
No Escape From Reality:
Security and Privacy of Augmented Reality Browsers

Richard McPherson
University of Texas at Austin
richard@cs.utexas.edu

Suman Jana
University of Texas at Austin
suman@cs.utexas.edu

Vitaly Shmatikov
University of Texas at Austin
shmat@cs.utexas.edu

ABSTRACT
Augmented reality (AR) browsers are an emerging category of mo-
bile applications that add interactive virtual objects to the user’s
view of the physical world. This paper gives the first system-level
evaluation of their security and privacy properties.

We start by analyzing the functional requirements that AR brows-
ers must support in order to present AR content. We then investi-
gate the security architecture of Junaio, Layar, and Wikitude brows-
ers, which are running today on over 30 million mobile devices,
and identify new categories of security and privacy vulnerabilities
unique to AR browsers. Finally, we provide the first engineering
guidelines for securely implementing AR functionality.

1 Introduction
Augmented reality (AR) technologies enhance users’ perception of
the world by blending interactive virtual objects with the visual rep-
resentation of actual objects in real time [2, 3]. Traditional AR
applications range from medical visualization to aircraft naviga-
tion, but only recently have consumer mobile devices become suf-
ficiently powerful to run AR software.

AR applications have three stages: sensing input, transform-
ing sensed objects (e.g., adding virtual objects), and rendering the
transformed objects to the user. Modern AR platforms ease the
burden of implementing these tasks. By far the most popular plat-
forms are AR browsers like Junaio, Layar, and Wikitude, available
as SDKs or standalone mobile apps. Junaio has more than 20 mil-
lion users and over 20,000 content developers who have created
more than 210,000 AR “channels” [14]. Layar has 1.5 million
users and 9,000 content developers [18]. Wikitude has 13 million
users [29] and over 30,000 content developers.

All existing AR browsers are based on Web browsers and are
similar to them in the sense that they, too, fetch and display inter-
active content from websites (“channels,” in AR parlance). In ad-
dition to rendering HTML and executing JavaScript, AR browsers
provide support for the three key tasks necessary for AR func-
tionality: sensing, transforming, and displaying transformed ob-
jects. They enable AR channels to (1) access sensors on the mo-
bile device, including the onboard camera and GPS location, (2)
create and manipulate a variety of 2D and 3D interactive virtual
objects, and (3) display virtual objects on top of the camera feed,

Copyright is held by the International World Wide Web Conference Com-
mittee (IW3C2). IW3C2 reserves the right to provide a hyperlink to the
author’s site if the Material is used in electronic media.
WWW 2015, May 18–22, 2015, Florence, Italy.
ACM 978-1-4503-3469-3/15/05.
http://dx.doi.org/10.1145/2736277.2741657.

Figure 1: A Layar-based mobile app [7].

realistically blending them with real objects. The resulting AR
content combines image recognition, geolocation, interactive vir-
tual objects, conventional Web content, and control code written in
JavaScript (see an example in Fig. 1).

The basic architecture of AR services is shown in Fig. 2. From
the security and privacy perspective, its key aspect is that the AR
browsers provide augmentation mechanisms, but the actual AR con-
tent comes from channels created by independent developers. Just
like a conventional Web browser is an interface between the user
and Web content from independent websites, an AR browser is an
interface between the user and independent AR content. An AR
browser is thus responsible for ensuring that malicious AR content
cannot access content from other sources, nor damage or abuse the
user’s system outside the browser.

A major difference between Web browsers and AR browsers is
the business model. Web browsers are typically part of the stan-
dard software distribution, and their developers are paid by the li-
censing fees from OEMs and OS owners and by the search engines.
This model works because there is already a wealth of Web content.
AR browsers, however, need a different model because there is not
much AR content available today. Their sources of revenue include
advertising injected into AR content, registration fees from content
developers, and revenue sharing for paid content. This business
model has an impact on the architecture of AR services: unlike
Web content, which is accessed directly from the Web browser,
requests to load third-party AR content must go through the AR
service provider, as shown in Fig. 2.

Our contributions. We perform the first systematic analysis of
the security and privacy properties of AR browsers and how they
differ from Web browsers. Untrusted AR content presents new,
unique types of threats, yet—in contrast to Web-browser specifica-
tions—the latest Augmented Reality Markup Language (ARML)
specification [19] barely mentions security or privacy, and they are
often overlooked in the design of the existing AR browsers.



We start by analyzing the functional requirements needed to
support the sensing, transforming, and rendering of AR content.
These include new ways of combining AR objects and conventional
HTML content from multiple origins, new APIs for accessing ob-
jects outside the browser, new mechanisms for controlling the dis-
play of AR and HTML objects, and new ways of launching content.

Then, for each functional requirement, we investigate how it is
implemented by the existing AR browsers. All AR browsers are
based on Web browsers, which do not support AR functionality,
forcing AR browsers to resort to ad-hoc cross-origin mechanisms,
APIs that open holes in the browser sandbox, custom techniques for
composing visual content from different origins, and non-standard
delegation schemes for authentication credentials.

Architectural flaws in these mechanisms result in security and
privacy vulnerabilities. We explore the threat model of AR browsers
and demonstrate several new categories of threats caused by the
AR browsers’ unique combination of high-volume visual data gath-
ering, image-triggered code execution, outsourced image process-
ing, and merging images from the onboard camera with third-party
content. For example, individual-specific items such as license
plates can automatically launch malicious AR content, enabling
fully automated stalking and tracking; malicious AR channels can
abuse image-triggered code execution; and a conventional webpage
can hijack the AR browser installed on the user’s mobile device and
use it to gain unauthorized access to the device’s camera and GPS
without the user’s permission. We also show AR browsers amplify
existing threats such as cross-site scripting, clickjacking, cookie
stealing, and leakage of private information.

For each design flaw, we present our recommendations. Some
are easy to fix, others require a substantial re-design, but none are
mere “bugs.” They all stem from the fact that standard system
components used in today’s mobile and Web applications are in-
sufficient to securely support AR functionality. For each functional
requirement of the AR browsers, we explain which features and
system abstractions are needed to implement it properly

2 AR Services
AR services are deployed by AR service providers such as Junaio
and Layar. These companies supply AR client software (we use
the term AR browser) to users and maintain dedicated AR servers
through which users access third-party AR content (see Fig. 2). AR
content providers are independent developers who create AR con-
tent, host it on their own servers, and register this content with AR
service providers. We use the term channel generically for any AR
content, but the actual terminology differs from service to service
(e.g., channels are called layers in Layar).

