Using Mobile Phones to Write in Air
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ABSTRACT

Numerous sensors in modern mobile phones enable a range
of people-centric applications. This paper envisions a system
called PhonePoint Pen that uses the in-built accelerometer in
mobile phones to recognize human writing. By holding the
phone like a pen, a user should be able to write short mes-
sages or draw simple diagrams in the air. The acceleration due
to hand gestures can be translated into geometric strokes, and
recognized as characters. We prototype the PhonePoint Pen on
the Nokia N95 platform, and evaluate it through real users.
Results show that English characters can be identified with an
average accuracy of 91.9%, if the users conform to a few rea-
sonable constraints. Future work is focused on refining the
prototype, with the goal of offering a new user-experience
that complements keyboards and touch-screens.

Categories and Subject Descriptors

H.5.2 [Information Interfaces and Presentation]: User In-
terfaces—Interaction Styles, Input Devices and Strategies; D.2.2
[Software Engineering]: Design Tools and Techniques—User
Interfaces; H.1.2 [Models and Principles]: User/Machine
Systems—Human Factors

General Terms

Algorithms, Design, Experimentation, Human Factors

Keywords

Gestures, Activity Recognition, Accelerometers, Smartphones

1. INTRODUCTION

Imagine the following scenario. While driving to office, Bob
stops at a traffic light. As he mentally sifts through his tasks
for the day, he remembers that he needs to call his friend,
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Alice, very soon. Since Bob tends to forget his personal com-
mitments, he decides to make a note of this task. Therefore,
while keeping his gaze on the traffic lights, he draws out the
phone from his pocket, and by holding it like a pen, he writes
“ALICE” in the air. He also gestures a check-mark to email the
written note to himself. He does not look at any of the hand-
gestures he makes. Once in his office, he finds an email in his
mailbox that reads “PhonePoint Pen — ALICE”. Bob calls Alice,
talks to her, and deletes the email. The figure below shows
the output of air-writing ALICE using the PhonePoint Pen.
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The above is a fictional scenario, however, representative of
broad possibilities in the area of human-sensor interaction.
A particular possibility pertains to a sensor-assisted input
technology that can easily “note down” short pieces of infor-
mation. Although existing technologies have made valuable
advances to meet these needs, the quality of user-experience
could still improve. We discuss some avenues of improve-
ment, and motivate the potential of PhonePoint Pens.

Typing an SMS, while popular among the youth, has been un-
popular among a moderate section of society. Studies report
user dissatisfaction with mobile phone typing [24, 7, 6]. The
major sources of discomfort arise from small key sizes, short
inter-key spacings, and the need for multi-tapping in some
phone keyboards. The difficulties are likely to be pronounced
for elderly people and motor impaired patients.

Even if future keyboards [22] improve the typing experience,
some problems may still persist. While walking, or with one
hand occupied, typing in information may be inconvenient.
Using the mobile phone accelerometer to capture hand ges-
tures, and carefully laying them out in text or image, can
improve the user experience. The ability to write without
having to look at the phone keypad may offer an added ad-
vantage.

One may argue that voice recorder applications on mobile
phones may be an easy way to input short pieces of informa-
tion. However, searching and editing voice-recorded content
is difficult (unless processed through a separate speech-to-



text software). Further, playing aloud the voice messages
can be inconvenient and time-consuming. Writing in air, and
converting them to typed text, may alleviate these problems.

Current approaches are largely ad hoc. People use whatever
is quickly reachable, including pen-and-paper, sticky notes,
one’s own palm, etc. None of these scale because they are not
always handy, and more importantly, not always connected to
the Internet. Thus, hastily noted information gets scattered,
making information organization and retrieval hard.

This paper proposes to use the in-built accelerometer in mod-
ern mobile phones as an easy and ubiquitous way of cap-
turing (short) written information. The problem definition
bears similarity to known problems in gesture recognition.
However, as we will see later, recognizing actual alphabets
in air (using the phone processor, a noisy accelerometer, and
no software training), raises a number of new challenges.
For instance, as a part of writing the alphabet “A” on paper,
one must write “/\” first, lift and reposition the pen on the
paper, and then write the “—”. When writing in air, the
phone cannot easily say which part of the hand-movement
is intended to be the “re-positioning” of the pen. The prob-
lem is further complicated by the inherent noise in mobile
phone accelerometers, the user’s involuntary wrist-rotation,
and practical difficulties in deriving displacement from noisy
acceleration. Simplicity is also essential to ensure that all the
operations can be performed on the phone processor. The
PhonePoint Pen (P3) attempts to address these challenges by
treating the accelerometer readings as a digital signal, and
successively refining it through simple numerical and signal
processing algorithms. Once individual geometric movements
have been tracked, their sequence of occurrence is matched
against a decision tree (a simple grammar). The matching
operation yields the English alphabet, which are then juxta-
posed to form words.

Our current prototype is not yet ready for public use - it is
an early step towards a difficult problem, and some deficien-
cies remain unaddressed. Mainly, we advised users to pre-
tend that they are writing on an imaginary blackboard while
holding the phone like an blackboard eraser — this reduces
the user’s wrist and elbow rotation while gesturing a stroke.
Users were also requested to write 12-inch sized capital letters
at a moderate speed (not too fast), to ensure that the sam-
pling frequency of the accelerometer was adequate to capture
the hand-motions. Lastly, users were asked to briefly pause
between strokes while writing letters — this allowed P3 to cor-
rect inaccuracies in phone displacements caused by the inher-
ent noise in accelerometer readings. Users who performed
the tests after 3 to 4 minutes of rehearsing, achieved an aver-
age accuracy of 91.9% with English alphabets. The geometric
representation of the characters (shown as 2D images of the
actual hand-writing) were legible in around 83% of the cases.
Survey responses from randomly picked student users, as well
as from real patients and doctors in the Duke University Hos-
pital, were positive. The absence of visual feedback while
writing did not appear to be a concern at all, and the energy
consumption from air-writing was marginal. While further
research is certainly necessary to attain a natural and intu-
itive input system, we believe that the P3 prototype presents
promise of viability in the near future. Our main contributions
may be summarized as follows.

e We explore the viability of using the mobile phone
accelerometer to write in the air. While a number of
gesture recognition schemes already exist [8, 9, 3, 14],
the ability to write English alphabets (and draw simple
diagrams) present distinct challenges.

e We characterize the nature of the challenges and
propose a multi-phase approach to recognize alpha-
bets and words. Our algorithms are deliberately sim-
ple for on-phone real-time operation. We also develop
a customized spell checker that corrects motion-related
errors, such as between D and P.

e We prototype the PhonePoint Pen (P3) on Nokia
N95s, and test it with 10 student users and 5 hos-
pital patients. All but one student user were able to
write with good accuracy, and their geometric outputs
were quite legible. Accuracy with real patients was
poor (partly due to usability problems), however, the
feedback from medical practitioners were unanimously
encouraging.

The rest of the paper expands on these contributions. We
begin with a discussion of possible use cases of P3.

