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Abstract
In order to facilitate the introduction of transit tracking

and arrival time prediction in smaller transit agencies, we in-
vestigate an automatic, smartphone-based system which we
call EasyTracker. To use EasyTracker, a transit agency must
obtain smartphones, install an app, and place a phone in each
transit vehicle. Our goal is to require no other input.

This level of automation is possible through a set of al-
gorithms that use GPS traces collected from instrumented
transit vehicles to determine routes served, locate stops, and
infer schedules. In addition, online algorithms automatically
determine the route served by a given vehicle at a given time
and predict its arrival time at upcoming stops.

We evaluate our algorithms on real datasets from two ex-
isting transit services. We demonstrate our ability to ac-
curately reconstruct routes and schedules, and compare our
system’s arrival time prediction performance with the current
“state of the art” for smaller transit operators: the official
schedule. Finally, we discuss our current prototype imple-
mentation and the steps required to take it from a research
prototype to a real system.
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1 Introduction
Transit information has come a long way from the printed

paper schedules of decades past. Today, virtually every tran-
sit service in the developed world, regardless of size, makes
their schedule available on the web in one form or another.
However, for smaller operations, this is often where it ends.
More advanced services, such as integration with Google
maps, automatic transit directions, or real-time tracking and
arrival time prediction, are typically reserved for large tran-
sit agencies who have the necessary expertise in-house or can
afford to have it done for them.

Through these advanced services, transit agencies can
dramatically improve the transit user experience. Real-time
tracking and arrival time prediction are particularly power-
ful: transit riders who would otherwise be enduring a po-
tentially frustrating wait can now adjust their travel plans to
minimize waiting time. Even where buses typically run on
time, real-time tracking can improve rider confidence in the
transit service, allowing users to schedule closer connections
with less built-in margin of error.

For these reasons, real-time transit tracking is a highly de-
sired feature among transit riders. That said, the implemen-
tation of a full transit tracking system, including complete
and accurate digital route maps, in-vehicle tracking devices,
an online tracking website, up-to-date schedules, and accu-
rate arrival time predictions, can be a daunting and costly
process for smaller transit operators. Commercial providers
exist, with NextBus [5] and Clever Devices [1] being the two
main vendors. However, use of these services incurs substan-
tial initial and recurring fees.1

In this paper, our goal is to reduce the cost and complexity
of offering these services by creating EasyTracker, an auto-
matic system for transit tracking, mapping, and arrival time
prediction. The system consists of four main components:
(a) an off-the-shelf smartphone, installed in each bus or car-
ried by each driver, functioning as an automatic vehicle lo-

1The Chicago Transit Authority budgeted $24M to install bus
tracking in 1000–1500 vehicles.



cation system or tracking device, (b) batch processing on a
back-end server which turns stored vehicle trajectories into
route maps, schedules, and prediction parameters, (c) online
processing on a back-end server which uses the real-time lo-
cation of a vehicle to produce arrival time predictions, and
(d) a user interface that allows a user to access current vehi-
cle locations and predicted arrival times.

Using EasyTracker, a transit agency can implement a so-
phisticated bus-tracking and arrival time prediction system
by simply purchasing a number of smartphones and down-
loading the bus-tracking app to each phone. EasyTracker
has considerable advantages over the current state of the art.
First, the use of standard smartphone hardware reduces both
the one-time and recurring costs involved in establishing a
real-time transit tracking system. Second, since the system
automates the process of route map and schedule creation,
cost and required user input are dramatically reduced. Third,
due to its automated nature, our system is able to adjust the
published routes and schedules in response to road construc-
tion or predictable congestion events.

The scientific contributions of this paper are as follows:
• An algorithm for deriving the set of serviced routes

from a collection of unlabeled GPS traces, requiring no
driver interaction or other user input.

• An algorithm for determining the locations of transit
stops along these routes.

• A means of automatically producing an estimate of the
route schedule, describing hours of operation and in-
tended arrival times for arrival time prediction.

• A thorough evaluation of our system using five months
of data across seven routes from two transit agencies.

Below follows additional background and motivation
(§2), followed by a high-level overview of our proposed sys-
tem (§3). We then describe and evaluate each technical con-
tribution separately (§4-6). In §7, we evaluate the arrival
time prediction performance of our system, and §8 provides
a discussion of the limitations of EasyTracker, and how we
propose to address these in a production system. Finally, we
provide a brief overview of the related work (§9) and offer
our conclusions (§10).