By analogy with conventional Web, AR service providers are
similar to Web-browser developers, while AR channels are simi-
lar to Web applications. There are important differences, however.
AR providers make money by charging for SDK licenses, features
such as cloud storage for AR channels, and per-user fees from third-
party apps that connect to their services. All providers analyzed in
this paper allow a limited use of free channels, but some charge for
commercial channels and/or may insert banner ads into free chan-
nels. Therefore, they typically require that browsers initiate access
to third-party channels via providers’ own servers.

2.1 Functional requirements

Access to native resources on the user’s device. The AR browser
must have access to the onboard camera and GPS location to recog-
nize images and locations that launch AR content, and to correctly
add AR objects to the camera feed.

Figure 2: Architecture of a typical AR service.

Support for interactive, non-HTML AR content. In addition
to HTML content such as images and text, AR content may in-
clude 2D and 3D models and animations that cannot be described in
HTML. AR channels thus include service-specific XML or JSON
defining how to place and render these objects.

Image-triggered code execution. AR browsers access content in
non-standard ways: they send images from the device’s camera to
their servers, which attempt to recognize certain pictures and QR
codes and automatically launch the associated AR channels.

Outsourced image processing. Image recognition is a computa-
tionally heavy task that may not be feasible on low-powered mobile
devices and often involves proprietary algorithms. Furthermore,
image-based code execution requires the server to extract the trig-
ger image from the camera feed and match it against a proprietary
database of registered images. Therefore, AR browsers send im-
ages from the phone’s camera to the AR provider for processing.

Visual composition of AR content. The AR browser is respon-
sible for constructing a visual stack that combines non-HTML AR
content, such as interactive 3D models, with HTML content from
multiple origins (e.g., online ads) on top of the camera feed.

Indirect retrieval of AR content. Instead of directly fetching AR
content from its developers, AR browsers typically submit requests
via the AR provider’s server. This enables providers to charge fees
for registration and usage, inject advertising, etc.

2.2 Components of AR services

AR browsers. Fig. 3 shows the generic architecture of an AR
browser, including (1) one or more instances of an embedded Web
browser such as WebView, (2) a “native” component with direct
access to OS-managed resources such as the camera and GPS loca-
tion, and (3) ad-hoc mechanisms for gluing these pieces together.

AR channels. An AR channel is roughly similar to a website. It
defines an augmented reality experience by specifying AR content
to display and how to display it. This content may include AR ob-
jects linked to a geolocation (“points of interest” or POI), HTML
pages, audio, video, etc., as well as JavaScript to control these ob-
jects. The channel may also specify the actions to take when a
certain object comes into view or is clicked by the user.

For example, an AR channel may overlay historical pictures when
viewing landmarks,1 show reviews for nearby restaurants,2 or con-
trol an avatar running around the scene.3 A channel may directly
incorporate third-party content—for instance, include online ads in

1http://layar.it/YuDzik
2Wikitude Restaurants
3junaio://channels/?id=127275



Figure 3: Architecture of an AR browser.

its HTML—or instruct the AR browser to load a third-party web-
page when the user performs a certain action.

A user launches a channel by selecting it from a list provided by
the AR browser (based on the geolocation or most popular chan-
nels) or by scanning an image.

AR servers. As explained in Section 2.1, requests to load a chan-
nel are sent by the AR browser to the AR provider’s server, not
directly to the channel server (see Fig. 2). Each request includes
some combination of the channel’s id, the location of the device,
and other data. The AR server forwards the request to a server that
the channel owner registered with the AR provider. The AR server
may also handle the authentication of users to channels (Section 9).
The response from the channel with the XML or JSON definitions
of AR objects is forwarded via the AR server, too. Subsequent
requests may be sent by the browser directly to the channel server.

2.3 Specific AR browsers

We focus on the most popular AR browsers. Junaio is an AR
browser developed by Metaio to augment both print media and
geolocation-based environments (Fig. 4). Layar focuses primar-
ily on adding AR features to print media such as magazines and
newspapers (Fig. 5), but also supports geolocation-based AR. AR
content for Layar is served by layers, but we will refer to them as
channels for terminological consistency. Wikitude is another AR
browser, but some of its features did not execute correctly in our
testing, thus we discuss only the features we were able to evaluate.

Unlike HTML, AR content is browser-specific, i.e., a Junaio
browser can only display Junaio channels. Augmented Reality
Markup Language (ARML) is a proposed standard that unifies the
XML format of AR objects [19].

3 Threat Model
We are concerned with five classes of attackers.

AR attackers. Just like a standard Web attacker, an AR attacker
controls the malicious content of his AR channel and may trick
or entice users into visiting it. He cannot observe users’ network
communications with other destinations, nor execute any code on
their machines other than JavaScript served by his own channel.

Unlike conventional Web browsers, AR browsers automatically
launch a channel whenever they scan a picture or QR code associ-
ated with it. This introduces a new attack vector: since the attacker
can choose any image for his channel, he can trick users’ browsers
into automatically launching malicious content by placing this im-
age in a public place (e.g., as a sticker on a wall).

(a) (b)

Figure 4: 4a is a Junaio channel showing nearby places of interest. 4b is a
channel showing a 3D model placed over the Junaio logo.

Ad attackers. AR channels can include third-party content such
as syndicated ads. An “ad attacker” tricks a trusted website or AR
channel into incorporating his malicious content, e.g., via ad bro-
kers. We assume that ads can run arbitrary JavaScript, but are con-
fined into iframes when rendered by the AR browser.

Web attackers. The focus of this paper is on malicious AR con-
tent, but we also investigate how the mere presence of AR browsers
on the device can be exploited by conventional Web attackers (Sec-
tion 4.2). A Web attacker controls his own website (but not the
network) and may lure users to it via enticing content, ads, etc.

Curious AR services. We assume that AR browsers are benign
(the issues raised by malicious mobile apps are well beyond our
scope), but we do investigate privacy risks caused by user-specific
visual data collected by AR services.

Network attackers. We briefly analyze privacy threats posed by
network attackers. Either through man-in-the-middle attacks or by
being on the same network as the victim, a network attacker can
listen in on the communications between the AR browser and the
AR provider, AR channel owners, and third-party servers.