2. USE CASES

(1) Assistive Communications for Impaired Patients:

The Speech Pathology and Surgery division of Duke Uni-
versity Medical School expressed keen interest in using a
future, more refined prototype of the PhonePoint Pen to serve
as an assistive technology for impaired patients. Several pa-
tients suffer from inherent speech impairments, or experience
similar conditions after surgeries. War veterans often loose
fingers or limbs, while others lack finger-dexterity for typing
on keypads. Yet, these patients are often capable of broad
(one-handed) gestures, such as in sign-languages. A mature
version of P3 can be of assistance to such patients. It can
permit some level of impromptu communication between a
speech/hearing-impaired patient and someone who does not
understand sign-languages. We have performed 15-minute
experiments with 5 patients at the Duke University Hospital,
and discussed the applicability of the system with surgeons
and healthcare professionals. We discuss the experience in
Section 5.4.

(2) Equations and Sketching:

One of the P3 test users suggested the possibility of quickly
writing equations in the air. Equations are difficult to write
with regular phone keyboards, and P3 may be convenient.
Other possible use-cases involve taking mental notes, sketch-
ing simple diagrams and driving directions, or drawing a de-
sired food item (e.g., fish) in a foreign country’s restaurant.
At present, P3 is unable to draw figures with high reliability
— the following fish and equation were drawn in 2 attempts
each.



(3) Emergency Operations and First Responders:

Emergency scenarios are often unsuitable for typing, or even
talking on the phone, because the observer may be engaged
in looking at the events around her. P3 allows taking notes
(with one hand), and more importantly, without requiring
visual attention. The ability to look around and gesture at the
same time may be useful in these critical situations.

While the above use-cases are specific to phone-based sys-
tems, one may imagine more creative applications of air-
writing (e.g., writing “CNN” in the air may switch the TV
to the CNN news channel). We envisioned PhonePoint Pen
with the aim of enabling a wide range of such people-centric
applications. While the current P3 prototype falls short of
realizing all these applications, we believe that P3 establishes
feasibility, and justifies longer-term research commitment.

3. CORE CHALLENGES

Existing systems, such as the Wii[20], PlayStation Move [23],
Xbox Kinect [30], and others [31, 32, 9, 3, 14], have the
ability to identify hand gestures with good accuracy. These
gestures have been utilized to recognize a few numeric dig-
its [31, 32]. Moreover, several of these systems are more
resourceful in sensor hardware, including gyroscopes, we-
bcams, and more CPU power [2, 16, 5]. Writing English
alphabets/words in real-time with commodity phones has
been an unexplored problem. To this end, we discuss the
main research challenges in P3, and present our initial ap-
proaches. We then assemble these building blocks into a
functional prototype.

(1) Filtering Rotation without Gyroscope

Issue: Nokia N95 phones are equipped with a 3-axis ac-
celerometer that detects acceleration in the X, Y, and Z direc-
tions. Figure 2(b) shows an example of raw accelerometer
readings on each of the 3 axes. The accelerometers measure
linear movement along each axis, but cannot detect rotation.
Hence, if the human grip rotates while writing, the refer-
ence frame of acceleration gets affected. Existing devices
like “Wii Motion Plus” and Airmouse employ a gyroscope to
discriminate rotation [21, 16]. In the absence of a gyroscope,
compensating for hand rotation is a problem®.

Approach: We begin with a brief functional explanation of
the gyroscope. Consider the position of a gyroscope-enabled
phone (GEP) at time ¢ = ¢¢ in 2D space (shown in the left side
of Figure 1). At this initial position, the figure shows that the
GEP’s axes are aligned with the earth’s reference axes (i.e.,
gravity is exactly in the negative Y direction). The accelerom-
eter reading at this position is < I(to), Iy(to) — g >, where
I,(to) and I,(to) are the instantaneous accelerations along
the x and y axes at time ¢, respectively, and g is gravity. Now,
the phone may rotate at the same physical position at time #;
also shown in Figure 1 (right). The phone now makes an an-
gle 6 with the earth’s reference frame, and the accelerometer
readings are < I.(t1) — gsin(8), I,(t1) — gcos(d) >. How-
ever, it is possible that the phone moved along the XY plane
in a manner that induced the same acceleration as caused by
the rotation. This leads to an ambiguity that gyroscopes and

!The new iPhone4 has a gyroscope, however, the phone was
not released at the time of this work.
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X: Iy(t,) — g Sin(©)

X

>
Figure 1: Earth’s gravity projected on the XY axes; the
axes are a function of the phone’s orientation.

accelerometers can together resolve (using angular velocity
detection in gyroscopes). However, based on the accelerome-
ter readings alone, linear movements and rotation cannot be
easily discriminated.

This is a difficult problem which we address by imposing a
soft constraint on the user. We asked the user to pretend
that one of the corners of the phone is the pen tip, and to
hold it in a non-rotating grip (shown in Figure 2(a)). Some
users also found it easier to hold it like a blackboard eraser —
this grip also reduces wrist-rotation. In addition, while writ-
ing an alphabet, users were advised to briefly pause between
two “strokes”. The pause is often natural because the user
changes the direction of movement (from one stroke to an-
other). For example, while writing an “A’, a pause after stroke
“/” and before the starting of stroke “\” can be exploited. An
accelerometer snapshot at this paused instance can identify
the components of gravity on each axes, and hence, the angu-
lar orientation 6 can be determined. Knowing 6, the phone’s
subsequent movement can be derived. Of course, we assume
that the phone rotates only in-between two strokes, and not
within any given stroke. If this assumption gets violated, P3’s
character recognition accuracy gets affected.

(2) Suppressing Background Vibration

Issue: Accelerometers are sensitive to small vibrations. Fig-
ure 2(b) reports acceleration readings as the user draws a
rectangle using 4 strokes (around 350 units on the Z-axis is
due to earth’s gravity). A significant amount of jitter is caused
by natural hand vibrations. Furthermore, the accelerometer
itself has measurement errors. It is necessary to suppress
this background vibration (noise) to extract jitter-free pen
gestures.

Approach: To cope with vibrational noise, we apply two
noise-reduction steps (the acceleration is treated as a discrete
sequence of signal samples). First, we smooth the accelerom-
eter readings by applying a moving average over the last n
readings (in our current prototype, n="7). The results are pre-
sented in Figure 2(c). Next, we label all acceleration samples
less than 0.5m/s® as noise. We chose this threshold based
on the average vibration caused when the phone was held
stationary. All noise-labeled samples are suppressed (i.e., set
to 0). Figure 3(a) shows the combined effect of smoothing
and noise suppression.
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Figure 2: (a) Pretending the phone’s corner to be the pen-tip reduces rotation. (b) Raw accelerometer data while drawing
a rectangle (note gravity on the Z axis). (c) Moving average computation.
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Figure 3: (a) Final processed acceleration readings (b)Computing velocity as an intermediate step towards measuring
displacement. (c) The approximate rectangle as the final output.

