
7.5 Partitioning

I '"' v a E Am-Ia = L...., lax,
xeAm-l

Consider the "clique representation" of a netlist by means of an edge-wei
g~aph G(V, E) as discussed in Section 7.1. The weight of an edge (i, j) E E
,~Iven by Yi] (Yij = 0 when (i, j) ff. E). Then the center of gravity (xf, Y~) of a
t ISdefined as: I

g Lj YijXj
X· = -==---=--..:...
I Lj n,
g Lj YijYj

Yi =
LjYij

S?, the center of gravity is found by computing the weighted average of the
dinates of those cells connected to i, An example of a perturbation is then to
a cell t~ ~ legal position close to its center of gravity and if there is another cel
that .positIOn to move. that cell to some empty location or to its own center of gra
(WhICh creates a cham of moves until the last cell in the chain is put in an e
location).

Figure 7.10 The interchange of subsets in the Kernighan-Lin algorithm.

first thing to remark is that the problem is NP-complete and that the algorithm
d by Kernighan and Lin is a heuristic that turns out to be rather successful.

principle of the algorithm is to start with an initial partition consisting of the
AO and BO which, in general, will not have a minimal cut cost. In an iterative

, subsets of both sets are isolated and interchanged. In iteration number m,
isolated from Am-I will be denoted by X'" and the set isolated from Bm-I

be denoted by ym. The new sets, Am and B'" are then obtained as follows:

Am = (Am-I \ Xm) U ym

Bm = (Bm-I \ ym) u x»

The dir~ct motivation for paying attention here to the partitioning problem ori .
from nun-cut placement. However, partitioning is itself an important problem
the .field of VLSI ~esign automation. It shows up e.g. when a large circuit has
be Implemented WIth multiple chips and the number of pins on the IC pac
necessary for interchip communication should be minimized.

~any versions of the partitioning problem exist and many algorithms for
v~fSlon. A.famous algorithm was published by Kernighan andLin in 1970. It will
discussed m the next section. The section on Bibliographic Notes at the end of
chapter provides pointers to other algorithms.

idea is illustrated in Figure 7.10. The iteration goes on until no improvement in
I

cost is possible.
important issue in the algorithm is the construction of the sets X" and ym.
that for any nonoptimal partition, there are subsets X and Y that will lead to
. al partition in one interchange step. The difficulty of the problem arises, of
from the fact that these subsets cannot be identified easily. Therefore, the
makes an attempt to find suitable subsets, interchanges them and then tries

a new attempt, until the attempt does not lead to an improvement of the cut
In this context, each exchange of subsets is called a pass. The total number of
needed turns out not to be dependent on the problem size n: most examples
in the literature do not need more than 4.

construction of the sets X'" and ym is based on external and internal costs for
in the sets Am-land Bm-I. The external cost Ea of a E Am-I is defined as

s:7.5.1 The Kernighan-Lin Partitioning Algorithm

The. model assumed by the algorithm is as follows: there is an edge-wei
undirect~d graph C?(V, E); the graph has 2n' vertices (IV I = 2n); an edge (a, b) E
has a weight Yab; If (a, b) ff. E, Yab = Q. The problem is to find two sets A and
subject to A U B = V, An B = 0, and IAI = IBI = n, which minimizes the cut
defined as follows: .

1\ s, = L ~,a E Am
-
I 1

yeBm-l I..l..-_-
external cost for vertex a E Am-I is a measure for the pull that the vertex

. nces from the vertices in Bm-I. In a similar way, the external cost Eb for a
b e Bm-I and the internal costs Ia and Is can be defined:

s, = L Ybx, bE Bm-I

xeAm-l

L Yab
(a,b)eAxB

In ~~er. words, ~e goal is to minimize the total weight of the edges cut by
p~rtItIOmng of V into the sets A and B. Note that the algorithm assumes that
clique model has been used for the representation of nets (see Section 7.1).