4 Out-of-sandbox Native Access
AR browsers cannot function without access to the camera and
GPS location. Both are required to launch AR channels and to
correctly add AR objects to the camera feed. Consequently, all AR
browsers equip JavaScript with some form of access to native de-
vice resources outside the browser. Script access to AR objects is
also required by the ARML 2.0 specification [19, Section 9.1].

These custom APIs effectively open holes in the Web-browser
sandbox, intended to support native access by the channel’s own
JavaScript. Unfortunately, the WebView embedded browser where
this JavaScript is executed does not provide any way to restrict ac-
cess to these APIs. Consequently, they can be accessed by any Web
content regardless of its origin.

Another common functionality is launching AR browsers via
custom URLs. This is needed for interoperability [21, Section 5]:
for example, one AR browser may launch another AR browser to
render proprietary content that is not supported by the first browser.

4.1 Doing it wrong

The control code of Junaio channels is written in JavaScript and ex-
ecuted in an embedded WebView. This WebView is extended with
custom APIs for accessing the camera, reading and changing the
Junaio-reported geolocation, controlling the device’s light, making



Figure 5: A Layar channel running on a scanned magazine page. The AR
objects are circled. Clicking any color below the 3D watch model changes
its color. The user can also add the watch to his or her shopping cart.

requests to the channel server, opening conventional Web-browser
windows, or loading a different channel.

These APIs are accessed via AREL, a JavaScript library that en-
codes commands in pseudo-URIs. For example, arel://media/
website/?action=open&external=true&url=http%3a%2f%2f
www.google.com instructs the Junaio app to launch Google.com in
a conventional browser. To pass this pseudo-URI from WebView
to the Junaio app, the channel’s Web code pushes it to the global
“commandQueue” and sets window.location to “arel:// requests
Pending”. The Junaio app intercepts the URL load event, reads
the command off the queue, and performs the requested action. In
Junaio on Android, however, any content—regardless of its origin
and even if running inside an iframe—can bypass AREL and exe-
cute native commands directly, without user permission, by setting
window.location to the corresponding pseudo-URI.

4.2 Risks
In this section, we are concerned with (1) conventional Web at-
tackers, whose malicious pages are viewed by mobile users in con-
ventional browsers, (2) “ad attackers,” whose untrusted HTML is
incorporated into trusted AR channels but confined into iframes,
and (3) AR attackers who directly control malicious AR channels.
Conventional Web content breaking out of the sandbox. Conven-
tional webpages cannot access the camera or other native resources
outside the browser unless explicitly authorized by the user. Unfor-
tunately, the AR browser’s access rights can be hijacked by mali-
cious webpages to gain this access without involving the user.

Suppose the user has the Junaio app installed on his Android
phone. The user accidentally visits a malicious webpage in a regu-
lar Web browser (e.g., Android’s default system browser) by click-
ing on an ad, a link in a spam message, etc. The malicious page
contains a URL of the form junaio://channel=. . . and a script in the
page forces the browser to open this URL. This generates an An-
droid intent, which automatically starts the Junaio app and launches
any channel chosen by the attacker, e.g., the attacker’s own chan-
nel. Like all Junaio channels, the attacker’s channel automatically
has access to the device’s camera, can take pictures of the user and
its surroundings, etc. Layar, too, can be automatically launched
from a conventional webpage via a pseudo-URI.

This attack completely bypasses OS access control. Even though
the user granted camera access only to Junaio or Layar, this ac-
cess has now been hijacked by a conventional webpage. The attack
can even be stealthy. Having read images from the camera, the
attacker’s channel can relaunch the regular Web browser and im-
mediately redirect the user to the page he was initially browsing.

This vulnerability is generic because the ability to automatically
launch an AR browser is required for interoperability [21]. The
presence of a single AR browser on the user’s device can thus be
exploited by any conventional webpage to bypass user permissions.

Malicious ads breaking out of the sandbox. Because native-
access rights are not restricted to the channel’s own origin, any
iframe can hijack them. In Section 5.2, we describe how native-
access capabilities can be used by a malicious ad to perform a
cross-site scripting attack against any origin of its choosing.

Furthermore, malicious third-party iframes included into a trusted
channel can redirect the entire AR browser to a malicious channel.
For example, in Layar, a script in an iframe can use a layar:// com-
mand to switch the browser to a different channel. In Junaio, the
switchChannel command in AREL (also accessible from an iframe)
has the same effect. This can be exploited for undetectable phish-
ing: a malicious iframe can automatically switch the browser to a
visually indistinguishable malicious channel.

Malicious AR content abusing native access. The ability of AR
channels to access resources outside the browser sandbox presents
privacy risks to their users. In Junaio, as long as the channel’s trans-
parent overlay (Section 5.1) continues to run in the background, it
can surreptitiously grab images from the camera and send them to
the channel server even after the user moved away from the place
where he launched the channel. The user’s location can be tracked
in a similar fashion in Junaio, Layar, and Wikitude.

4.3 How to do it right

Interfaces to native resources must be protected by origin-based ac-
cess control, lest they are hijacked by untrusted iframes. Recent so-
lutions to the problem of unauthorized native access by third-party
origins in mobile apps, e.g., NoFrak by Georgiev et al. [9], may
be applicable to AR browsers. Furthermore, AR browsers should
be re-designed to support fine-grained native-access permissions.
For example, instead of unfettered access to a camera, the chan-
nel would be restricted to accessing it only via pre-defined system
abstractions such as “recognizers” [12] for specific objects.

To prevent conventional webpages from gaining unauthorized
access to the camera and other resources by launching the AR browser
and directing it to the attacker’s channel, the user should be asked
for confirmation whenever the AR browser is invoked automati-
cally (this presents interface-design and usability challenges).

5 Support for Non-HTML AR Content
In addition to HTML content such as images and text, interactive
AR content includes videos, animations, and 2D and 3D models
with unique visual presentation requirements. These AR objects
cannot be described in HTML alone, thus AR services rely on XML
or JSON definitions to specify how to place and render these ob-
jects, and on JavaScript to control these objects at runtime.

Just like conventional websites, AR channels may combine con-
tent from different origins. AR browsers must therefore confine
untrusted content. In conventional Web browsers, the same-origin
policy (SOP) ensures that content from a given origin—defined
by the protocol (HTTP or HTTPS), domain name, and port num-
ber—cannot access the non-trivial attributes of any content from
a different origin [27]. Web browsers also provide origin-based
isolation mechanisms such as iframes and structured cross-origin
communication mechanisms such as postMessage.