(3) Computing Displacement of Phone

Issue: The phone’s physical displacement is necessary to es-
timate the size of the air-written character, as well as their
relative positions (such as in equations, figures, etc.). The
displacement § is computed as § = [ ( [ adt) dt, where a is
the instantaneous acceleration. In other words, the algorithm
first computes the velocity (the integration of acceleration),
followed by the displacement (the integration of velocity).
Noise in the acceleration readings will reflect on the veloc-
ity computation, and will get magnified in the computation
of displacement. For instance, an erroneous short positive
impulse in the accelerometer (i.e., acceleration becoming
positive and then returning to zero), results in a positive ve-
locity. Unless an identical negative impulse compensates for
the positive impulse, the phone would appear to be in a state
of continuous velocity. When this velocity is integrated, the
displacement error will grow larger.

Approach: In order to reduce the velocity-drift errors, we
look at consecutive accelerometer readings labeled as noise
in the previous step. We reset the velocity to zero, if n con-
secutive readings have been suppressed as vibrational noise.
This is because a continuous sequence of noise vibration is a
good indicator of a pause, or a statically held phone; hence, it
is an opportunity to suppress inertial error. Figure 3(b) shows
the effect of resetting the velocity. Even if small velocity drifts
are still present, they have a tolerable impact on the displace-
ment of the phone. As seen in Figure 3(c) the amount of
displacement and the shape drawn are represented reason-
ably well. The direction of movement is inferred from the
signs of the acceleration along the X, Y, and Z axes.

(4) Differentiating an “A” from a Triangle

Issue: The imaginary blackboard on which the user air-writes
has no visible reference frame for position. As a result, some
characters become more difficult to write. To illustrate this
source of confusion, let us consider a simple example. As-
sume the user is writing the character “A’. The writer has
already drawn the “/” and “\”, and now lifts the pen to draw
the “~”. Observe that the phone has no idea about the global
position of “/\”. Hence, upon drawing the “~”, the pen does
not know whether it is meant to be added in the center (to
indicate an “A”), or at the bottom (to indicate a triangle, A).
This ambiguity underlies several other characters and shapes.

Approach: To address the above ambiguity, we jointly exploit
the accelerations along the X, Y, and Z axes. While writing an
“A’, assume that the user has just finished writing “/\”. The
pen is now at the bottom of the “\”. The user will now lift
the pen and move it towards the upper-left direction, so that
she can write the “~”. The lifting of the pen happens in 3D
space, and generates an identifiable impulse on the Z axis.
When the acceleration in Z axis is above a certain threshold,
we label that stroke as the “lifting of the pen”. This pen-
lifting is used as a trigger for the user going off the record.
User movements in the XY plane are still monitored for pen
repositioning, but are not included in the final output. When
the phone is in position to write “~”, a pause and change in
direction is an indication for going back on the record.



(5) Identifying Character Transitions

Issue: Even if pen-lifts are recognized, certain ambiguities
remain. For instance, “B” and “13” may have the exact same
hand-movement, including the pen-lift. The user’s intention
is difficult to recognize, making character distinction hard.

Approach: We rely on a combination of multiple heuristics
to mark character separations. The simplest approach is to
require the user to include a special gesture between char-
acters, like a “dot” or a relatively longer pause. Thus, “13”
should be written as |. DD, while the “B” should be | DD.
These delimiters are inspired from the Scriboli system [12]
which employs distinct stylus-based gestures to select objects
displayed on a Tablet PC. While these special gestures may be
inconvenient, they provide a clear indication of user intent.
In addition, P3 employs other methods for delimiting char-
acters. These methods rely on understanding what the user
has written till now, and what the next “stroke” is likely to
be. We will discuss this in detail in the next section, after we
have discussed stroke-detection and a simple stroke-grammar
to identify characters.

4. SYSTEM DESIGN AND ALGORITHMS

The above building blocks provide for a geometric represen-
tation of air-written characters. While the geometric version
can be displayed or emailed as an image, conversion to text
is likely to be more useful (for browsing and searching). This
section develops the algorithmic components towards this
goal.

4.1 Stroke Detection

Characters can be viewed as a sequence of strokes. The al-
phabet “A”, for instance, is composed of 3 strokes, namely “/”,
\”, and “—”. If the discrete strokes can be pulled out from
the seemingly continuous movement of the hand, it is possi-
ble to infer the characters. To this end, we have analyzed the
English alphabets and constructed a basic set of strokes, as in

Figure 4.
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Figure 4: Basic strokes for English characters.

To identify the strokes, P3 computes a running variance of
the accelerometer readings. When this variance falls below
a threshold, P3 marks those regions as a pause of the hand.
The pauses demarcate the human-strokes, allowing P3 to op-
erate on each of them individually. For determining the ex-
act stroke, our basic idea is to correlate the human-strokes
against each of the ideal strokes. This form of correlation is
not new, and has been used as standard primitives in classifi-
cation and matching techniques [14, 8, 1]. We perform corre-
lation over a varying window size of accelerometer readings.
This is because the hand often rotates towards the end of the
stroke, and the samples corresponding to the rotations should
ideally be pruned out. Correlation is able to cope with such is-
sues, showing a high correlation value when the ideal stroke

broadly aligns with actual readings. Besides, even if some
inter-stroke pauses are not identified, varying the correlation
window-size yields the stroke boundaries. The intuition is
that two consecutive strokes are typically different in the En-
glish alphabet, and thereby, correlating across the boundaries
of the strokes (with a large window size) reduces the correla-
tion value. Performance results indicate a reasonable reliabil-
ity in stroke detection. The natural question, then, pertains to
combining the strokes into a character.

4.2 Character Recognition

The PhonePoint Pen observes the logical juxtaposition of
strokes to deduce the character that the human is trying to
write. For this, we adopt a stroke grammar for English alpha-
bets and digits. Figure 5 shows a pruned down version of this
grammar for visual clarity. The grammar is essentially a tree,
and expresses the valid sequence of strokes to form an alpha-
bet. Moreover, the grammar also helps in stroke-recognition
because it provides P3 with an ability to anticipate the next
stroke. For instance, observing strokes “| \ /” in succession,
P3 can anticipate an “M” and expect the next stroke to be a
“|”. Thus, by correlating “|” to the stream of accelerometer
readings (and ensuring a high correlation), the system can
better identify the end-points of the next stroke. This helps
in identifying the residual samples, which in turn helps in
tracking the re-positioning of the hand in-between strokes.

In certain cases, the user’s hand movement may be falsely
classified as an incorrect stroke. A frequent example is “\”
and “D”. Since the user’s hand has a natural rotational motion
(pivoted at the elbow), moving diagonally for a “\” results
in an arc, which then gets classified as “>”. Thus “N” may
not be recognizable due to misclassification of the second
stroke. To account for such possibilities, we have updated the
grammar tree. For example, if | is followed by D, we call it
a “D” or “P”; however, if this is again followed by a “|”, we
infer an “N” (since no alphabet is a sequence of “| D |”). We
observe that such opportunities are numerous in the stroke
grammar, adding to the robustness of the system. We do not
include this updated grammar in the paper and only show
the example for N in Figure 6.