2 Background and Motivation
The minimum requirement for a real-time transit tracking

system is an in-vehicle device (sometimes referred to as an
Automatic Vehicle Locator, or AVL unit) and a back-office
component. The in-vehicle device determines the vehicle’s
current location using the Global Positioning System (GPS)
and communicates this via a wireless link (typically cellular
service) to the back-office. The back-office component is a
central server that processes the incoming time-ordered se-
quences of locations (location traces) and typically provides
a live tracking website for the public as well as status moni-
toring for dispatch purposes.

This type of vehicle tracking, which simply reports the
locations of all active vehicles, is widely available today.
While this is a useful service, its utility for transit applica-
tions is somewhat diminished by a lack of sufficient naviga-
tion metadata: what route is each bus driving, and at what

time will it arrive at my stop? State of the art systems pro-
vide this metadata by means of an in-vehicle device which
accepts driver input, such as the current route, as well as by
estimating arrival times based on current vehicle location,
past travel times, and the official route schedule.

In order to make arrival time predictions, these
navigation-enabled systems require the following additional
information:

1. A route shape file containing the road segments tra-
versed by each route, for matching a vehicle’s current
GPS location to a location along the route.

2. A list of stops for each route in traversal order, for pro-
ducing trip directions.

3. The planned schedule for each route and stop, to handle
corner-cases such as the first and last trip of the day.

4. The route driven by each active vehicle at all times, to
know where each vehicle is going next.

Manually collecting this information can be a time-
consuming and complex task for many transit agencies. The
authors have personal experience from working with four
different transit agencies, which serve between 1,000 and
500,000 trips per day. Anecdotally, one such agency, despite
an annual budget of $250M, lacks the resources to produce
route shape files for their existing bus routes. As a conse-
quence, their routes do not appear in Google Maps [4] and
other trip planning services.

2.1 Back-end Processing
What primarily sets EasyTracker apart from the current

state of the art is the aim to require no manual input. Us-
ing EasyTracker, items 1-3 are automatically derived from
recorded GPS traces. This not only reduces the amount of
manual labor required, but also enables agencies that lack
the necessary technical expertise in-house to set up a transit
tracking system without seeking external assistance. Item 4,
the current route of a vehicle, is automatically determined
based on its recent movements and the known route map
(item 1). This automatic classification allows drivers to focus
on safety, and avoids the need for additional driver training.

2.2 In-vehicle Device
For the purpose of this paper, the type of in-vehicle de-

vice used is of relatively lesser significance: the quality of
GPS coordinates provided by a smartphone GPS unit are
not dramatically different from those provided by a dedi-
cated vehicle tracking device. However, the initial and re-
curring costs can differ dramatically, given the benefits of
mass-production of smartphones. In urban environments,
where vehicles often travel in the GPS shadow of tall build-
ings, a sophisticated vehicle tracking device may use inertial
navigation to augment the outage-prone GPS sensor. While
inertial navigation itself is outside the scope of this paper,
modern smartphones are equipped with several suitable sen-
sors (accelerometer, gyroscope, electronic compass, cellular
and WiFi radio) which may be leveraged to improve GPS ac-
curacy in challenging environments. Any technique that im-
proves GPS localization will only improve the performance
of the system.



online processing

GPS 
traces

routes stops schedules
vehicle 
classifi-
cation

arrival time 
prediction

cellular 
connectivityin-vehicle device

interface + GPS

route 
extraction

stop 
extraction

schedule 
extraction

location 
server

batch processing

user interface §4 §5 §6

§7.1

§7.2

Figure 1. Architectural overview of the EasyTracker system. Data produced by in-vehicle devices are passed through
batch and online processing, yielding route shapes, stop locations, vehicle classifications, and arrival time predictions,
which are displayed through a user interface. Relevant paper sections indicated.

3 System Architecture and Overview
We call our system EasyTracker, for the ease with which

it allows transit agencies to add transit tracking to their list
of services. As illustrated in Figure 1, the EasyTracker ar-
chitecture consists of a data collection unit in each vehicle,
a number of algorithms for online and batch data process-
ing, and one or more user interfaces for the transit user. The
primary function of the in-vehicle device is to periodically
transmit its GPS coordinates to a central location server, us-
ing a cellular data link. The in-vehicle device can either be
permanently installed in the vehicle, or may be carried by
the driver. A central location server receives location updates
from all in-vehicle devices.