In AR browsers, interactive, non-HTML AR objects make the
confinement problem much harder because these objects must be
described in XML or JSON, which are not governed by the SOP.
Therefore, the AR browser cannot rely on the underlying Web browser
to provide isolation between origins.

5.1 Doing it wrong

Junaio. In Junaio, AR objects are defined in an XML page re-
turned by the channel server. Junaio supports floating clickable



Figure 6: Junaio’s visual stack. AR objects are on top of the camera feed,
the transparent overlay on top of the objects. If an object is clicked, a popup
appears at the very top.

objects (“points of interest”), 3D models, floating pictures, movies,
and 360-degree panoramas (Figs. 4a and 4b). The Junaio browser
renders these objects in the visual stack shown in Fig. 6.

On top of the AR objects, Junaio places a transparent window
implemented using WebView (Android) or UIWebView (iOS). We
call it the transparent HTML overlay. This overlay provides GUI
functionality to channels and enables them to control AR objects
outside WebView via special browser interfaces and a custom Java-
Script library called AREL (Section 4.1). These interfaces can be
used to create, destroy, animate, move, or resize AR objects, to
read and modify their parameters such as id, name, geolocation,
and the associated popup, and to handle events based on channel
state, object state, or user’s interaction with the object (e.g., channel
ready, object loaded, sound finished playing, object rotated).

The URL of the transparent overlay is specified in the XML
page and may belong to a different origin than the AR channel it-
self. This URL cannot be viewed by the user. The channel—and
any third-party content included in the channel—can also supply
JavaScript that will be executed inside the transparent page.

Clicking a link in the transparent overlay loads the destination in
the same window, replacing the old page. JavaScript in the trans-
parent overlay can also open an opaque window with a conven-
tional embedded Web browser. Another way to open an opaque
window is via a popup (Section 5.2). JavaScript continues to run in
the background after opening the window.

Layar. The Layar browser displays AR objects on top of the visual
feed from the device’s camera (Fig. 7). The objects can be HTML
webpages, 2D images, 3D models, or videos, and can have actions
associated with them, such as placing a phone call, sending an SMS
or email, launching a website, loading or refreshing channels, shar-
ing the channel on Facebook or Twitter, and loading movies and
music. Actions are specified in the object definition via pseudo-
URIs such as ‘tel:’, ‘sms:’, ‘mailto:’, ‘layar://’ , ‘layarshare://’.

Wikitude. Wikitude is architecturally similar to Junaio. AR con-
tent includes a transparent webpage that shows a GUI and controls
AR objects via a custom JavaScript library called ARchitect. Ob-
ject types include HtmlDrawable, intended to display HTML con-
tent. HtmlDrawables have an evalJavaScript function that can be
used to execute JavaScript inside a drawable (it worked only spo-
radically in our testing on Android 4.4.2).

5.2 Risks

In this section, we are concerned with AR attackers, who may in-
corporate trusted content into their malicious AR channels, and “ad
attackers,” whose malicious content (e.g., online ads) is incorpo-
rated into trusted AR channels but confined into iframes.

Figure 7: Layar’s visual stack. AR objects, which can include HTML
pages, are overlaid on the camera feed.

Cross-site scripting. The XML definition of an AR object in Ju-
naio can have a popup field with a textual description and an array
of buttons. When such an object is clicked, a partially transpar-
ent window with the popup’s description and buttons is opened on
top of the transparent overlay (Fig. 6). Each button contains either
a URL, or JavaScript code. When a button is clicked, the associ-
ated URL is loaded in an opaque window. If the button contains
JavaScript, it is executed in the transparent overlay—even if the
origin of the content in the overlay is different from the origin of
the channel that provided the script.

This setup opens a hole in the same-origin policy. A malicious
channel can specify any origin for the transparent page and asso-
ciate an arbitrary script with a button. When the button is clicked,
this script is injected into the transparent page and gains unrestricted
access to all content from this page’s origin—see Fig. 8a. This
cross-site scripting (XSS) vulnerability can be exploited, for exam-
ple, to modify the victim’s DOM (see Fig. 8b) or steal cookies.

HtmlDrawable objects in Wikitude contain an even simpler XSS
vulnerability. A malicious channel can specify any URL for an
HtmlDrawable object and use evalJavaScript to inject an arbitrary
script into this object.

Universal cross-site scripting. The above XSS attacks assume
that the channel is malicious. Unfortunately, even if (1) the chan-
nel itself is benign, (2) all untrusted, third-party content, such as
online ads, is correctly confined to iframes, and (3) the embedded
Web browser running the channel’s HTML correctly enforces the
SOP, confined third-party content in Junaio can perform XSS at-
tacks against any origin of its choosing.

Consider a benign Junaio channel that includes an AR object
with a popup button and suppose that the channel’s transparent
HTML page contains an ad in an iframe (Fig. 9a). Malicious Java-
Script hidden in such an ad can (1) use AREL commands (Sec-
tion 4.1) to change the script associated with the popup, and (2)
change the URL of the transparent overlay to the victim page (Fig. 9b).
When the button is clicked, the attack script is executed in the vic-
tim page (Fig. 9c). This is a universal XSS vulnerability: a mali-
cious ad can inject an arbitrary script into any origin whatsoever.

As a proof of concept, we have implemented this attack against
Twitter. Our channel includes an HTML page and one geolocation
object associated with a popup. At first, this popup simply launches
google.com. The channel’s HTML page contains an iframe with
a button. When clicked, this button executes JavaScript which is-
sues an AREL command to Junaio to associate the popup with an
attack script, then changes the URL of the transparent page to Twit-
ter with an attacker-chosen tweet text. When the user opens the



(a) XSS vector.

(b) Exploiting XSS.

Figure 8: Cross-site scripting (XSS) in Junaio

popup and clicks the button, Junaio unwittingly injects the script
into the Twitter page, where it submits the attacker’s tweet.

Other capabilities available to malicious code in an iframe in-
clude launching an opaque browser window, turning on and off the
camera and the light, removing all AR objects, switching channels,
and launching audio and video files.

5.3 How to do it right

Quick patches. The cross-site scripting vulnerabilities described
above are caused in part by the fact that the origin of HTML in-
corporated into an AR channel may be different from the channel’s
own origin. One plausible defense is for the AR browser to en-
sure that the two origins are the same; another is to sanitize XML
so that it does not contain scripts, which is a notoriously difficult
problem [4]. Both defenses require the AR browser to carefully
reason about the origins of content specified in custom XML def-
initions, thus replicating a complex piece of Web-browser func-
tionality. Furthermore, both defenses disable important functional
features of AR browsers (such as controlling the appearance of AR
objects from another origin) and may break existing applications.