Grammar Ambiguity. Interestingly, the stroke grammar
presents a number of ambiguities. For instance, “O” and “S”
are composed of the same strokes, namely, “C” and “D>”. P3
resolves this by simply observing the direction of movement
in the second stroke. If the hand is moving upwards, com-
puted from the sign of the Y-axis acceleration, the alphabet is
declared as an “O”, and the vice versa. Another ambiguity is
between “D” and “P”. In this case, P3 computes the relative
sizes of Y-axis movements and compares them. If the sizes
are comparable (second stroke greater than 0.75 of the first),
the alphabet is deemed as a “D”, else a “P”. Finally, some kind
of ambiguities are relatively harder. For instance, “X” and
“Y” have the same strokes, and only differ in how the user
repositions her pen. Since hand-repositioning has no preset
movement, they are more prone to error. Thus, even though
the “\” in “Y” is smaller than that of “X”, P3 makes a mistake
in some cases. Finally, “O” and “0” cannot be discriminated.

4.3 Word Recognition

Recognizing the juxtaposition of characters, to ultimately rec-
ognize a word, adds to the ambiguity. For instance, “B” and



Figure 5: The basic grammar for character recognition. The edges are labeled with a stroke. Reaching certain states
(solid circles) implies a valid alphabet, while others are intermediate states (dotted circles). Certain states have multiple
alphabets in them, suggesting ambiguities in the basic stroke grammar.

Figure 6: Incorporating tolerance into the grammar tree
translating it into a graph. The dotted edges are incor-
rect but permissible, e.g., alphabet “N” can be reached
via multiple paths such as | D |.

“13” are identical in terms of the strokes used, and so are
“H” and “IT”. Unless we find a signature to demarcate char-
acters, the PhonePoint Pen will yield false positives. Towards
this goal, we consider a combination of multiple heuristics.
None of these heuristics are adequate in isolation, but may
be reasonable when used in conjunction. First, we make
the observation that while transitioning from one alphabet
to the next, users have a naturally longer pause (especially
with upper case alphabets). Second, we observe that in some
cases, if the hand moves in a leftward direction, it may be
a hint about the start of a new character. This happens, for
example, when a user has written across the imaginary plane
in front of her, and moves back in space (towards left) to
write more. Typically, since most of English alphabet strokes
are gestured left to right, any opposite movement (from right
to left), is a useful hint for character segregation. Third, we

ask the users to gesture a “dot” between characters when-
ever they can remember. Thus, “13” should be written as
“|. DD>”, while the “B” should be “| DD”. Drawing a dot
presents a unique signature to delimit characters, but slows
down the user while writing. Thus, the user can use it only if
she remembers or wishes to. If the delimiter is not used, the
recognition accuracy is affected.

We note that not all cases are like “B” and “13”. Even with-
out the delimiter, the stroke grammar will naturally separate
some characters. In other words, given a sequence of strokes,
P3 anticipates the next stroke to be from a specific subset of
strokes. If the next stroke is not in this anticipated subset,
then it implies the start of a new character. For example,
given “|” and “—”, the phone can anticipate a “—” assum-
ing that the user is trying to write an “F”, or “E”. However, if
the next stroke is “C”, then the phone immediately infers that
the prior alphabet was an intended “T”. Even if the delimiter
is not present, such character transitions can be recognized to
form words. Spell checkers can be employed on top of these
methods to further improve word recognition accuracy.

4.4 P3-Aware Spelling Correction

Spelling correction tools accept a given word and compute a
list of valid English words, sorted in the order of “edit dis-
tance”. The edit distance between two strings of characters
is defined as the number of operations required to transform
one of them into the other. The corrected spelling is typically
the valid word with minimum edit distance. Importantly, mul-
tiple words may have the same (minimum) edit distance, and
even the minimum edit distance may not be the best when the
nature of the errors are guided by certain distributions. For
example, the word MQM has an edit distance of 1 with valid
words MOM, MAM, MUM. Since we can learn that P3 often
confuses Q with O (the nature of the strokes are similar), but
hardly confuses Q with A or U, a P3-aware spelling correction
tool can suggest MOM with high confidence. A less trivial



example occurs when P3 outputs, say, NIET. Words NET and
MET have edit distances of 1 and 2, respectively. However, the
spelling tool could observe that P3 confuses “M” as “NI” with
far greater probability than “E” as “IE”. Thus, one could pre-
dict that the user intended to write MET with reasonably high
probability, even though its edit distance is higher. Formally,
given a mis-spelled word w, the P3-aware spelling corrector
computes the word ¢,, as follows.

:——~ > 1} Voalid words,i,j,i # j
Plwlj) } JiF ]

The distribution of P(wl|i) is learned from our own data set,
and can adapt to the user’s idiosyncrasies over time. We have
implemented this tool and found improvement over dictio-
nary based spelling correction.

4.5 Control Gestures

To write a short phrase, the words need to be separated
by spaces. In certain cases, the characters may need to be
deleted. Further, the user should be able to email the writ-
ten/drawn content to her email address. These are a few
control operations that are vital to improve the user’s expe-
rience. The PhonePoint Pen assigns a unique gesture to each
of these, and recognizes them without difficulty. Specifically,
the space is denoted by a long horizontal movement or two
dots. The deletion is like using an eraser — the users shakes
her hand at least four times briskly. To email, the user must
draw a check mark in the air. With these functionalities in
place, we present the implementation details of P3, followed
by performance evaluation.

S. IMPLEMENTATION AND EVALUATION

We prototyped the PhonePoint Pen on a Nokia N95 phone.
The 3D accelerometer obtained 30-35 acceleration readings
per second. We developed a server side implementation in
MATLAB. Basic MATLAB libraries allowed us to implement
signal processing techniques (low pass filtering) and simple
statistical analysis. We prototyped this code on Python for
on-phone processing, thus users write in air and the output
is shown on the screen. The current Python implementation
supports writing only one character at a time. To port P3 to
Python, some of the techniques were simplified (filtering op-
erations modified to running averages and subtractions). The
results from Python and MATLAB differed in few instances.
The following sections report results obtained when process-
ing the accelerometer readings in MATLAB.

The remainder of this section is organized in three parts:
(1) evaluation metrics and methodology, (2) PhonePoint Pen
evaluation with students, and (3) experiences from patients
with cognitive/motor impairments conducted at the Duke
University Hospital.

5.1 Evaluation Metrics

The P3 evaluation is centered around character and word
recognition accuracies. We define Character Recognition Ac-
curacy (CRA) as the fraction of successful typed text recog-
nitions, when a user writes individual alphabets/characters
(used interchangeably). In addition to CRA, we also evaluate
P3’s quality of geometric representation. For this, we display

the geometric characters to a human, and ask her to recog-
nize them. The correctly identified fraction is defined as the
Human Readability Accuracy (HRA).