The received records are put through batch- and online
processing. In batch processing, a large set of recorded GPS
traces are processed to produce route shapes, stop locations,
and schedules. Online processing matches vehicles to routes,
and performs arrival time prediction.

3.1 Batch Processing
Our route extraction algorithm (§4) is based purely on

GPS traces, and does not make use of an existing road map.
This design is based on three observations:

• A sufficiently accurate digital road map may not be
freely available for the area of interest.

• Since transit routes do not necessarily follow public
roadways, a road map may be misleading.

• Our route extraction algorithm performs more reliably
when using an automatically generated map.

Given the route shapes, the recorded traces are separated
based on the shape they follow. Each set is fed to our stop
extraction (§5) algorithm, which produces a set of bus stops
based on the vehicles’ movements along the shape.

Given the stop locations, we determine the raw arrivals:
the exact time that each trace arrived at (or passed by) each
stop along the route. These are processed by our schedule
estimation (§6) algorithm, to estimate the planned schedule
of the route.

3.2 Online Processing
Automatic route classification (§7.1) classifies vehicles

as “in-service”, serving a particular route as determined by
the route shapes, or “out-of-service” if the recent location
trace does not match up with a known route.

Once a vehicle is deemed “in-service”, arrival time pre-
dictions (§7.2) are made using the recent location trace of
the vehicle and the relevant route schedule. Batch process-
ing is described in more detail below.

3.3 Prototype User Interface
Shown in the bottom-left corner of Figure 1 is a cropped

image from a prototype system built by the authors, currently
in use by their campus shuttle service. Vehicles are matched
to routes by their color, and clicking on a shuttle stop or
vehicle brings up the arrival time predictions. Given route
shapes, stop locations and predicted arrival times, a number
of variations on this interface are easily constructed.

3.4 GPS Traces and Ground Truth Data
The majority of this evaluation is based on recorded GPS

traces from our campus shuttle service, as well as captured
data from the publicly available Chicago Transit Authority
(CTA) real-time bus tracker feed [2].

For the campus shuttle, we use one month of GPS traces
recorded from our fleet of thirteen campus shuttle buses, op-
erating four routes (six including minor variations). Campus
shuttle GPS traces have the following characteristics:
• They are labeled only with a vehicle ID number—these

numbers do not correspond to routes, as every vehicle
can be serving any route at any given time.



• Locations are recorded any time the ignition is on—the
shuttles frequently take trips to locations off the official
routes, for mechanical service, outreach operations, or
chartered University outings.

We also manually collected the ground truth location of each
campus shuttle stop, and the exact route followed by the
campus shuttles to serve as ground truth for route extraction.

For the CTA data, we use 100 days of traces from a single
route. The CTA bus tracker system provides bus locations
only once every sixty seconds—we interpolate these traces
down to one second intervals, to allow for uniform process-
ing. For the CTA, their official General Transit Feed Speci-
fication (GTFS) [3] feed, which serves as our ground truth,
specifies both stop locations and route shapes.

4 Route Extraction
Route extraction is the process of turning unlabeled GPS

traces into the set of service route shapes followed by instru-
mented transit vehicles. These route shapes can then be used
to label real-time GPS traces and classify transit vehicles as
belonging to a particular route. Additionally, route-labeled
traces are used to perform stop extraction (§5), and the route
shapes themselves may be used in drawing a user interface.

Since many transit vehicles travel on public roads, it may
seem natural to base a route extraction algorithm on an ex-
isting road map. While this is a reasonable initial approach,
it comes with several drawbacks:

• A completely accurate road map may not be freely
available for the service area. While a free map such as
[6] may visually appear accurate, errors in turn restric-
tions and connectivity are (anecdotally) common. This
can result in significant errors in the routes produced.

• Because transit vehicles may use limited-access service
roads, or exclusive right-of-way transit lanes, we cannot
necessarily rely on existing digital road maps to supply
us with the unique road features that may be used by
our transit vehicles.

• A complete road map contains many roads not typically
traveled by the transit vehicles. As we describe below,
this makes a route extraction algorithm based on a full
road map susceptible to GPS noise, which may intro-
duce spurious map edges into the extracted routes.