In Wikitude, where evalJavaScript allows channels to inject scripts
into an HtmlDrawable regardless of its origin, restricting the origin
is not feasible because HtmlDrawable is intended to display content
from origins other than the channel itself.
Principled solutions. The root cause of many security holes de-
scribed in this section is that AR objects cannot be described in
HTML, thus AR browsers must use custom mechanisms to enable
HTML content to control these objects. Standardizing AR object
description languages, including them in HTML5 via either tags,
or a special document type, (e.g., channel), and adding support for
these new HTML5 features into browsers would allow AR content
to execute entirely within WebView, eliminating the need for XML
and some of the ad-hoc browser interfaces.

Unfortunately, assigning origins to these tags is not trivial. In the
existing AR browsers, all AR objects are treated as if their origin
is the domain where the main AR channel is hosted. Since these
objects may contain JavaScript, this is extremely dangerous.

The alternative is to extend the same-origin policy to AR tags.
These tags are intended to support 3D models, animations, UI el-
ements, etc. which may come from different domains but are in-
tended to work smoothly together to produce a unified AR ex-
perience. A naive extension of the SOP would isolate the AR
HTML tags based on their domains, but this would prevent them
from communicating. The developers would then have to imple-
ment cross-origin communication mechanisms, which is fraught

(a) Step 1 (b) Step 2

(c) Step 3

Figure 9: Universal XSS vulnerability in Junaio.

with peril [26]. Enforcement of the SOP is complicated further
by the fact that several of these new tags may need plugins to be
rendered (similar to Flash).

Lacking HTML5 support for AR, WebView can at least provide
origin-restricted APIs that render arbitrary objects on top of camera
images and let JavaScript inside WebView control these objects.

6 Image-Triggered Code Execution
The ability to scan their surroundings and to recognize and track
images is fundamental in AR browsers [19, Section 7.5.1.2]. This
enables new methods for invoking AR content: for example, a Ju-
naio or Layar channel can be launched simply by scanning a picture
or QR code associated with the channel.

6.1 Doing it wrong

When the user is viewing his surroundings through the Junaio or
Layar browser, the AR service is continuously analyzing the cam-
era feed. As soon as it recognizes an image associated with some
channel, it automatically launches and executes the channel’s con-
tent, without any confirmation prompts. The user cannot preview
the URL or any other information about the content, with one ex-
ception: for QR codes (but not pictures), Layar previews the URL
by showing it as a button before launching the channel. Unfor-
tunately, its URL parser is broken (Fig. 10). For example, if the
URL in the QR code is http:////attacker.com, it will not be displayed
in the preview, but the browser will launch AR content hosted at
http://attacker.com. In Junaio, after a channel is fully loaded, the
user can see its description and the developer’s name.

6.2 Risks

In this section, we are primarily concerned with AR attackers who
can choose any picture or QR code as the automatic trigger for their
malicious channels. For some (but not all) attacks, the attacker
needs to physically place these images in public places.
Fully automated, stealthy, large-scale tracking. Because not all
AR services vet pictures associated with AR channels, they can be
used for automated stalking and tracking. For example, Layar’s
image recognition algorithm is sufficiently precise to distinguish
between license plate numbers. An AR attacker can register a La-
yar channel associated with the photo of a specific license plate.
Whenever any of the millions of Layar users scan their surround-
ings and the license plate is prominent in the camera’s view, the
channel is launched automatically and the plate’s location, along
with its entire visual environment, is sent to the channel’s owner,



Figure 10: Both codes launch the same channel, but Layar fails to parse the
code on the right and does not show the URL.

Figure 11: Depending on the angle, each poster nondeterministically
launches its own channel or the channel associated with the other poster.

enabling him to track the plate’s movements. Other sensitive items
can be tracked in a similar fashion.

Automatically launching malicious content. As mentioned above,
when an image is recognized by the AR service’s (black-box) recog-
nition algorithm, the code of the associated channel executes with-
out user confirmation or channel identification. If a scanned image
contains sub-images associated with different channels or a famil-
iar image in an unusual environment or an image that is similar yet
subtly different from a familiar image, the user cannot know ahead
of time what channel will be launched.

Image recognition algorithms suffer from false positives and are
inevitably nondeterministic from the user’s point of view [30]. Un-
fortunately, user interfaces of the AR browsers are derived from the
underlying Web browsers and do not inform the user about spurious
matches and other potential problems with visual identification.

This can be exploited by an AR attacker in two ways: (1) register
an image trigger that is very similar to an image already associated
with a trusted channel, or (2) combine a malicious channel’s trig-
ger with a trusted channel’s trigger into a single composite image.
In either scenario, the AR browser may be tricked into automati-
cally launching the malicious channel when scanning the attacker’s
image on a building wall, bus shelter, etc.

In Layar, the same picture may be associated with multiple chan-
nels. For example, we have been able to register our channel with
the same movie-poster image as one of Layar’s demo channels. If
there are multiple channels associated with a picture, the user can
open a menu in the corner to see channel names and switch between
them. It is possible, however, to create visually similar images that
automatically and nondeterministically launch different channels
without the browser presenting the channel selection menu to the
user. Each poster in Fig. 11 nondeterministically launches the chan-
nel associated with the poster or the (completely different) channel
associated with the other poster. At many viewing angles and light-
ing, the channel selection menu is not offered.

(a) (b) (c) (d)

Figure 12: Different combinations of the Junaio mascot and QR code
launch different channels.

Furthermore, a malicious channel can suppress the channel se-
lection menu using the native-access capabilities described in Sec-
tion 4.2. A layar://[channelname] pseudo-URI instructs the browser
to launch a channel. In this case, the browser does not show other
channels associated with the image. Consider a malicious chan-
nel that associates itself with the same image as a benign channel.
If the user previews the malicious channel before flipping to the
benign channel, the first object loaded from the malicious channel
can reload the entire channel using layar://[channelname] and the
other, benign channel will no longer be visible to the user.