To compute Word Recognition Accuracy (WRA), we randomly
generated English words from a dictionary and requested test
users to write them in air. Longer words are naturally more
prone to mistakes because every character and every transi-
tion will have to be precisely decoded. Thus WRA degrades
with word-length. Nevertheless, since P3 outputs typed-text
we can apply spelling correction to improve the final accu-
racy. Thus, we report WRA for basic P3, WRA with English-
Spelling-Correction, and WRA with P3-Aware-Correction. We
also report WRA with Human Readability (i.e., fraction of
words correctly recognized by humans).

5.2 Evaluation Methodology

We conducted PhonePoint Pen tests mainly with students
from computer science and engineering. The test group com-
prised of 10 students in two categories: Trained and Novice.
Novice students (6/10) were defined as users that practiced
less than 10 characters before starting the evaluation. The
rest were Trained students who practiced 26 characters (each
English alphabet approximately once, taking less than 5 min-
utes in total). Only one of the Trained users rehearsed for
75 characters before starting the tests. Besides university stu-
dents, we also performed a study with a small population of
5 patients from the Duke University Hospital — the primary
purpose was to gain insights into P3’s applicability into assis-
tive technology. According to our IRB approval, the patients
were allowed to write up to 8 characters. The patients had
no previous experience with our prototype, and performed
the experiments under the supervision of care-givers. Al-
though P3 broadly failed in the tests (due to occurrences
that the system was not designed for), we will report the
valuable experience and feedback we gained from neurosur-
geons, physicians, and speech pathologists. We will discuss
the modifications we have made to P3 based on these real-life
feedback.

5.3 Performance Evaluation
The main evaluation results are summarized as follows.

e Figs. 7 and 8 show sample words written with P3. Fig.
9 quantifies this by showing that average readability is
83% and 85.4% for characters written by Trained and
Novice writers respectively. Employing stroke grammar,
average character recognition is 91.9% and 78.2% for
the same two groups (Fig. 10). Numeric digits experi-
ence similar accuracy.

e Zooming into results, most Novice users achieve simi-
lar CRA to Trained users (Fig. 11) — 2 weakest users
achieve comparable accuracy by writing on a table-top
(Table 1). Disambiguation approaches are reasonably
effective (Fig. 12). However, the average character
writing time is between 3.02 to 4.3 seconds (Fig. 13),
the main limitation with the current system. Energy
consumption with P3 is not a concern (Fig. 14).

e Word recognition degrades with increasing word-length,
however, spelling correction helps — 80% for 5 letter
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Figure 7: Alphabets M, O, B, IS Y, S, as outputs of the PhonePoint Pen. Although distorted, the characters are legible.
The raw acceleration data is shown for the Alphabets M and Y.
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Figure 8: Samples of air-writing (few SMS lingo) recognized correctly by stroke grammar: ACM, PAPER, PEN, PHONE
(not legible), LOL (laugh out loud), JANE (a name), CU (see you), FYI, AM, PM, GO and WIN.

words (Table 2). Human readability is lower: 70% for
5 letter words. Tests with hospital patients show low
accuracy due to usability issues (Table 3). Advised by
speech surgeons, we emulated a class of patients by
writing with the left hand - P3 achieves 81.7% accuracy
(Fig. 15).

Results: Readability and Recognition

Figure 7 shows the geometric version of alphabets M, O, B,
I, S, Y, and S, written by a trained user (each alphabet writ-
ten separately). The acceleration readings for E and Y are
presented alongside. P3 correctly converts the acceleration
to alphabets, while the geometric versions are human leg-
ible. Figure 8 shows some examples of air-written words.
Evidently, the lack of a reference frame degrades the sense
of proportion and relative placement of characters. Despite
these distortions, the stroke grammar yielded correct results
for all the words in Figure 8.

Towards a systematic evaluation, Figure 9 shows the Human
Readability Accuracy (HRA) and the Character Recognition
Accuracy (CRA) per-alphabet, per-user-category (526 char-
acters were written in total). For HRA, each of the 526
alphabets were presented to arbitrarily selected students. Av-
erage HRA for Trained and Novice categories proved to be
83% and 85.4% respectively. This is likely because human
cognition is powerful and is able to decipher even highly
distorted characters (the key intuition with Captchas [26]).
Thus, even though Novice users exhibited greater distortion
in the geometric alphabets, human readability for both the
categories remained comparable. The expected difference
between the two categories became evident in the CRA com-
parison. Figure 10 shows an average of 91.9% and 78.2%
CRA for Trained and Novice categories, respectively. This
suggests that 2-4 minutes of training has a positive impact —
users learn how the system reacts to their hand-movements
and adapt somewhat involuntarily. Numeric digits achieved
comparable accuracies (not shown in the interest of space).

Results: Per-User Accuracy

The accuracy of Novice category users was relatively lower —
the following discussion zooms into the results. We re-plotted
the results from the experiments on a per-user basis (Figure
11), and observed that the variance among the Novice users
was quite high. Four novice users were able to achieve rea-
sonably good CRA (in fact one of them was better than the
Trained users), while two other novices were not able to ex-
ceed a CRA of 70%. In response to this finding, we measured
how these users performed when writing on a flat surface,
like a table-top. Our hypothesis was that certain involuntary
3D hand motion, or intra-stroke wrist rotation, is likely to af-
fect recognition — writing on a physical surface could improve
performance.
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Figure 11: Average CRA per-user.
wide variation in accuracy.

Novice users have a

Table 1 shows the accuracy improvement when the two weak
Novice users wrote the alphabets on a table-top. For instance,
while writing “A”, the phone touched the table for the “/\”
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Figure 10: Character Recognition Accuracy (CRA) for Trained and Novice users per-character. The stroke grammar
achieves a reasonably high accuracy, especially with Trained users.

strokes, was lifted and repositioned on the table again, and
then the user wrote the “~”. The on-table accuracy improved
substantially for the users; the weakest user experienced a
jump from 46.2% to 76.9% CRA. Assuming that flat surfaces
are often accessible, P3 may be acceptable even to the weak
user.

Table 1: Writing In-Air Vs. On-Table
| User | In-Air | On-Table |
[ Weakest User | 46% [ 77% |
[ 2nd Weakest User [ 69% | 88% |

Results: Grammar Disambiguation

Recall that the P3 stroke-grammar exhibits inherent ambigu-
ity. For example, D and P are written with the same strokes
“|” and “D”. Similarly, characters {V, X, Y} and {O, 6, S}
use common sets of strokes. We disambiguate between these
characters by looking at the directions of the stroke (V has
a downward followed by a upward movement, while X has
a downward, pen reposition, and then again downward).
We also track the movement of the phone during the pen-
repositioning phase to extract more information about the

user’s intention. Figure 12 presents the accuracy of disam-
biguation, along with the actual outcomes when the disam-
biguation fails. In majority of the cases, the character is de-
coded correctly. Also, among incorrectly decoded characters,
some are not confused with their ambiguous counterparts
(e.g., H and U). However, ambiguity still occurs, e.g., 0 with
6 in 28.6% and 6 with 0 in 35.7% cases; P with D in 7% cases.

