
Community Identification
Ankur Saxena1

102CS3018 {ankur.ankursaxena@gmail.com}

I. Spectral Bisection Method

A. Langranges Matrix
Every Graph has a Langranges Matrix

L =


di if i = j,

−1 if i is connected to j,

0 otherwise

L =



d3 −1 −1e 0 −1 0

| − 1 2 −1| 0 0 0

b−1 −1 3c −1 0 0

0 0 −1 d3 −1 −1e
−1 0 0 | − 1 3 −1|
0 0 0 b−1 −1 2c



Eigen vector / Eigen Value = 0

1

1

1

1

1

1





1

1

1

0

0

0


All the derived eigen vectors are orthogonal

v1.v2 = 0

L =



1.5 −.8 −.6 0 −.1 0

−.8 1.6 −.8 0 0 0

.

.

.

.


λ =

(
0, 0.4, 2.2, 2.3, 2.5, 3

)

if difference between 2nd and 3rdλ is high, there

is clustering.

for λ = 0.4



0.2

0.2

0.2

−0.4

−0.7

−0.7



B. Kerningham - Lin Algorithm
Kerningham - Lin treats nodes as chips on a circuit

board and edges as interconnections between chips.

It considers two circuit boards and minimizes the

number of connections across the boards.

Q = intra board connection - across board connec-

tion

Algorithm

1) Randomly divide the nodes into two groups.

2) Calculate the benefit function.

3) Consider all points, and calculate δQ if

swapped.

4) Swap the one which has the maximum |δQ|
(sign not considered to avoid local maxima)

5) Repeat the steps till all the pairs are exhausted.

6) take the Q which is highest among all.

C. Wu - Huberman
This algorithm considers the network as a circuit.

In this case two nodes of the network are attached

to the two ends of a 1 volt battery. A threshold is

considered. If a particular node is above the threshold

then it is in one community otherwise it is in other

community.

It uses Kirchoff’s Laws.∑n
i=1 li = 0∑n
i=1

VDi−Vc

R = 0

Di = neighbour of C

Vc = 1
n

∑n
i=1 VDi

Probability of Random Walker reaching C = Vc

VA = 1

VB = 0

Vi = 1
ki

∑
jεN(i) Vj

N(i) = neighborofi

ki = |N(i)|
Now, Vi = 1

ki

∑N
j=1 Vjaij

Vi = 1
ki

(∑N
j=3 Vjaij + V1aii

)
Vi = 1

ki

∑N
j=3 Vjaij + V1aii

ki

V =


V3

V4
...

VN



B =


a33
k3

a34
k3

· · · a3N

k3

a43
k4

a44
k4

· · · a4N

k4
...

... · · ·
...

aN3
kN

aN4
kN

· · · aNN

kN



C =

(
a31
k3

a41

k4
...aN1kN

)

V = BV + C (1 − B) V = C

V = (I − B)−1 C

(1-x)−1 = 1 + x + x2 + x3 + · · ·
V =

∑∞
m=0 BmC

let f(v) = BIV + C

f2(v) = B(BI + C) + C

f r(v) = BrVI +
∑r−1

i=0 BiC

let VI = 0

Therefore f r(v) =
∑r−1

i=0 BiC

The problem reduces to convergence of the series.

Lets assume the series converges, with constant

number of steps the precision is high.

II. Random Walk Model
Divisive Clustering

A. Newman Garvan
Initial cluster - entire graph.

1) Calculate edge betweenness of each node

2) Remove the edge with highest edge between-

ness

3) Recalculate

Edge Betweenness

• no of shortest path though a edge.

• amount of current passing though that edge

• Expected no of random walkers passing though

that edge.

E =

 e11 e12 · · · e1m
. . .

...
...

emm


Let there be m clusters

eij = no of edges between ci and cj

Q =
∑

eii − δrandom =
∑

eii −
∑

erand
ii

E2 is sufficiently random

Therefore Q =
∑

eii −
∑

i

∑
k eikeki

Calculating edge betweenness is a hard problem.

B. Radicchi
Defines the clustering coefficient of an edge.

• Remove edge with lowerst Cij

Cij = Zij+1
min(ki−1,kj−1)

Zij = no of triangles.

min(ki − 1, kj − 1) = min excess degree = max

triangles possible.

2

C. Shortest Path Edge Betweenness
Algorithm

• Initialize vertex(s) ds = 0, ws = 0

• Each vertex i adjacent di = 1 wi = 1

• Each vertex j adjacent to i

1) If j has not been assigned distance then dj

= di + 1 , wj = wi

2) If j has already been assigned distance and

dj = di + 1 then wj = wj + wi

3) di + 1 ≥dj then do nothing

• Repeat until finished.

Algorithm for edge betweenness

1) Find every leaf t and assign wi

wt
to edge (t,i)

2) For all (j,i) where j is closer to source

Wji = wj

wi
+
∑
∀k Wik

D. Random Walker
P = 1

kj

kj = degree of j

P = Aij

kj

A = connection matrix

M = AD−1

M = transition probability

D = diagonal matrix Dii = ki

M =


A11
k1

A12
k2

· · ·
A21
k1

...
...


The path of the random walker passes through the

edge u to v.

s → · · · → u → v → · · · → t

s = start

t = terminate

M2 = transition probability at 2 steps

M3 = transition probability at 3 steps

t is an absorbing node

therefore remove t from matrix

Mt = matrix with t removed

Mn
t = n hops

[Mn
t]us = probability from s to u in n hops.

Therefore the total probability will be

P = 1
ku

[M0
t + M1

t + M2
t + · · · + M∞

t]

P = 1
ku

[I − Mt]−1

P = D−1(I − Mt)−1S for all pairs

S = start node

Pu→v = [1
ku

(I − Mt)−1]us − [1
kv

(I − Mt)−1]vs

P = forward - backward

E. Modularity
e11 e14

e22

e33

e44


eii = edges within a cluster

eij = edges between 2 clusters

ai =
∑
∀k eik

if(eii = a2
i)

P(ii) = P(i).P(i)

goodness of a cluster

Q =
∑

(eii − a2
i)

3