The other risk is composite images that include a trusted image
in an unexpected visual environment. When faced with a compos-
ite image, Junaio’s choice of the channel to launch depends on the
camera angle and distance. For example, the images in Figs. 12a
and 12b launch different channels depending on whether the mas-
cot or the QR code is more prominent. Sometimes, changing the
angle of the camera by a few degrees changes which channel is
launched. The image in Fig. 12c automatically launches the chan-
nel associated with the mascot when scanned from a close distance,
and the one associated with the QR code when scanned from fur-
ther away. Fig. 12d launches the channel associated with the QR
code, even though the mascot is visible. This means that even after
scanning a familiar image, a user cannot be sure that the automati-
cally launched channel is the one he expects.

6.3 How to do it right

The risk of an AR attacker registering an image trigger that is spe-
cific to an individual (e.g., a license plate) is inherent in AR ser-
vices. A service may attempt to filter out such images during chan-
nel registration, but this requires deep semantic analysis of the sub-
mitted images and will be inevitably bypassable. This inherent risk
is exacerbated by the fact that AR content is executed immediately
after the image is scanned.

First, AR browsers should inform the user about the origin of
AR content before launching it (at the very least, display the de-
veloper’s name and basic information about the channel). Second,
automatic, image-triggered code execution is fraught with danger
and should be used sparingly—for example, only with trusted chan-
nels—and not with every image that happens to fall into the cam-
era’s field of vision. Third, AR browsers should develop better user
interfaces that inform users about the possibility of spurious image
matches and nondeterministic launches of unexpected content.

7 Outsourced Image Processing
AR browsers must continuously analyze the device’s camera feed
in order to recognize automatic content triggers and to anchor or
position AR objects on the screen.

7.1 Doing it wrong

AR browsers such as Junaio and Layar do not process the captured
images on the device; instead, they send them to central AR servers.
There are several reasons to outsource image processing. First, for



Figure 13: An image sent by the Layar browser over HTTP so that the
Layar server can recognize content triggers. Note the accidentally captured
credit card.

business reasons—injecting ads, charging content providers, keep-
ing usage statistics, etc.—all AR content retrieval is mediated by
the AR service. Second, to facilitate image-based channel launch-
ing, recognition of trigger images is done at the server. Because this
involves matching against proprietary databases using proprietary
algorithms, centralized image processing helps protect intellectual
property and removes the need to replicate and update the service’s
image database on millions of devices. Third, many image recog-
nition algorithms are computationally intensive and would heavily
task low-powered mobile devices.

7.2 Risks

In this section, we are concerned with (1) network attackers who
observe network traffic between the device and the provider’s AR
server, and (2) the AR service itself.

Accidental overcollection of sensitive data is a big risk in this
setting. For example, the Layar browser sends raw camera images
to the server over unencrypted HTTP and includes the phone’s lo-
cation into the GET request for the channel’s JSON. Combining
images with location data is a serious privacy concern for many
users [10]. All sensitive items in the image (see Fig. 13) and re-
quest are leaked to any Wi-Fi eavesdropper.

Even if network communications are secure, the AR service in-
evitably collects a tremendous amount of raw visual data about its
users’ physical environment. This is an inherent design flaw of all
existing AR services. The users must trust them to safeguard cap-
tured images, which contain a lot of sensitive information that is
completely irrelevant to the AR functionality: screens, credit cards,
license plates, etc. Furthermore, a user has no way to learn which
data is sent to AR servers. For example, in addition to the unen-
crypted camera images sent at the start of each scan and the geolo-
cation, the Layar browser occasionally sends a log message to the
server with the phone’s make, model, and OS version number.

7.3 How to do it right

When image recognition is outsourced to the server, a secure pro-
tocol should be used to prevent accidental leakage of irrelevant in-
formation in the images. If the server is attempting to recognize a
channel trigger on a magazine page, there is no need for it to “see”
the physical objects surrounding the page.

This is a difficult problem, but there has been some recent progress.
Osadchy et al. described a prototype system for secure outsourced
face matching [20]. This system cannot be directly applied in AR
browsers, however, because images matched by AR browsers may
appear in different lighting, under different angles, etc. Another
approach is taken by Darkly [13], which can perform simple com-
puter vision tasks without access to raw image details.

8 Visual Composition
To render images, text, 2D and 3D models, and HTML content
from multiple origins on top of the camera feed, AR browsers main-
tain complex visual stacks. Junaio and Layar’s visual stacks are
described in Section 5.1.

(a) Overlapped HTML widgets in Layar. The widget with “hi” is
cut off before its Tweet button.

(b) The two HTML widgets expanded. In the attack, the bottom
widget is not fully shown (its tweet text is covered and not visible to
the user).

Figure 14: Clickjacking in Layar.

In Layar, a channel can use a webpage as an AR object, called
an HTML widget. Each widget opens in its own WebView and does
not display URLs or Web-browser buttons. HTML widgets may
not be covered by other types of AR objects, but can be overlaid on
each other to create a visual AR experience.

8.1 Doing it wrong

Conventional Web browsers provide the iframe abstraction that al-
lows composition of HTML content from different origins. To
defend against clickjacking, a webpage can ensure that it is not
framed by a page from a different origin, via either framebust-
ing [25] (moving itself to the top frame), or X-Frame-Option [31].

AR browsers must deal with both HTML and non-HTML con-
tent, and thus resort to custom mechanisms to implement the func-
tional equivalent of iframe. Consequently, standard defenses based
on framebusting or X-Frame-Option no longer work. For exam-
ple, as described above, Layar puts each instance of HTML content
into its own WebView instance. Each instance acts like an iframe
and can be overlaid on other instances. Therefore, a malicious AR
channel can overlay content from another origin (B) on top of its
own content (A) without B being technically “framed” by A.

8.2 Risks

In this section, we are concerned with an AR attacker whose chan-
nel combines his own malicious HTML content with trusted HTML
content from other origins.

By cleverly overlaying HTML widgets from different origins, a
malicious channel can “hijack” the user’s clicks. The user sees a
button that appears to belong to some window, but the click is actu-
ally captured by a different window. For example, Fig. 14a shows
a malicious Layar channel that overlays two Twitter windows. The
user may think that the visible “Tweet” button submits the “hi”
tweet, but it actually belongs to the bottom window and thus sub-
mits the invisible, malicious tweet. Because the victim page is in



Figure 15: Overlapped HTML widgets in Layar. The first option is in a
different widget and, surprisingly, not part of the actual Slashdot poll.

the top/main frame of its own WebView instance, it cannot prevent
this attack or even detect when it is being framed in this way.