Results: Writing Speed

Figure 13 presents two CDF curves. One denotes the distri-
bution of alphabet-writing time computed across all users.
The median time was 4.3 seconds. We believe users displayed
a tendency to write slower than necessary, partly because
they were new to the system, and because they were keen
on optimizing for accuracy. P3, however, can support quicker
writing. To understand the speed limits with P3, we mea-
sured the minimum time incurred in writing each alphabet
correctly. The second curve plots this distribution, and evi-
dently, the median improves to 3.02 seconds. Nevertheless,
even the best performance of P3 is quite slow, and is currently
the key limitation with the prototype. We believe a number of
opportunities exist that will increase the speed of air-writing.
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Greater number of accelerometer samples per second is an
immediate one; we will discuss others as a part of our ongo-
ing work.
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Figure 13: Distribution of time to correctly write English

characters with P3.

Results: Word Recognition

We requested users to also write English words in air (we
did not include the two weakest users for these experiments).
The words ranged from 2 to 5 characters and were chosen
randomly from a dictionary. The users wrote 20 words for
each word-length. Table 2 reports P3’s Word Recognition
Accuracy (WRA). Spell checking with an English dictionary
improves the accuracy; P3-aware corrections led to further
improvements. This is because the P3-Aware spell checker
better understands the relationship between user-intent and
P3-output, and is able to make the necessary corrections. We
also observed reasonable performance through human recog-
nition.

Results: Energy Measurements

We ran experiments to compute the energy footprint of the
Nokia N95 accelerometer. We sampled the accelerometer at
the same rate as PhonePoint Pen on a fully charged Nokia
N95 8GB phone (Figure 14). The phone exhibited an average

Table 2: Word recognition.

Word Phone | Spell P3-Aware Human
Length | Pen Correct | Spell Correct | Readable
2 17/20 | 19/20 | 20/20 11/20

3 18/20 | 19/20 | 19/20 12/20

4 13/20 | 18/20 | 19/20 10/20

5 13/20 | 16/20 | 17/20 14/20

battery-lifetime of 40 hours, i.e., a user should be able to
continuously write for 40 hours with P3.

Power(W)

Time(s)
Figure 14: Accelerometer power consumption relative to
other phone sensors.

5.4 Experiences with Hospital patients

In collaboration with Physicians from the Surgery/Speech
Pathology department of Duke University Hospital, we car-
ried out PhonePoint Pen tests with patients suffering from
various forms of cognitive disorders and motor impairments.
Based on IRB approval, 5 patients were approved of writing 8
randomly chosen alphabets. The patients were selected with
varying degree of motor-impairments (e.g., a hydrocephaleus
lumber drain trial patient exhibited good cognition but weak
motor skills; a patient from a major car accident, 12 days
prior, had a right side paralysis and spinal injury, but was
able to write with his right hand; a 72-year old stroke patient
had weakness on both limbs with severe tremors). The tests
were carried under the supervision of medical practitioners
and care-givers, who first learned to use P3 from us. We were
not allowed to observe the patients, however, we interacted
closely with the care-givers to receive feedback. Importantly,
P3 generated wide interest in the hospital, drawing neurosur-
geons, speech therapists, and care-givers to witness the tests
and comment on the potential applications and additional re-
quirements. The overall experience proved to be invaluable.
We report the main lessons here.

(1) The P3 design requires users to press a button to start
the application, and to re-press the button to stop. While this
did not appear as an important design issue among univer-
sity students, it proved to be a bad design choice for assistive
technology applications. Patients found air-writing quite intu-
itive, but were unable to press the button appropriately. One
patient pressed the buttons many times, another pressed the
wrong one, and yet another found it hard to press. Table 3



shows the results. The unanimous advise from doctors was to
eliminate button presses. Based on this feedback, we imple-
mented the start and stop of the system through shaking. A
user shakes the phone in air before beginning to write, and
then shakes again to stop.

Table 3: Patient performance.
[PatientID [1 [2 [3 [4 |5 |
Accuracy | 1/8 | 1/8 | 1/8 | 5/8 | could not
press button

(2) A neurosurgeon criticized that the P3 prototype required
“shoulder, elbow, and wrist coordination”, a constraint that
may be difficult to satisfy by hospitalized patients. His recom-
mendation was to reduce the size of the letter so that it can be
written with elbow movements alone. Moreover he suggested
developing filters that would cancel the tremor in people’s
hands, and thereby recognize the characters. Our ongoing
work is focused on learning the natural tremor of the person,
and suitably canceling it from the entire accelerometer signal.

(3) One particular advantage of P3, even in light of special-
ized medical gadgets, is familiarity with cell phones. Physi-
cians and care-givers emphasized the difficulties patients face
in adopting new technological gadgets, particularly at the
higher age group. Using the patient’s own phone to gesture
“made a lot of sense”. They said, with a good degree of
reliability, they envision a wide range of applications. Inter-
estingly, several nurses showed enthusiasm at the prospect
of the patient changing her TV channel by writing in the air
(pressing the remote control button is again a difficult task
for many).

(4) Exhaustive tests with patients are difficult due to IRB re-
strictions; the turn around time is also high. To partly over-
come this, doctors suggested that it is valuable to test P3 by
having normal right-handed users write with their left hand.
Several speech-impaired patients only have minor problems
with hand motions, and left-handed writing may be a credi-
ble emulation of these conditions. Figure 15 shows the CRA
for consonants and vowels when 4 users wrote all the alpha-
bets left-handed (we do not include per-alphabet accuracy in
the interest of space). The average accuracy across all the
alphabets and all users is 81.73%.

1.2 Consonants
Vowels

1
0.8
0.6
0.4
0.2

0

Accuracy

Ul u2 u3 U4

Users
Figure 15: Accuracy with left-handed operation emulating
speech-impaired patients.

6. LIMITATIONS

Developing the PhonePoint Pen to the standards of a com-
mercial product calls for further research. Nevertheless, we
believe our current prototype has made credible advances
towards the end goal. This section discusses the current limi-
tations and opportunities for further improvement.

Quicker Writing

The main limitation with P3 is its speed of writing — at best
3.02 seconds per alphabet on average®. Writing faster de-
grades accuracy. This is because the accelerometer exports
around 30 samples per second, and is therefore inadequate to
capture all the motions (especially in multi-stroke alphabets
like E, H, W, etc.). While higher sampling rates will certainly
be valuable [31, 32], we are investigating the benefits of
using two accelerometers (available in OpenMoco phones).
Further, we believe that there are opportunities in using the
gyroscope and camera to determine hand-movements. By
observing the changing camera-view over time (when the
user gestures in air), the alphabets may be captured quicker.
Gyroscopes are expected to alleviate the problems with wrist-
rotation.