As an alternative, we also evaluate the use of a map infer-
ence algorithm [15] to generate our own model of the road
network from the GPS traces produced by our vehicles. This
approach allows new road segments to be added on-demand:
as soon as GPS trace data is available from transit vehicles,
the portion of the road network that is newly utilized may be
added to the graph.

Figure 2 illustrates the complete automated route extrac-
tion process at a high level. Starting with an input of raw
GPS traces (Figure 2(a)), a kernel density estimate of the
full set of traces is computed (Figure 2(b)). A road map is
extracted using [15], which is subsequently smoothed using
the Douglas-Peucker algorithm [16] (Figure 2(c)).

The generated road map is used to map-match the raw
GPS traces, turning each trace into a series of discrete road
segments. These road segment series are then analyzed to
find frequently repeated sequences, which are output as the
set of official transit routes. Figure 2(d) illustrates one of sev-
eral extracted routes. Below, we describe the route extraction
process in more detail.

4.1 Raw Data Pre-Processing
The first step in our process is to clean up and organize

the raw data. Each GPS location is accompanied by a MAC
address (identifying the vehicle) and a timestamp. We call a
sequence of time-ordered GPS locations with the same MAC
address a trace. Each trace is broken up into several drives,
separated by long (10 minute) intervals without location re-
ports. Such intervals typically indicate a parked vehicle,
making them a natural delimiter.

Depending on the frequency with which the in-vehicle de-
vice is configured to record location data, we may collect a
large amount of location points that are very close to each
other, when a vehicle is stopped or moving slowly. For the
purpose of route extraction we prefer a sparse representation
of the traveled path, as extra points along an edge afford us
no advantage, and incurs additional computational overhead.
Therefore, we thin the trace to produce a linear density of
locations in each direction of one point for every 20 meters.
This value was selected empirically, to balance between suf-
ficient data density and reasonable runtime.

4.2 Map Generation
Here, we briefly summarize the map generation scheme

proposed by Davies, Beresford, and Hopper [15]. The litera-
ture on map generation from GPS traces describes at least
eleven distinct algorithms for map generation. We have
implemented and evaluated three representative algorithms
[18, 15, 12], and found [15] to produce the best results for
our route extraction purposes.

The process starts by computing an approximate, grid-
based kernel density estimate [27] of the traces provided,
over the area of interest. For each edge between consecu-
tive GPS points, cells incident on the edge are incremented,
creating a two-dimensional histogram. An anti-aliasing [22]
method is used to account for trace edges straddling grid
cells, followed by a gaussian smoothing filter [21] to pro-
duce the desired density estimate.

This estimate is passed through a threshold function, to
produce a binary image of the underlying roads. A contour
follower [36] is used to extract the road outlines, and the
road centerline is found by computing the Voronoi graph [9]
of points evenly spaced along these outlines, followed by the
removal of edges that fall outside the contour or that are of
insufficient length.

This produces a very jagged road map. We address this
by smoothing each road segment, defined as a series of edges
with no intersections, using the Douglas-Peucker algorithm
[16]. In another departure from [15], we explicitly make
each edge bi-directional, to improve the robustness of the
algorithm. While this does not necessarily produce a correct
road map (some roads are one-way), it is of no consequence
to the route extraction algorithm described below.



(a) Raw GPS traces drawn as a separate thin black lines. (b) Kernel density estimate as a gray-scale overlay.

(c) Road map extracted from all traces, after smoothing. (d) Single extracted route, out of several.

Figure 2. High-level overview of the route extraction process, overlaid on a screenshot of the local road map.

4.3 Route Extraction
To identify the routes followed by our transit vehicles, we

first map-match our original drives onto the edges of our ex-
tracted road map. This is done using the Viterbi algorithm,
as described in [32, 24]. The output of the Viterbi algo-
rithm provides us with the maximum-probability sequence
of edges traversed. This sequence of edges is processed fur-
ther to identify our set of routes.

We iterate through the edge-sequence sequentially until a
repeated series of edges of a minimum sum length (we use a
distance of 100 meters, or half a block) is encountered, tak-
ing direction of traversal into account. Note that we detect
a series of edges with a minimum sum length, rather than
a single repeated edge. This helps avoid problems where re-
peated traversals of the same intersection or circulation point
may otherwise trigger the repetition detector.