8.3 How to do it right

Defenses against clickjacking in AR browsers would benefit from a
whole-browser equivalent of X-Frame-Option. Layar already pre-
vents non-widget objects from covering widgets, but there is no
way for HTML content to specify that its widget—or any WebView
in which it is displayed—should not overlap with other widgets.

In general, using conventional browsers such as WebView to
render AR content is dangerous because it forces AR browsers to
use ad-hoc mechanisms for visually combining content from differ-
ent origins. A principled solution to clickjacking in AR browsers
should involve a clean-slate redesign of their user interfaces.

9 Indirect Retrieval of AR Content
AR content comes from independent third-party developers. While
in theory the AR browser could fetch this content directly from the
developers’ servers, in practice the business models of AR services
require them to track usage, charge fees for channel registration,
inject advertising, and, in general, tightly monitor the interaction
between their browsers and third-party content. Consequently, con-
tent requests must pass through the AR provider’s own servers.

9.1 Doing it wrong

Some AR browsers enable third-party channels to authenticate users
or keep track of users’ preferences between their visits. For exam-
ple, Layar supports a cookie-based user authentication scheme that
can be deployed by geolocation channels (Fig. 16). When request-
ing a channel, the Layar browser sends a POST request to the Layar
server and attaches the cookies associated with the channel’s origin.
The Layar server then attaches these cookies to the GET request it
forwards to the channel server.

Cookie security depends on the binding between the cookie and
its origin. A conventional Web browser keeps this binding and au-
tomatically attaches the cookie to every request sent to its origin.
In Layar, channel launches are mediated by the Layar server, which
must maintain the same cookie-origin binding as the Layar browser.

The Layar browser learns the origin of the channel from the La-
yar server. When the browser first loads the channel, the cookies are
set by the channel’s authentication page and thus correctly bound
to the channel’s origin at that time. If this origin changes later (e.g.,
the channel moves to a different domain), the Layar server notes
the change and forwards all browser requests to the new location.
Critically, the Layar server does not notify the browsers connected

Figure 16: User authentication in Layar.

to the channel that the channel’s origin has changed. The browsers
continue to attach the cookies from the old origin to their requests,
and the Layar server obliviously forwards them to the new origin.

9.2 Risks

In this section, we are concerned with AR attackers who lie about
their channels’ URLs. By “desynchronizing” the Layar browser’s
and the Layar server’s understanding of the channel’s origin, a ma-
licious channel can steal cookies from any origin (Fig. 17).

For example, the attacker initially tells Layar that the URL of
his channel is https://www.twitter.com. When a user launches the
channel, the Layar browser attaches Twitter cookies to every chan-
nel update request. Next, the attacker changes his channel’s URL
to https://attacker.com. The Layar server registers the change, but
the browsers connected to the channel continue to attach Twitter
cookies to every channel update request. The Layar server for-
wards these requests, cookies attached, to https://attacker.com, and
the attacker steals all of its users’ Twitter cookies.

This attack works for any domain of the attacker’s choosing (we
tested it for Twitter and Facebook). Note that many AR channels
are integrated with online social networks, thus the user is likely to
be logged into Facebook and Twitter through his AR browser.

9.3 How to do it right

The first defense is to avoid replicating the state of the browser on
the Layar server. The browser may request the URL of the chan-
nel server from the Layar server, but subsequent communication
should be conducted directly between the browser and the channel
server. The same-origin policy within the browser will then en-
sure that cookies are disclosed only to their origins. This defense,
however, may break Layar’s business model.

The second defense is for the Layar server to ensure that it agrees
with the browser about the channel server’s URL. This defense
requires re-engineering the protocol between the browser, Layar
server, and channel server.

The final defense is to use an authentication protocol that sup-
ports delegation, e.g., OAuth. In current Layar, channels may use
OAuth 1.0 to authenticate the Layar server. This protects benign
AR developers from spoofed Layar servers, but not legitimate La-
yar servers from malicious developers, and thus does not help against
the cookie-stealing attack.



(a)

(b)

Figure 17: Layar cookie stealing attack.

10 Related Work
Azuma et al. [2, 3] identified three major properties of AR systems,
exhibited by all AR browsers in our study: combining real and
virtual objects, real-time interactivity, and support for 3D blend-
ing of virtual and real objects. Several papers suggested adding
augmented reality to mobile applications such as tour guides [1,
8]. Spohrer et al. [28] explored the idea of associating information
with real-world objects using “WorldBoard channels.” Just like AR
channels analyzed in this paper, “WorldBoard channels” can dis-
play HTML-encoded information overlaid on real-world objects.
Kooper et al. [16] used the term “real world-wide web” for the
combined information space created by merging real-world objects
with the HTML content of the WWW. ARML [19] is a proposed
standard for defining geospatial AR objects through XML.

Roesner et al. [22, 23] have surveyed various security, privacy,
and legal concerns arising from the widespread use of AR technolo-
gies. By contrast, we analyze the technical architecture of pop-
ular, deployed AR platforms. With the exception of clickjacking
and general privacy concerns, none of the issues we discovered are
mentioned in these papers.

Several recent papers focused on privacy concerns arising from
the unrestricted access to sensor data by untrusted third-party ap-
plications. Darkly [13] prevents certain privacy violations by appli-
cations based on the OpenCV computer vision library; D’Antoni et
al. [6] and Jana et al. [12] show how to confine AR applications by
adding fine-grained permissions to the OS. These systems are con-
cerned with protecting users from untrusted applications, whereas
we investigate whether and how trusted AR applications protect
users from untrusted content (i.e., our threat model is similar to the
standard threat model of Web browsers).

Some of our attacks involve pictures or QR codes placed in a
public area to trick AR browsers into launching a malicious AR
channel. Lookout Mobile Security used a QR code to force Google

Glass to connect to an attacker-controlled Wi-Fi access point.4 Both
attacks employ malicious QR codes, but the similarities end there.
The attacks described in Section 6.2 exploit the deficiencies of user
interfaces in AR browsers, not software vulnerabilities. Other re-
lated work includes security threats involving QR codes [15] and
the use of QR codes for malware distribution and phishing [17].
Dabrowski et al. [5] recently demonstrated numerous attacks in-
volving hiding a QR code inside of another QR code, similar to our
our attacks in Section 6.2.