Writing Long Words and Drawing Pictures

Drawing capabilities require sophistication. The main prob-
lem stems from the difficulty in tracking the phone movement
while the pen is being repositioned in 3D space. Thus, al-
though the actual written words/shapes are identified, their
relative placements are often incorrect. The problem is pro-
nounced when the figure involves multiple pen-repositioning.
Long words and sentences face similar problems. We leave
these solutions to future work.

Cursive Handwriting

Supporting cursive writing is certainly desirable with P3,
however, significantly more difficult to accomplish. The prob-
lems of stroke-detection and character-recognition are exac-
erbated due to the continuous movement of the hand. One
approach would be to apply pattern recognition algorithms
on the entire stream of accelerometer readings. However,
such a scheme will not only require complex computation,
but may also need a non-marginal degree of training. We
have traded off this functionality for simplicity.

Writing while Moving

If a person writes in the air while moving, the accelerometer
readings will reflect that movement. Our current prototype
assumes that the user is stationary while writing. Characteriz-
ing user motion, and subtracting them from the accelerometer
signals, is a topic of future work.

Comment on Survey and Testing Population

Students who have tested P3 are mostly students from the
Computer Science and Engineering. These students are likely
to have an understanding of accelerometers, and could have
adapted to P3’s behavior. In that sense, our accuracy results
for Novice users could be partially optimistic. Nevertheless,
with a little bit of training, even lay users should be able to
adapt to P3.

20f course, this should perhaps not be compared against typ-
ing on a keyboard or writing running hand.



Greater Algorithmic Sophistication

Bayesian Networks [4] and Hidden Markov Models (HMMs)
[31, 32] have been successfully used for gesture recognition.
These approaches are powerful and certainly applicable to
PhonePoint Pen (as opposed to a simple grammar). The down
side is that these models require meticulous feature selection
and extensive training to produce good estimations. Training
may be inconvenient if the user is required to do this opera-
tion herself [18]. The alternative approach is to carefully pre-
build the models to ensure broad applicability among users.
Hardware heterogeneity needs to be accounted for as well,
since the phone OS or the accelerometers themselves may
provide various sampling rates across different phone mod-
els. Finally, we observe that the P3 tree-based grammar can
be retrofitted to HMMs. The sequences of strokes can be re-
garded as HMM states representative of a character. Tran-
sition probabilities between states (characters) may be com-
puted through training. Subsequent strokes written by the
user will advance the HMM states and help infer the user
scribble (e.g., adding a “|” to an N may be indicative of a
highly probable M). We plan to investigate these techniques
as part of our future work.

7. RELATED WORK

Designing an alternative input technology is a rich area of re-
search. Numerous sensors on mobile devices fuel this area to
rapid growth. Naturally, a large body of existing work relates
to the PhonePoint Pen. We touch upon these works briefly (in
the interest of space), while discriminating the contributions
from this paper.

Air-gestures with 3D accelerometers.

Gesture recognition has been widely studied through ac-
celerometers, gyroscopes, vision based techniques, etc. [31,
32, 8, 9, 3]. Works that are closest to P3 include (1) a sen-
sor mote-based 4-character recognizer [32], (2) a numeric
digit recognizer with customized hardware [25, 31], and
(3) uWave, a mobile phone based single-gesture recognizer.
The first two works employ a highly capable accelerometer
(around 100 samples/s). They use Principle Component Anal-
ysis (PCA), Hidden Markov Models (HMMs), and Dynamic
Time Warping (DTW) algorithms, to achieve accuracies of
90 to 94%. However, the accuracy falls to 80% when the
accelerometer is sampled at 40 samples/s. More importantly,
the proposed systems are only able to write few numeric dig-
its, that do not require the user to reposition the pen within the
same character. Geometric figures are also not viable because
gestures are identified through pattern matching, and hence,
the system does not compute the actual displacement and di-
rection of motion. PhonePoint Pen, on the other hand, tracks
the user’s hand movement, and develops methods for pen-
repositioning, character transition, stroke-grammar, rotation
avoidance, and character disambiguation.

uWave [14] is a mature work that allows a user to gesture
with mobile phones, enabling simple operations like gesture-
based user authentication, opening/closing applications, etc.
The authors attain an impressive 99% accuracy with 8 ges-
tures and negligible training. While this is valuable for a num-
ber of interfacing applications, we emphasize that character
recognition entails an additional set of problems. Specifically,
gestures are significantly tolerant to error; as long as the er-
rors repeat across all gestures, the gesture can be identified.

In contrast, the PhonePoint Pen requires a different approach
to continuously track a more complicated motion of the hand.

Vision based gesture recognition.

Cameras have been used to track an object’s 3D movements
in the air [20]. TinyMotion [27] uses image sequences cap-
tured by the built-in camera to detect the movements of the
cell phone. Movements are limited to horizontal, vertical,
rotational, and phone tilt. Converting these movements to
characters and words introduces additional challenges. Nev-
ertheless, these movements may be fused with the accelerom-
eter output and result in more reliable stroke identification.

Microsoft Research recently demonstrated a project titled
“write in air” [2], that uses an apple in front of a camera
to air-write alphabets. Computer vision based algorithms
can precisely discern the movement of the apple (or any
other object) to create both geometric and textual represen-
tations of the alphabets. Noisy accelerometers and limited
processing in mobile phones lack several advantages present
in computer-connected cameras. Moreover, the system does
not recognize words, side-stepping the problems of transition
between characters. Signal processing based techniques are
useful here, but not sufficient [1, 13, 29]

Stylus-based sketch recognition.

A number of systems inferred user sketches drawn with a
stylus on a pad or Tablet PC. SketchREAD [4] aimed to iden-
tify the parts of electrical diagrams and family trees drawn
by users. The system understands the user sketch based on
a list of basic symbols, a hierarchical representation of sym-
bol combinations, and a dynamically constructed Bayesian
network. By employing a Bayesian network, SketchREAD
can accommodate errors in low-level symbols (e.g. if a line
is identified as an arc). The Bayesian network is trained
and learns such likely mistakes. While similar in spirit with
our grammar-based tree, the Bayesian network is a powerful
paradigm and can improve P3 performance. We plan to in-
vestigate Bayesian approaches as part of P3 future work.

Another project titled the Electronic Cocktail Napkin [11]
developed a sketching environment in which user diagrams
can be identified and interpreted by the program. The system
takes advantage of the pad on which the user is sketching. It
identifies pen paths, number of strokes, corners, sketch size,
aspect ratio, and rotation. These features are then matched
against a library of templates. The templates are learned by
allowing the user to draw several examples and save them
into the system. Unlike the Electronic Cocktail Napkin, P3
operates on an imaginary blackboard which makes extracting
similar features difficult. Without a reference frame, sketch
size, aspect ratio, and rotation are hard to approximate. Fur-
ther, P3 uses a phone accelerometer to infer strokes, which
unlike a stylus, is more noisy. Nevertheless, the Electronic
Cocktail Napkin identifies a space of possible features that we
plan to explore in P3.