I " b e Bm-1b = ~ YbY'
yeBm-l'

The difference between internal and external costs gives an indication
desirability to move the vertex: a positive value shows that the vertex should
moved to the opposite set, a negative value shows a preference to keep the
its current set. The differences for the vertices in both sets are given by the
o; and Db:

Da = Ea - l«, a E Am-I

Db = Eb - lb, b E Bm-I

Now the gain in the cut cost, 1:1, resulting from the interchange of two ve
be expressed as:

/A D' D 2 Am-I b Bm-I
U = a + b - Yab, a E ,E

,The last term is a-correction for a possible edge between a and b, which will
to cross the cut after swapping the vertices.
The pseudo-code code of the Kernighan-Lin algorithm is shown in Figure

As mentioned earlier, each execution of the outer loop is a new pass. In the
inner loop, the for loop with iteration variable i, the subsets to be interchan
constructed element by element. In: each iteration of this loop, the pair (aj,

Am-I x Bm-I giving the best improvement for the cut cost is selected. The
are then "locked", meaning that they cannot be selected once more in the inner
They are candidates to be included in the subsets. Actually, it is pretended that
have already been interchanged, and the differences between external and .
costs of the unlocked. vertices are therefore updated (check the correctness
expressions that update the values of D, and Dy).
It is important.to realize that the best cut cost improvement leading to the sel

of a pair (aj, bi) may be negative. Once all vertices have been locked, the pairs
vestigated in the order of selection: the actual subsets to be interchanged co
to the sequence of pairs (starting with i = 1) giving the best improvement. So,
in the sequence may have negative cost improvements as long as the pairs foll
them compensate for it. Such a situation would e.g. occur when the exchange of
clusters of tightly connected vertices results in an improvement, while the exc
of individuiil vertices from each cluster does not improve the cut cost. .
The algorithm will be illustrated using the example graph given in Figure 7

The graph consists of the vertices VI to vs. The initial partition consists of the
sets {V2, V3, V6, V7} and {VI, V4, VS,vs} with cut cost 14 as shown in Figure 7.1
The evolution of the algorithm in the first pass is shown in Figure 7.13, Each r
the figure corresponds to a value of the loop variable i as is shown in the first col
The values under a column headed by a vertex nameu show the subsequent v
of the variable Dv (the difference between the external cost Ev and the internal

initialize(AO, BO);
m +-1;
do {for each a E Am-I

"compute Da";
Coreach b E Bm-I

:"compute Db";
for (i +- 1; i ~ n; i +- i + 1) {
"find unlocked vertices aj E Am-I, bj E Bm-I such that
.6.j = Da; + Db; - 2Ya;b; is maximal";
"lock aj and bj"; ,
for each "unlocked" x E Am-I

Dx +- Dx + 2Yxa; - 2Yxb;;
for each "unlocked" y E Bm-I

Dy +- Dy - 2Yya; + 2Yyb;;
}
"find a k such that L:f=I .6.j is maximal";
G +- L:f=I .6.j;
if(G > O){

x» +- {aI, .. · ,ak};
ym +- {bI, ... ,bk};
Am +- (Am-I \ Xm) U ym;
Bm +- (Bm-I \ ym) u Xm;
"unlock all vertices in Am and Bm";
m+-m+l

}
}

while (G > 0);

I'igure 7.11 The pseudo-code description of the Kernighan-Lin algorithm.

variables that are locked at a specific stage of the inner loop are underlined
value I:1j corresponding to the selected pair is giv.en in the last column.
the inner loop has been traversed, the value k has to be determined such
sum L~I:1j is maximal. In this case, the value of k is 1 and the subsets ~f
to be exchanged are {V2} and {V4} (note that k = 3 .is.optimal as.well). ~s
the new sets Al = {V3,V4,V6,V7}and BI = {VI,V2,VS,Vs}aslsshownm
7.12(b). The cut cost has now decreased from 14 to 8.
evolution of the variables in the second pass is shown in Figure 7.14. The
. n of the second iteration is that the maximal gain corresponds to the
k = 2, which means that the vertex subsets to ~ exchanged are {V3, V4}
• val. The exchange of these subsets leads to A = {VI, V2, V3, V4} and

{v V t,'" val which is the optimal solution for the example. The cut cost
5, 6, ." . dth al ithms 2. Clearly, a third pass will not lead to an improvement an e g~n
. The final partition is illustrated in Figure ?12~c~. ~ote that the Kemlg.h~-
ithm will not always find the optimal solution: It ISJust a powerful heuristic,

V2 I V3 V6 2 v7

VI 2 3 VsV4 Vs
(a)

V2: I V3 V6 2 v7

51 ~I, -,,
5 .. -I- ••..•.•.,,

, - -I
vl,2 v4' V• • s....

