our custom dns client server. You need to :-

1. Implement the HTTP client and proxy-server to perform all DNS lookups using the DNS
client developed in Assignment 2. Assume only a UDP DNS Server is present.

2. Modify the UDP DNS Server. Make sure that a request to resolve the domain for the server
resolves to more than 1 IP. For example, if the domain name for this assignment is
www.customwebsite.org, whenever the DNS Server requests a domain resolution for
www.customwebsite.org, it should return 3 IP addresses which have been hardcoded in the
IP server, without performing the gethostbyname().

3. These IP addresses must be returned to the client in a round-robin fashion.

An example is shown below:

Custom Domain: www.customwebsite.org

IP address configured in server: 10.341.2.5, 10.341.2.6, 10.341.10.15
Client 1 makes a request. IP addresses returned (note order) -
10.341.2.5, 10.341.2.6, 10.341.10.15

Client 2 makes a request. IP addresses returned (note order) -
10.341.2.6, 10.341.10.15, 10.341.2.5

Client 3 makes a request. IP addresses returned (note order) -
10.341.10.15, 10.341.2.5, 10.341.2.6

Client 4 makes a request. IP addresses returned (note order) -
10.341.2.5, 10.341.2.6, 10.341.10.15

and soon ...

Query based Load Balancing:

to be added -Arindam 19/08/2009 06:31

Linix netcat command, and the HTTP transaction example

Copied from the linux manpages:
netcat is a simple unix utility which reads and writes data across network connections, using
TCP or UDP protocol. It is designed to be a reliable "back-end" tool that can be used directly or
easily driven by other programs and scripts. At the same time, it is a feature-rich network
debugging and exploration tool, since it can create almost any kind of connection you would
need and has several interesting built-in capabilities. Netcat, or "nc" as the actual program
is named, should have been supplied long ago as another one of those cryptic but standard
Unix tools.

In the simplest usage, "netcat host port" creates a TCP connection to the given port on the
given target host. Your standard input is then sent to the host, and anything that comes back
across the connection is sent to your standard output. This continues indefinitely, until the

http://en.wikipedia.org/wiki/Round_robin_DNS
http://en.wikipedia.org/wiki/Round_robin_DNS

network side of the connection shuts down. Note that this behavior is different from most other
applications which shut everything down and exit after an end-of-file on the standard input.

Netcat can also function as a server, by listening for inbound connec-tions on arbitrary ports
and then doing the same reading and writing. With minor limitations, netcat doesn't really care
if it runs in "client" or "server" mode -- it still shovels data back and forth until there isn't any
more left. In either mode, shutdown can be forced after a configurable time of inactivity on the
network side.

The following is a simple HTTP transaction | have performed via netcat. The Data sent from the client
is written in black, while the data returned by the server is in blue.

Direct Connection Transaction (You might want to try changing it to iitkgp.ac.in to see how it works via
a direct connection, | did not add it since the document body is too long) :-

arindam@Numenor:~$ nc www.example.org 80
GET /index.html HTTP/1.0

Host: www.example.org

User-Agent: My Awesome HTTP Client
Connection: close

HTTP/1.1 200 OK

Date: Wed, 19 Aug 2009 00:36:01 GMT

Server: Apache/2.2.3 (Red Hat)
Last-Modified: Tue, 15 Nov 2005 13:24:10 GMT
ETag: "b80f4-1b6-80bfd280"

Accept-Ranges: bytes

Content-Length: 438

Connection: close

Content-Type: text/html; charset=UTF-8

<HTML>
<HEAD>
<TITLE>Example Web Page</TITLE>
</HEAD>
<body>
<p>You have reached this web page by typing "example.comé",
"example.net",
or "example.org" into your web browser.</p>
<p>These domain names are reserved for use in documentation and are not
available
for registration. See <a href="http://www.rfc-editor.org/rfc/
rfc2606.txt">RFC
2606, Section 3.</p>
</BODY>
</HTML>

