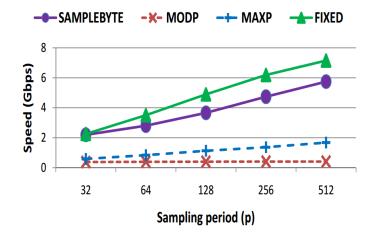
IIT Kharagpur SMARTPHONE COMPUTING and

APPLICATION (CS60009)


Mid-semester Examination (Fall 2016-2017)

Duration: 2 Hrs FM: TBD

1. Answer all questions

[5x2=10]

- (a) What is Persuasive Technology? Give an example.
- (b) With respect to sensing draw the query tree for the following: ((AVG(A,5) < 70 AND MAX(B,4) > 100) OR (C < 3 AND Speed(D,2) < 1.0)) AND ((STD(S,5) < 70 OR MODE(M,7) > 80) AND (Z < 3 OR Height(H,7) > 90))
- (c) With respect to Android development, briefly mention the difference between dp and sp.
- (d) When would you use (i) a Spinner and (ii) a Radio Button during development of an Android app?
- (e) Consider the following graph representing average processing speed variation with sampling period for Max-Match in EndRE.

- i. Which algorithm out of the 4 shown above is the least sensitive to variation in sampling period? Which one is the most sensitive?
- ii. At what sampling period value does SAMPLEBYTE reach the same efficiency that FIXED achieves at a sampling period of 2^8 ?
- 2. (a) Use the Seidel & Rappaports formulae to estimate the signal strength of WiFi access-point AP at mobile receivers N1 and N2. All black lines are walls. N1 is at a distance of 28 meters from AP. N2 is at 45 meters distance from AP. At 1 meter distance (d0) from the AP, its strength is -25dBm. Wall Attenuation factor (WAF)= 3 dBm. The maximum number of walls up to which attenuation factor makes a difference is 3. The rate at which power attenuates with distance (n) is 2.
 - i. Write the Wall Attenuation formulae in terms of P(d0),n,WAF and C. Also write what these symbols stand for. [2]

	AP			x N2
	x Nl			

ii. Calculate signal strengths at N1 and N2

[4]

(b) "Using the synchronized timestamps, we merged all of the traces collected during the off-line phase into a single, unified table containing tuples of the form (x,y,d,ss_i,snr_i) , where $i \in {1,2,3}$ corresponding to the three base stations."

What does x,y,d,ss_i,snr_i stand for in this statement?

[4]

3. Consider a hypothetical Fitness Tracking Application that seeks to detect a query Q: "Take pushups for 12 minutes while exposed to an ambient temperature greater than 25 Degree C (over a 15 minutes window) and exhibit an average pulse rate (over 5 minute window) of > 80 beats/min".

Assume that this application uses an external wrist worn device, equipped with accelerometer (sensor S1, sampling rate 120 samples/sec), temperature sensor (sensor S2, sampling at 1 sample/sec) and pulse rate sensor (S3, sampling at 15 samples / sec). The probabilities of each event to be true: P(S1)=0.60, P(S2)=0.25 and P(S3)=0.20. Furthermore, given the potentially different sample sizes and transmission rates for each sensor, assume that the acquisition energy costs, denoted by E(Si) are as follows: E(S1)=0.2 nJ/sample; E(S2)=0.05 nJ/sample and E(S3)=0.3 nJ/sample.

Find the best acquisition sequence based on normalized acquisition cost (NAC) for the disjunctive query counterpart of Q. [2+5]

- 4. (a) Consider the Dejavu system for energy-efficient outdoor localization. Fill in the blanks using concepts from Dejavu: [2.5]
 - i. As one enters a tunnel, the cellular signals (for the associated and neighboring cells) _____ (increases/decreases)
 - ii. The curves in roads are identified by high variance in ____ (gravity acceleration / phone orientation angle / cellular RSS).
 - iii. The tunnel is identified by _____ (high/low) variance in the x-axis (direction of car motion) of the ambient magnetic field and _____ (high/low) variance in the y-axis (perpendicular to the car direction of motion) of the ambient magnetic field.
 - iv. Dejavu uses the ____ (DBSCAN / Euclidean / Vincenty) formula to compute the new phone position.
 - (b) Give two examples of virtual landmarks?

[2]

- (c) How do we compute the distance between two samples in the cellular or Wifi feature space? (Do mention what the terms stand for) [2]
- (d) How are bridges and bumps distinct with respect to anchor classification? [1.5]

5. Suppose there are 2 cell-towers T_1,T_2 ; each having 4 cells. Cell-names are given in the following manner: C_{ij} is the name of j^{th} cell belonging to the i^{th} cell-tower. For example, C_{12} is the 2^{nd} cell of cell-tower T_1 . Given is a map of the area where war-driving is done. Also note that the car has taken the reading in 1 sec interval.

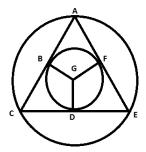


Figure 1: map

The following Table contains the X-Y co-ordinates of 7 locations A,B,C,D,E,F,G and cell strengths (in dBm) of all 8 cells at those locations Assume that the strengths of the cells

Location	X	Y	C11	C12	C13	C14	C21	C22	C23	C24
A	7	12	-50	-96	-15	-45	-78	-22	-21	-15
В	10	8	-61	-62	-56	-38	-70	-83	-57	-21
C	9	4	-81	-69	-69	-77	-10	-31	-42	-43
D	13	16	-53	-72	-42	-73	-38	-86	-67	-83
\mathbf{E}	16	11	-20	-34	-83	-43	-59	-37	-59	-61
F	21	5	-45	-51	-73	-68	-42	-64	-75	-52
G	18	2	-42	-55	-36	-94	-75	-47	-53	-86

belonging to same cell-tower, at a particular location may differ by any amount.

- (a) Find the location of cell C_{13} using strongest RSS and cell C_{24} using weighted centroid methods. [1+2]
- (b) Use RSS Thresholding (assuming threshold -55dBm) to identify which cells can be out of the marked boundary. [1.5]
- (c) Use Boundary Filtering to identify which cells can be out of the marked Boundary. Explain Properly [1.5]
- (d) Use Tower-based Regrouping (using above two results) to identify whether any of the cell-towers is outside the marked boundary of the area and justify. [1]

End