(b)
v2 I v3, I V6 2 V7

'BY t'£J
2 ' I 3vI V4' "s Vs

3 Vs

(c)

Figure 7.12 Different steps in the application of the Kernighan-Lin algorithm: the
partition (a). the situation after the first iteration (b) and the final solution (c).

N
~

AU B
V2 V3 V6 V7 VI V4 Vs Vs l:l.j

1 ~- 3 -1 -1 3 1 -1 -3 6
2 -5 -1 -1 -3 -1 -1 -2
3 -5 1 -3 1 2
4 -3 -3 -6

Figure 7.13 The first pass of the Kernighan-Lin algorithm applied to the graph
ure 7.12.

AI Bl
i V3 V4 V6 V7 VI V2 Vs VS l:l.j

1 -5 -1 -1 -1 -3 -3 -1 -1 -2
2 ~ -3 -3 -7 -5 3 8
3 -3 -3 -7 -7 -10
4 1 3 4

Figure 7.14 The second pass of the Kernighan-Lin algorithm applied to the
Figure 7.12.

- . _... - _ .., .. _ ':;'
time complexity of the algorithm is determined by the inner loop that is

n times (remember that the number of executions of the outer loop was
,Iem-dependent). Finding the best pair of vertices to be locked next requires

• .se comparison of elements each with at most n elements. Therefore, the
of comparisons is O(n2) and the total time complexity becomes O(n3). In
situations (but not in the worst case) sorting the elements of Am-I and

according to their difference values will limit the number of comparisons
\first few elements of the sorted lists. As sorting can be done in Oin log n)

. would lead to an overall time complexity of O(n210g n). A better time
ity can be achieved by the use of more sophisticated data Structures and a
search strategy (see also the Bibliographic Notes).

that the Kemighan-Lin algorithm can be seen as a local search with variable
ood (see Section 5.5): the number of elements exchanged between the sets
Bm-I depends on the feasible solution that one is visiting.

the textbooks that deal with physical design automation, such as [Len90],
[Sai95] and [Sar96], pay quite some attention to the placement problem. In
general information on the placement problem can be obtained through the

papers [Got86], [Bra87] and [Pre88]. . .
. circuit representation as presented in this chapter is not so often discussed

ture, as it is quite straightforward and because different applications have
requirements. Circuit representations that are e.g. appropriate for placement
ioning are paid attention to in [Len90] and [Alp95J. What has been presented
an internal data structure, meant to reside in the computer's memory while
· . is processing it. A related issue is the external representation meant to
on file; usually in a human-readable format, that can be shared by many

· ns. Such a format is EDIF (Electronic Design Interchange Format), that
standardized by ANSI [Kah92a]. It deals with the notions of cells, ports
and many, many more issues that are relevant for real-world CAD.

wire-length metrics mentioned in the text and some others are listed in
[Len90] and [Sai95].

Ierm logistic signal (for power and clock wires) was coined by Spaanenburg
· An example of a min-cut algorithm for placement is given in [Bre77].
of clustering algorithms can be found in [Ake82].
rted in [Sun95] simulated annealing is probably the best algorithm cur.

bown for placement, especially for standard-cell placement. Already the
fication on simulated annealing as a general-purpose optimization method
presented results applied to the placement problem. Also, the introductory
simulated annealing [Rut89] uses the placement problem as the main illus-

of the method. The Timberwolf system [Sec85] is famous for its good results
-cell placement by simulated annealing. The version discussed in [Sun95]

eliminates overlaps after each move. A "rectangle packing" method based

I II