Proxy Connection Transaction (This actually works from KGP LAN :) -

arindam@Numenor:~$ nc 144.16.192.247 8080

GET http://www.example.org/index.html HTTP/1.0
Host: www.example.org

User-Agent: My Awesome HTTP Client

Connection: close

HTTP/1.0 200 OK

Date: Tue, 18 Aug 2009 23:43:11 GMT

Server: Apache/2.2.3 (Red Hat)

Last-Modified: Tue, 15 Nov 2005 13:24:10 GMT

ETag: "b80f4-1b6-80bfd280"

Accept-Ranges: bytes

Content-Length: 438

Content-Type: text/html; charset=UTF-8

Age: 3527

X-Cache: HIT from proxy245.iitkgp.ernet.in
X-Cache-Lookup: HIT from proxy245.iitkgp.ernet.in:8080
X-Cache: MISS from proxy247.iitkgp.ernet.in
X-Cache-Lookup: MISS from proxy247.iitkgp.ernet.in:8080
Via: 1.1 proxy245.iitkgp.ernet.in:8080 (squid/2.7.STABLE3), 1.0
proxy247.iitkgp.ernet.in:8080 (squid/2.7.STABLE3)
Connection: close

<HTML>
<HEAD>
<TITLE>Example Web Page</TITLE>
</HEAD>
<body>
<p>You have reached this web page by typing "example.com",
"example.neté",
or "example.org" into your web browser.</p>
<p>These domain names are reserved for use in documentation and are not
available
for registration. See <a href="http://www.rfc-editor.org/rfc/
rfc2606.txt">RFC
2606, Section 3.</p>
</BODY>
</HTML>

Hints, Checklists and Assumptions:

+ Assume that the body length never exceeds 5kB (i.e. 5 * 1024 bytes).

+ Assume that the headers are not over 10 in number, and each will header size is less than
1024 characters.

» The Http Server and the proxy server must be concurrent servers.

» The client may request binary data from the server. Make sure that binary data, even
something containing NULL characters, can be transacted faithfully.

+ A client like the browser may send a HTTP/1.1 request instead of HTTP/1.0 in any case,
ignore that and reply back with a HTTP/1.0 anyway.

+ An external client like a browser can send more headers than the ones mentioned in the
assignment. Similarly, an external server sends additional headers. Ignore them, but make
sure the server/client do not crash if they appear.

Submission:

Submit a zipped file (tar.gz or zip preferably) which contains the code and a Makefile.

Running make in that folder should create the following executables :-
http_server

dns_server

http_proxy

http_client

The executables must take the following command line parameters :-

1. dns_server:

Jdns_server <custom-domain-name> <ip-address-1> <ip-address-2> ... <ip-address-n>
example:

Jdns_server www.customwebsite.org 10.341.2.5, 10.341.2.6, 10.341.10.15

2. http_server:

./http_server <bind-port-number>
example:

/http_server 53007

3. http_proxy:

Jhttp_proxy <bind-port-number>
example:

http_proxy 53011

4. http_client

It takes the following parameters:

URL to receive

filename to save the file as

proxy or direct connection to be used

Jhttp_client <URL> <filename> <proxy>

URL is of the form : http://www.customwebsite.org:53007/index.html
filename is, say: save-file.txt

proxy can be either direct (using a direct connection)

or a proxy server, in the format : 144.16.192.247:8080

Example (direct)-

Jhttp_client http://www.customwebsite.org:53007/image.jpg picture.jpg direct

Example (proxy)-

Jhttp_client http://www.customwebsite.org:53007/random.pdf 404-page.htm 10.33.14.20:53011

You may use C or C++ for coding the assignment.

	HTTP Server:
	HTTP Client:
	HTTP Proxy:
	DNS Load Balancing:-
	Query based Load Balancing:
	Linix netcat command, and the HTTP transaction example
	 Hints, Checklists and Assumptions:
	Submission:

