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I. Generating Functions: Introduction

A general approach to random graphs with given degree distribution was developed by Newman,

Strogatz, and Watts (2001) using a generating function formalism (Wilf, 1990). It turns out that many

properties of the network model are exactly solvable in the limit of large network size. The crucial trick

for finding the solution is that instead of working directly with the degree distribution pk, we work with

generating functions of the sequence of the degree distribution pk, which is defined as

[1]G0(x) =
∞∑

k=0

pkx
k.

Formalism for calculating various local and global quantities on large unipartite undirected graphs with

arbitrary probability distribution of the degrees of their vertices is presented here.

A. Degree Distribution

Considering an uni-partite undirected graph of N vertices, with N large, the generating function G0(x)

for the probability distribution of vertex degrees k is defined as follows:

[2]G0(x) =
∞∑

k=0

pkx
k

where pk is the probability that a randomly chosen vertex on the graph has degree k. The distribution

pk is assumed to be normalized, so that

[3]
G0(1) = 1.

The function G0(x) encapsulates all the information of the degree distribution pk. Therefore the proba-

bility pk is given by the kth derivative of G0,

[4]pk =
1
k!

dkG0

dxk
|x=0.

Hence, the function G0(x) is said to ”generate” the probability distribution pk.



The average degree z of a vertex is nothing but the average over the probability distribution generated

by the generating function G0(x). It is given by

z =< k >=
∑

k

kpk = G
′
0(1). [5]

Higher moments of the distribution can be calculated from higher derivatives of G0(x). In general we

have

[6]
< kn >=

∑

k

knpk = [(x
d

dx
)nG0(x)]x=1

If a distribution of a property k of an object is generated by a given generating function, then the

distribution of the total of k summed over m independent realizations of the object is generated by the

mth power of that generating function. This is also referred to as the Powers property of the generating

functions. Therefore the distribution of the sum the degrees of m randomly chosen vertices is generated

by [G0(x)]m.

B. Distribution of Second Neighbors

Now considering the degree distribution of the vertices that are arrived at by following a random edge.

The probability to arrive at a node by a random edge is proportional to the degree of the vertex. There-

fore the probability distribution of degree of a vertex is proportional to kpk. The correctly normalized

distribution is generated by

[7]

∑
k kpkx

k

∑
k kpk

= x
G
′
o(x)

G
′
0(1)

.

If we start at a randomly chosen vertex and reach all its k neighbors, then the vertices arrived will have

the distribution of remaining outgoing edges generated by this function, less one power of x, to allow for

the edge we arrived along. Thus the distribution of outgoing edges is generated by

[8]G1(x) =
G
′
0(x)

G
′
0(1)

=
1
z
G
′
0(x),

where z is the average vertex degree.

Thus, the generating function for the probability distribution of the number of second neighbors of the

original vertex can be written using the ”powers” property of the generating functions as

[9]
∑

k

pk[G1(x)]k = G0(G1(x)).

Similarly, the distribution of third-nearest neighbors is generated by G0(G1(G1(x))). The average number

of second neighbors, z2 is given by

[10]z2 = [
d

dx
G0(G1(x))]x=1 = G

′
0(1)G

′
1(1) = G

′′
0(1)
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C. Examples

C.1 Poisson distributed graphs

In this distribution model the probability p = z/N of the existence of an edge between any two vertices

is the same for all vertices. The G0(x) is given by

[11]
G0(x) =

N∑

k=0

NCkp
k(1− p)N−kxk

[12]
= (1− p + px)N = ez(x−1),

where the last equality applies in the limit N −→ ∞. The average degree of a vertex is G‘
0(1) = z. In

this case

[13]
G1(x) =

G
′
0(x)

G
′
0(1)

=
zez(x−1)

z
= G0(x).

Therefore the distribution of out-going edges at a vertex is the same, regardless of whether we arrived

there by choosing a vertex at random, or by following a randomly chosen edge. This property makes the

theory of the random graphs simple.

C.2 Exponentially distributed graphs

The exponential distribution of vertex degrees is

[14]pk = (1− e−1/κ)e−k/κ,

where κ is a constant. The generating function for this distribution can obtained as follows:

[15]G0(x) =
∑

k

(1− e−1/κ)e−k/κxk

[16]
G0(x) = (1− e−1/κ)

∞∑

k

e−k/κxk =
1− e−1/κ

1− xe−1/κ
,

The average degree z is

[17]
< z >= G

′
0(1) =

e−1/κ

1− e−1/κ

and

[18]

G1(x) = [
1− e−1/κ

1− xe−1/κ
]2 = [G0(x)]2
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C.3 Power-Law distributed graphs

The distribution is given by pk = Ck−τe−k/κ for k ≥ 1 where C, τandκ are constants. The exponential

cutoff is included as many real-world graphs shoe this cutoff and also it makes the distribution normalizable

for all τ . The value of C is fixed as C = [Liτ (e−1/κ)]−1 as per the requirement of normalization, where

Lin(x) is the nth polylogarithm of x. G0(x) can be calculated as

[19]G0(x) =
∞∑

k=0

Ck−τe−k/κxk

[20]= CLiτ (xe−1/κ)

[21]=
Liτ (xe−1/κ)
Liτ (e−1/κ)

.

The first The function G1(x) is given by

[22]G1(x) =
Liτ−1(xe−1/κ)
xLiτ−1(e−1/κ)

.

The average number of neighbors of a randomly chosen vertex is

[23]z = G
′
0(1) =

Liτ−1(e−1/κ)
Liτ (e−1/κ)

,

and the average number of second neighbors is

[24]z2 = G
′′
0(1) =

Liτ−2(e−1/κ)− Liτ−1(e−1/κ)
Liτ (e−1/κ)

.

D. Component Sizes

Interesting properties like the distribution of the size of the connected components in the graph can

be calculated using the generating function approach as discussed here. Let H1(x) be the generating

function for the distribution of the sizes of components which are reached by choosing a random edge and

following it to one of its ends. The giant component is excluded from H1(x). The chances of a component

containing a closed loop of edges is N−1, which is negligible in the limit of large N. The distribution of

components generated by H1(x) can be represented as shown in Fig.1; each component is tree-like in

structure, consisting of the single site we reach by following our initial edge, plus any number of other

tree-like clusters, with the same size distribution, joined to it by single edges. If qk is the probability that

the initial site has k edges coming out of it other than the edge it is arrived through, then H1(x) can be

written as

[25]H1(x) = xq0 + xq1H1(x) + xq2[H1(x)]2 + ...
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Fig. 1. Schematic representation of the sum rule for the connected component of vertices reached by following a

randomly chosen edge.

Since, qk is the coefficient of xk in the generating function G1(x), H1(x) can be written as

[26]H1(x) = xG1(H1(x)).

Similarly, the distribution of component size when a node is randomly can be written as

[27]H0(x) = xp0 + xp1H1(x) + xp2[H1(x)]2 + ...

[28]
H0(x) = xG0(H1(x)).

The average size of the component a randomly chosen vertex belongs, where there is no giant compo-

nent, is given by
[29]< s >= H

′
0(1) = 1 + G

′
0(1)H

′
1(1).

We have
[30]H

′
1(1) = 1 + G

′
1(1)H

′
1(1),

therefore, we have

[31]< s >= 1 +
G
′
0(1)

1−G
′
1(1)

= 1 +
z2
1

z1 − z2
,

where z1 = z is the average number if neighbors of a vertex and z2 is the average number of second

neighbors.

This equation diverges when G
′
1(1) = 1. This is the point at which a giant component first appears.

Since,

[32]G
′
1(x) =

∑
k k(k − 1)pkx

k−2

∑
k kpk

,

we can also write the condition for phase transition as

[33]
∑

k

k(k − 2)pk = 0.
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This sum is a monotonically increasing with the addition of edges to the graph. Therefore, it can be

said that the giant component exists if and only if the this sum is positive. From the equation of < s >

we also obtain the condition z2 > z1 for the existence of a giant component.

Till now we have dealt with the case where the giant component hasn’t emerged. But the generating

function formalism still works when the giant component is present, but according to the definition of

H0(x) which excludes the giant component, H0(1) will not be unity. H0(1) in this case would be equal

to 1− S, where S is the fraction of the graph occupied by the giant component.

We can write

[34]S = 1−G0(u)

, since H0(x) = G0(H1(x)), where u ≡ H1(1) is the smallest non-negative real solution of

[35]u = G1(u).

The general expression for the average component size excluding the giant component is given as

follows,

[36]< s >=
H
′
0(1)

H0(1)

[37]=
1

H0(1)
[G0(H1(1)) =

G
′
0(H1(1))G1(H1(1))
1−G

′
1(H1(1))

]

[38]= 1 +
zu2

[1− S][1−G
′
1(u)]

.

This is the same as the equation derived for < s > in absence of giant components in which case S = 0,

and u = 1.

E. Number of Neighbors and Average Path Length

The number of neighbors which are at a distance of m steps from a randomly chosen vertex can be

expressed as follows:

[39]G(x)(m) = G0(G1(...G1(x)...))

Therefore G(m)(x) can be defined as the generating function for the mth neighbor.

[40]
G(x)(m) =





G0(x), for m = 1;

Gm−1(G1(x)), for m ≥ 2.

The average number of mth neighbors, zm is

[41]zm =
dGm

dx
|x=1 = G′

1(1)G(m−1)′(1) = G′
1(1)zm−1
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Along with the initial condition z1 = z = G′
0(1). Therefore,

zm = [G′
1(1)]m−1G′

0(1) = [
z2

z1
]m−1z1. [42]

Now we can make an estimate the length of the shortest path between two randomly chosen vertices

on the graph, l. This length is reached approximately when the total number of neighbors of a vertex out

to that distance is equal to the number of vertices on the graph, i.e., when

[43]
1 +

l∑

m=1

zm = N.

Therefore,

[44]z1 + z1.
z2

z1
+ z1.(

z2

z1
)2 + ... + z1.(

z2

z1
)l−1 = N − 1

[45]z1.
1− ( z2

z1
)l

1− z2
z1

= N − 1

On rearranging,

[46]
(
z2

z1
)l = 1− N − 1

z2
1

.(z1 − z2)

On taking log both sides and rearranging, we have

[47]
l =

log[(N − 1)(z2 − z1) + z2
1 ]− log z2

1

log z2
z1

In the common case where N À z1 and z2 À z1, this results

[48]
l =

log(N/z1)
log(z2/z1)

+ 1

This method assumes that all vertices are reachable from a randomly chosen starting vertex, which is

not true in general unless there is a giant component which fills the entire graph. And also the condi-

tions used to derive are only an approximation, hence this result is only an approximation. Even with

such shortcomings it has a number of remarkable features: i)average vertex-vertex distance for all ran-

dom graphs scale logarithmically with the size of N, regardless of the degree distribution, ii) the average

distance, which is a global property, can be calculated using only the knowledge of the average num-

ber of first- and second-nearest neighbors, which are local properties, and iii) two random graphs with

completely different distribution of vertex degrees, but the same values of z1 and z2, will have the same

average distances.
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II. Models of Network Growth: Introduction

The class of models discussed here aim at explaining the network properties by examining the growth

process of the network by gradual addition of vertices and edges as might be taking place on the real

networks. It is the growth process which lead to the characteristic structural features of a network.

A. Price’s Model:

This model talks about directed networks like the citation network. Derek de Solla Price studied the

citation networks of scientific papers and found that both in-degrees and out-degrees have power-law

distributions. His idea was that a paper which has more number of citations will have more probability

to get cited in a newly written paper. He called this the cumulative advantage, which is usually known

as the preferential attachment.

B. The Model of Barabasi and Albert:

The Barabsi-Albert model incorporates two important general concepts: growth and preferential at-

tachment. Both growth and preferential attachment exist widely in real networks.

