





Fingerprinting Wireless Channel

« 802.11 a/g/n implements OFDM
— Wideband channel divided into subcarriers
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Is WiFi Channel Amenable to Localization?

 Two key hypotheses need to hold.

Temporal
1 . ° Channel responses at a given location may vary over time
* However, variations must exhibit a pattern - a signature

2 Spatial
" « Channel responses at different locations need to be
different



Variation over Time

- Measured channel response at
different times
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Obser:e: Frecuency resnanses often clustered at a
location



Variation over Time

Measured channel response at different times
Using Intel cards
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Overview
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How Many Clusters per Location?
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Cluster Occurrence Frequency

6%
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3 to 4 clusters heavily dominate, need to learn these
sighatures



Is WiFi Channel Amenable to Localization?

Temporal

1 . ° Channel responses at a given location may vary over time
- However, variations must exhibit a pattern - a signature
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What is the Size of a Location?

Localization granularity depends on size
RSSI changes in orders of several meters (hence,
unsuitable)



What is the Size of a Location?

* Localization granularity depends on

size
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~Will all pixels have unique signatures?
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CDF

For correct pixel localization:
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67% pixel accuracy even with multiple APs



67% accuracy inadequate ...
can we improve accuracy?

Opportunity:

I Humans exhibit natural (micro) movements

U Likely to hit several nearby pixels

I Combine pixel fingerprints into super-fingerprint



From Pixels to Spots
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Combine pixel fingerprints from a 1m x 1m box.

Intuition: low probability that a set of pixels
will all match well with an incorrect spot
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Data sanitization

* CFRs received at a location cannot be directly used for
calibration.

* Unknown phase and time lag can distort CFR.

* We need to make sure that every the measurement
Includes same values of phase and time lag.
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Modeling channel response

* Model the noise as complex Gaussian noise.

* Model the channel response as a random vector with
Gaussian mixture distribution.

* Channel response is assumed to be drawn from one of the
representative CFR clusters chosen at random for each
packet.

* Each CFR cluster is modeled as a complex Gaussian
random vector with mean Ui and variance VI.

* Probabillity that packet P belongs to CFR cluster with mean
Ui
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* Applying logarithm and remove constants to derive the
loglikelihood distance metric.
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Clustering algorithm

* Each location is a gaussian mixture distribution with k
clusters with means and variances Uk and Vk

* Wk the probabillity that an observed packet belongs to a
particular cluster k.

* Uk,Vk and wk are the three parameters.

* Paremeters estimated using variational Bayesian
Inference.



Classification algorithm

* Pinloc calculates macro location based on Wifi SSIDs and
shortlists the spots within this macro location.

* Candidate set C

* Define the distance between a given packet P and a spot
Si as

dP,S;))=  min d(P, U’
UleZ;, AP(U")=AP(P)




PinLoc Evaluation

- Evaluated PinLoc (with existing
building WiFi) am
_Duke museum i
—ECE building g
—Café (during lur




Performance
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CDF

Performance

® 90% mean accuracy, 6% false positives

® WiFi RSSI is not rich enough, performs poorly - 20%
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Impact of Parameters

"number of test packets
number of Aps

" war-driving

mobility

old training data
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Impact of number of test packets

* With 10 packets per AP,
mean accuracy is 89% (7%
false positives)

Srerang - With 1 packet the mean

WAcouraey | accuracy reduces to
68%(14% false positives)

* Single reading may
randomly match with an
Incorrect spot.
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Impact of the number of APs

* Even with single AP visible
the mean accuracy is over

.100_5);*;;211 sk Gl 85% (below 7% false
2 ol positives )
@ * Significant improvement as
s other Wi-fi based
§ 40t localization method need at
g 5 least 3 Aps.
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Impact of war-driving

* Short wardriving records
fewer CFRs incurring the

1 MAccuracy possibility of overlooking
g g e posive important ones.
3 * Reasonable performance
£ 09 observed even for 1 minute
S04 of wardriving
< 0.2
y 1 2 3 4

Minutes of training data



Impact of mobility
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Figure 16: Success of PinLoc localization over time for
three spots and over an interval of 1 hour.

* Cafeteria scenerio

* Time interval — 1hr

* Mean accuracy — 85% (7%
false positives)

* Time instants of failure are
short and evenly
distributed.



Impact of old training data

* Need fresh rounds of
wardriving for spots
affected by significant
environmental changes.

WAccuracy ] * With 5 spots observed after

| EFalse Positivel i
4 7 months median accuracy
1 2 3

L of 73% found
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Figure 17: Accuracy of 5 spots tested 7 months after
training.
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