Xerox PARC also investigated stylus-based interactions in a
project called Unistrokes [10]. In their approach, the user
is required to learn a Unistroke alphabet which maps each
English character to a symbol written with one stroke (one
continuous movement). The alphabets that require lifting
(e.g., A, F, E, K) are simplified to be drawn with one stroke.



Words are separated by a special character (a period “.”).
Once users get accustomed to Unistroke writing, they can
achieve speeds of 1 to 1.8 characters per second. Similar to
Unistroke, Graffiti [17] uses single stroke character alphabets
to allow handwriting recognition. Graffiti characters are de-
signed to look close to their associated English alphabets, and
thus be more user-friendly than Unistrokes.

Many pen-touch based Tablet PCs offer built-in handwriting
recognition software. In general, these solutions use both
geometrical and temporal information to infer the written
characters. The user input is considered as a sequence of
dots, function of time. The dots order is used to identify
basic strokes such as circles and lines, which are further used
to identify either characters or complete words. Velocity
information may serve to infer transitions between charac-
ters/strokes (the user writing naturally slows down when
switching directions — similar to the pausing time between
characters required in P3). On top of this low level infor-
mation, handwriting recognition employs Hidden Markov
Models. Further, as in P3, a vocabulary is used to rectify
words (e.g., closest edit distance). Optionally, when writing
sentences, semantic information is employed to improve over
vocabulary-based word accuracy. We note, that unlike P3,
writing recognition on a Tablet PC does not use acceleration
to compute stroke displacement. In the Table PC case, the
displacement values are accurate, resulting from the mechan-
ical touch of the pen on the Tablet’s screen. Thus, the stroke
information is more reliable than the one used in P3 (through
integration of the phone accelerometer reading). Further,
the Tablet screen provides a reference frame, and thus the
relative positions of strokes can provide additional clues. P3
does not benefit from a reference frame. Instead, P3 needs
to decide the stroke placements and form the user intended
character.

Optical Character Recognition (OCR) is a technique for trans-
forming text represented in image format (e.g., bitmaps)
into typed text (e.g, ASCII characters). OCR relies on matrix
matching to infer characters. First, OCR scans the text image
which results in a set of dot matrices. Each dot matrix is then
compared against template matrices (for each character) part
of the OCR library, and the best match yields the typed char-
acter. Other approaches for OCR use features of the scanned
input to infer the typed text. Features include shapes, lines
(horizontal, vertical or diagonal), line intersections and spac-
ings between shapes. Matrix matching is preferred when the
character type (e.g., font) in the image does not vary. On the
other hand, feature-based OCR accommodates multiple styles
of text. Note, that in general OCR input is “well” formatted
text, mostly resulting from image-scanned text (e.g, book
scans). Unlike OCR, P3 operates on much noisier input.

Wiimote, Logitech Air-Mouse, and Nokia NiiMe.

A popular device capable of tracking hand movement is the
Wii remote (or “Wiimote”) used by the Nintendo Wii console
[20]. The Wiimote uses a 3-axes accelerometer to infer for-
ward and backward rapid movements. In addition, optical
sensors aid in positioning, accurate pointing, and rotation of
the device relative to the ground. The optical sensor is embed-
ded on the Wiimote and relies on a fixed reference (a sensor
bar) centered on top of the gameplay screen. The “Wiimote”
can be augmented with the “Wii Motion Plus”, a pluggable

device containing an integrated gyroscope to cope with hand
rotation. These three sensors — the accelerometer, the gyro-
scope, and the optical sensor — can reproduce motions similar
to real arm-motion. Similarly, the PlayStation Move [23] is
equipped with accelerometer and gyroscope sensors. Further,
a digital camera and a LED orb at the top of the controller,
aid in tracking the user gestures. Unlike these devices, the
Nokia N95 consists of only a (low-cost) accelerometer, and
limited processing capabilities. Developing P3 on a mobile
phone presents unique research challenges. Nevertheless,
the arrival of gyroscopes in consumer phones will address
and solve some of the current P3 challenges (hand rotation)
and facilitate less constrained air-writing (removal of pauses
between strokes). We plan to integrate the gyroscope in the
next implementation of PhonePoint Pen.

The Logitech Air Mouse [16] targets people who use comput-
ers as multimedia devices. The Air Mouse provides mouse-
like functionalities but the device can be held in air similar
to a remote control. Accelerometers and gyroscopes together
allow for linear and rotational motion of the pointer on the
screen. Unlike the Air Mouse, P3 does not have a screen on
which the human user may see and adjust the pen move-
ment in real time. Thus P3 must estimate relative position of
strokes and characters without any visual reference frame.

The NiiMe [5] project transformed the Nokia N95 phone into
a bluetooth PC mouse. The PyAcceleREMOTER project devel-
oped a remote control for the Linux media player MPlayer. By
tilting the phone, the player’s play, stop, rewind, fast-forward,
etc. are controlled. Other applications like Inclinometer pro-
vides car inclination while Level Tool allows measurement of
the inclination of different surfaces by placing the phone on
that surface. Lastly many video games for the N95 phone
make use of the accelerometer, e.g., to guide a ball through
a maze. Being able to write in the air, we believe, is a more
challenging problem.

Smart Pen and SmartQuill.

Livescribe Smartpen [15] is a pen-like device capable of track-
ing a person’s writing. The device requires a special finely
dotted paper to monitor the movement of the pen. The pen
recognizes alphabets which can be downloaded to a PC. How-
ever, the dotted paper may not be always accessible, making
ubiquitous note-taking difficult. Tablet PCs also suffer from
this problem of ubiquitous accessibility. SmartQuill [28] is
a pen device intended to recognize handwriting without the
need of a special pad. It can use any surface for writing in-
cluding on air. SmartQuill requires significant per-user train-
ing. If the training and test user differ, word recognition ac-
curacy is severely affected [19]. Unlike these approaches,
PhonePoint Pen does not rely on special hardware or paper,
and does not require training.

8. CONCLUSIONS

This paper attempts to exploit the accelerometer in mobile
phones to develop a new input technology. While today’s
users are mostly used to keyboards and touch-screens, we
propose to mimic a pen. By holding the phone like a pen,
the user should be able to write short messages in the air.
The phone identifies the hand gestures as one of multiple
strokes, compares the sequence of strokes against a grammatr,
and recognizes the air-written alphabets. The entire process



requires negligible practice, and owing to its algorithmic sim-
plicity, can run entirely on the phone’s processor. The written
message is displayed on the phone-screen, and may also be
emailed to the user if desired. We believe that in the age of
microblogging and tweeting, such input devices may be effec-
tive to note down information on the fly. Moreover, the pen
may offer an intuitive user-experience, adding to the menu of
current input methods. We call this system PhonePoint Pen,
and demonstrate its feasibility through a Nokia N95 prototype
and real user studies. The performance results are promis-
ing, while the user feedback (from the student community) is
highly positive.
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