Clickjacking attacks against conventional Web content were an-
alyzed in [11, 24, 25]. In Section 8.2, we explained that our click-
jacking attacks and defenses are somewhat different because of the
architectural differences between Web browsers and AR browsers.

11 Conclusions
Augmented reality (AR) browsers are a new technology with excit-
ing potential. We presented the first in-depth analysis of their secu-
rity and privacy properties, identified multiple architectural flaws,
and proposed short-term fixes for specific vulnerabilities as well as
directions for future research on building secure AR browsers.

We have reported our findings to Junaio, Layar, and Wikitude.
Junaio informed us that they will incorporate our results into their
latest internal build. Wikitude was aware of the security flaw in
HtmlDrawable (Section 5.2) and is looking into adding security
mechanisms. Layar never responded to us.

Acknowledgments. This work was partially supported by the
NSF grants CNS-0746888 and CNS-1223396, a Google research
award, NIH grant R01 LM011028-01 from the National Library of
Medicine, and Google PhD Fellowship to Suman Jana.

12 References

[1] G. Abowd, C. Atkeson, J. Hong, S. Long, R. Kooper, and
M. Pinkerton. Cyberguide: A mobile context-aware tour guide.
Wireless Networks, 3(5), 1997.

[2] R. T. Azuma. A survey of augmented reality. Presence:
Teleoperators and Virtual Environments, 6(4):355–385, 1997.

[3] R. T. Azuma, Y. Baillot, R. Behringer, S. Feiner, S. Julier, and
B. MacIntyre. Recent advances in augmented reality. Computer
Graphics and Applications, 21(6):34–47, 2001.

[4] D. Bates, A. Barth, and C. Jackson. Regular expressions considered
harmful in client-side XSS filters. In WWW, 2010.

[5] A. Dabrowski, K. Krombholz, J. Ullrich, and E. Weippl. QR
inception: Barcode-in-barcode attacks. In SPSM, 2014.

[6] L. D’Antoni, A. Dunn, S. Jana, T. Kohno, B. Livshits, D. Molnar,
A. Moshchuk, E. Ofek, F. Roesner, S. Saponas, M. Veanes, and H. J.
Wang. Operating system support for augmented reality applications.
In HotOS, 2013.

[7] Layar launches “world’s first augmented reality store”.
http://eurodroid.com/2010/04/28/layar-
launches-worlds-first-augmented-reality-store,
2010.

[8] S. Feiner, B. MacIntyre, T. Höllerer, and A. Webster. A touring
machine: Prototyping 3D mobile augmented reality systems for
exploring the urban environment. Personal Technologies, 1(4), 1997.

[9] M. Georgiev, S. Jana, and V. Shmatikov. Breaking and fixing
origin-based access control in hybrid Web/mobile application
frameworks. In NDSS, 2014.

[10] B. Henne, M. Harbach, and M. Smith. Location privacy revisited:
Factors of privacy decisions. In CHI, 2013.

[11] L.-S. Huang, A. Moshchuk, H. J. Wang, S. Schechter, and
C. Jackson. Clickjacking: Attacks and defenses. In USENIX Security,
2012.

4http://www.techweekeurope.co.uk/news/
google-glass-security-vulnerability-
internet-of-things-122073



[12] S. Jana, D. Molnar, A. Moshchuk, A. Dunn, B. Livshits, H. J. Wang,
and E. Ofek. Enabling fine-grained permissions for augmented
reality applications with recognizers. In USENIX Security, 2013.

[13] S. Jana, A. Narayanan, and V. Shmatikov. A scanner Darkly:
Protecting user privacy from perceptual applications. In S&P, 2013.

[14] Become a Junaio developer.
http://www.slideshare.net/metaio_AR/why-to-
become-a-junaio-developer, 2013.

[15] A. Kharraz, E. Kirda, W. Robertson, D. Balzarotti, and A. Francillon.
Optical delusions: A study of malicious QR codes in the wild. In
DSN, 2014.

[16] R. Kooper and B. B. MacIntyre. Browsing the real-world wide web:
Maintaining awareness of virtual information in an AR information
space. International Journal of Human-Computer Interaction, 16(3),
2003.

[17] K. Krombholz, P. Frühwirt, P. Kieseberg, I. Kapsalis, M. Huber, and
E. Weippl. QR code security: A survey of attacks and challenges for
usable security. In HCI, 2014.

[18] Layar introduction for developers.
http://www.slideshare.net/layarmobile/layar-
introduction-for-developers, 2011.

[19] Open Geospatial Consortium. OGC augmented reality markup
language 2.0 (ARML 2.0) [candidate standard]. http://www.
opengeospatial.org/projects/groups/arml2.0swg,
2013.

[20] M. Osadchy, B. Pinkas, A. Jarrous, and B. Moskovich. SCiFI - A
system for secure face identification. In S&P, 2010.

[21] C. Perey. A proposal for AR browser interoperability.
http://www.perey.com/ARStandards/AR_Browser_

Interoperability_Architecture_Jan_21_2014_v1_
2.pdf, 2014.

[22] F. Roesner, T. Kohno, T. Denning, R. Calo, and B. C. Newell.
Augmented reality: Hard problems of law and policy. In UPSIDE,
2014.

[23] F. Roesner, T. Kohno, and D. Molnar. Security and privacy for
augmented reality systems. In Communications of the ACM,
volume 57, pages 88–96, 2014.

[24] G. Rydstedt, E. Bursztein, and D. Boneh. Framing attacks on smart
phones and dumb routers: Tap-jacking and geo-localization. In
WOOT, 2010.

[25] G. Rydstedt, E. Bursztein, D. Boneh, and C. Jackson. Busting frame
busting: A study of clickjacking vulnerabilities at popular sites. In
W2SP, 2010.

[26] S. Son and V. Shmatikov. The postman always rings twice: Attacking
and defending postMessage in HTML5 websites. In NDSS, 2013.

[27] Same origin policy. http:
//www.w3.org/Security/wiki/Same_Origin_Policy.

[28] J. Spohrer. Information in places. IBM Systems Journal,
38(4):602–628, 1999.

[29] Wikitude for agencies.
http://www.slideshare.net/wikitude/wikitude-
media-portfolio-presentation, 2012.

[30] Z. Wu, Q. Ke, M. Isard, and J. Sun. Bundling features for large scale
partial-duplicate web image search. In CVPR, 2009.

[31] The X-Frame-Options response header.
https://developer.mozilla.org/en-
US/docs/HTTP/X-Frame-Options.