Growth means that the number of nodes in the network increases over time. Preferential attachment

means that the more connected a node is, the more likely it is to receive new links. Nodes with higher

degree have stronger ability to grab links added to the network. Intuitively, the preferential attachment

can be understood if we think in terms of social networks connecting people. Here a link from A to B

means that person A ”knows” or ”is acquainted with” person B. Heavily linked nodes represent well-

known people with lots of relations. When a newcomer enters the community, s/he is more likely to

become acquainted with one of those more visible people rather than with a relative unknown.

Preferential attachment is an example of a positive feedback cycle where initially random variations

(one node initially having more links or having started accumulating links earlier than another) are au-

tomatically reinforced, thus greatly magnifying differences. This is also sometimes called the Matthew

effect, ”the rich get richer”.

The algorithm used in the BA model goes as follows.

1. Growth: Starting with a small number m0 of connected nodes, at every time step, we add a new

node with m(< m0) edges that link the new node to m different nodes already present in the network.

2. Preferential attachment: When choosing the nodes to which the new node connects, we assume that

the probability P that a new node will be connected to node i depends on the degree ki of node i, such
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that

[49]
P ∼ ki∑

i ki

This model differs from the Price’s Model in considering undirected edges. By considering undirected

edges, the problem Price’s model of how a paper gets its first citation is solved. Each vertex in the

graph has an initial degree of m, and hence has a non-zero probability of receiving new links. There are

also disadvantages for considering undirected edges as the citation networks and the Web are directed in

nature, and hence the model is missing out a crucial feature of these networks.

Example 1: Taking a m0 as 4 and m as 3, the step by step addition of nodes according to the BA

model is shown in the figures Fig2, Fig3, Fig4, Fig5, and Fig6. The probability with which each node

might get a new edge is given next to each node.

It can be clearly seen that the nodes with higher degree tend to get new edges at each step than the

ones with lower degree. Therefore, ”the rich gets richer”. Due to this property hubs will be formed. In

this example, nodes 3 and 4 form hubs.

Using the Master Equation Method, the Barabasi and Albert model can be solved analytically as

follows:

The probability that a new edge attaches to a vertex of degree k is:

[50]
kpk∑
k kpk

=
kpk

2m

Where
∑

k kpk is equal to the mean degree of the network, which is 2m. The mean number of vertices

of degree k that gain an edge when a single new vertex with m edges is added is m ∗ kpk/2m = 1
2kpk,

independent of m. Therefore the number of vertices with degree k will decrease by this amount as these

vertices get an extra edge and no longer of degree k. There is also an influx from vertices previously of

degree k-1 and have acquired a new edge. The boundary case occurs when k = m, which have an influx

of exactly 1. If the value of pk when the graph has n vertices is denoted by pk,n, then the net change in

npk per vertex added is

[51](n + 1)pk,n+1 − npk,n =
1
2
(k − 1)pk−1,n − 1

2
kpk,n,

for k > m, or

[52](n + 1)pm,n+1 − npm,n = 1− 1
2
kpm,n,

for k = m. Now, looking for stable solutions pk,n+1 = pk,n = pn, we have

[53]pk =





1
2(k − 1)pk−1 − 1

2kpk, for k > m;

1− 1
2mpm, k = m.
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Rearranging for pk, we get pm = 2
m+2 and pk = pk−1(k − 1)/(k + 2), or

[54]pk =
(k − 1)(k − 2)...m

(k + 2)(k + 1)...(m + 3)
pm =

2m(m + 1)
(k + 2)(k + 1)k

In the limit of large k this gives a power law degree distribution pk ∼ k−3.

Therefore the results indicate that this network evolves into a scale-invariant state with the probability

that a node has k edges following a power law with an exponent α = 3. The scaling exponent is indepen-

dent of m, the only parameter in the model.
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Fig. 2. Step1: Initial nodes : 0, 1, 2, 3.

Fig. 3. Step2: Node 4 is added.
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Fig. 4. Step3: Node 5 is added.

Fig. 5. Step4: Node 6 is added.
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Fig. 6. Step5: Node 7 is added.
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