SOLUTIONS TO ASSIGNMENT 3
Question 3:

Using Gn,p as in the previous question, show that there exists a constant c such that if p ≥ c/n then the probability that G is 3-colorable goes to zero in the thermodynamic limits
Solution 3:

Number of triangle possible in a graph Gn,p = nC3
Probability that number of triangles possible = p3
Expected number of triangles in a graph Gn,p = nC3. p3


[1]
Substituting, p = c / n, in the equation 1, we get

Ptriangle = nC3. p3 = 
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Now, in the thermodynamic limit, the graph will not be 3-colorable any more if there exists a triangle in the graph. In other words, if for some real value of c, the probability of triangle being present becomes 1 at 
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, then we can say that there exist a constant c such that for 
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, the probability that the graph Gn,p is 3-colorable goes to zero in the thermodynamic limits. Therefore to find if real value of c exists we solve for c taking Ptriangle = 1.
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At thermodynamic limit 
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Therefore we can say that for 
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 is 3-colorable goes to zero in the thermodynamic limits.

Question 4:

In the Erdos-Renyi random graph model, the probability that a node has a degree k is given by:

pk = nCkpk(1-p)n-k
where n is the number of nodes in the graph. Show that in the thermodynamical limits,

pk = zke-z/k!

where z=n(p-1).

Solution 4:

We have the probability of a node in the random to have degree k as 

pk = nCkpk(1-p)n-k
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Therefore, using generating functions degree distribution is as follows:

G(0) = 
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G(0) = 
[image: image15.wmf]å

=

n

k

0

nCk (px)k (1-p)n-k


[9]
   Using Binomial Equation, 
G(0) = [ px + (1-p) ]n
    


[10]

G(0) = [ 1- p(1-x) ]n



[11]
Now for a random graph Gn,p , we know that number of edges = nC2 . p 

Number of degrees = 2 . nC2 . p = n . z , where z = average degree of nodes in the graph. Therefore z = (n-1).p
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n.p for very large values of n
Substituting this in equation 11, we get
G(0) =
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At the thermodynamic limit, we can do the following
G(0) = 
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[13]
G(0) = e-z(1-x) 
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Just to confirm the validity of the derivation, z = G0´(1) = z.e-z(1-x)|x=0  = z
We know that 
pk = 
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pk = 
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pk = 
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