The detected repetition conceptually completes a circuit
in our graph, and the resulting subset of edges is considered a
route candidate. The route candidate is stored, and process-
ing continues from the first repeated edge onwards through
the rest of the edge-sequence data. Once this process is com-
plete, we have produced a collection of edge sequences rep-
resenting all of our route candidates. Note that we assume
that each route is cyclical, i.e. it eventually repeats. If a
transit system were to contain non-cyclical routes, a differ-
ent heuristic would be required for detecting and separating
route candidates.

In order to identify the true routes from among all of the
possible candidates, we count the number of instances of
each route candidate. Figure 3 shows the traversal count for
each identified route from one month of shuttle data. Here,
the black bars show the counts when using an existing map
[6], and the gray bars represent the counts when using a map
generated as described above. Starting with the route with
the highest count, we incrementally add routes to the set of
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Figure 3. A collection of real and spurious routes, and
their corresponding count values (based on existing and
generated road maps) using one month of data from the
UIC campus shuttles.

official routes. For each added route, we use Welch’s t-test
[34], to ensure that the new set of route counts is statisti-
cally different from the remaining route candidates. Once
the t-test fails, the last added route is removed from the set,
completing the route extraction process.

In Figure 3, the six routes on the left with the highest
counts were manually verified to coincide with the actual
campus shuttle routes, whereas the three routes on the right
are the three spurious routes with the highest counts, with
many more left out. Spurious routes either represent noise
in the underlying trips, or GPS noise. Trip noise may be
one-off charter trips, and trips to and from the bus depot that
do not represent actual campus shuttle routes. GPS noise on
the other hand can produce spurious edges during a normal
trip, resulting in a unique route. When using the existing
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Route Spurious Mean error
1 1.4 % 5.0 m
2 0.0 % 3.3 m
3 1.6 % 3.9 m
4 1.5 % 3.6 m
5 1.6 % 5.1 m
6 0.0 % 3.4 m

All Routes 1.0 % 4.1 m
Table 1. Route extraction performance. Spurious parts
of a route are > 25 m from the ground truth.

map, high GPS error samples occasionally introduce spuri-
ous edges, resulting in unique, and spurious, routes. This
explains the relatively lower counts on the real routes when
using the existing map.

Using Welch’s t-test, the routes identified using the gen-
erated map have a p-value of 0.0011, considered very statis-
tically significant, whereas the routes identified using the ex-
isting map have a p-value of 0.0123, considered (merely) sta-
tistically significant. From this, we conclude that our route
extraction algorithm performs significantly better when us-
ing a generated map.
4.4 Route Extraction Performance

To evaluate the accuracy of our route extraction algorithm
we compare our set of extracted routes against the ground-
truth routes provided to us by the campus shuttle team, which
are based on the OpenStreetMap [6] dataset. The compari-
son is performed as follows: along the length of the extracted
route, select locations at one-meter intervals. For each loca-
tion, measure the distance to the closest ground truth edge.

Figure 4 shows the CDF of the resulting distances, for
each of the six extracted routes. For all routes, the 90th per-
centile is below ten meters. The ground truth is based on
a route map which describes a four-lane road (plus parking
lanes) using a single centerline. Considering that the average
lane width in the United States is approximately 3.35 meters
(11 feet), an error below ten meters falls within the typical
road. Hence, a difference of ten meters is not unreasonable
for a bus route, which tends to stay on the right-hand side of
the road. Some error in addition to this may also be expected,
due to GPS noise.

However, for a small number of locations, we observe sig-
nificantly larger errors. In Table 1, we refer to errors in ex-
cess of 25 meters as “spurious” parts of the route. We note
that four out of six routes contain some spurious parts, all
at or below 1.6% of the total route length. Through manual
inspection, we found that these four routes include a street in
the medical district of campus that is well characterized as a
so-called urban canyon, with tall buildings on both sides in-
terfering with GPS signals. In this area, the extracted roads
are significantly offset from those in the ground truth, ex-
plaining the problem. Thus, the “spurious” parts are not
strictly spurious, but actual parts of the ground-truth route
with an unusually large displacement due to biased GPS er-
ror in the area. Based on the mean distance measured, we
find that the extracted routes on average fall within two lane
widths of the ground truth, the desired result. The largest
error observed across all routes was 39.5 meters, or about
one-fifth of a standard Chicago block.

5 Stop Extraction
Stop extraction is the process of turning a set of raw GPS

traces belonging to a given route, into a small set of coordi-
nates indicating the locations of transit stops. The generated
locations are used for producing arrival times for schedule
extraction and arrival time prediction, and for drawing stop
locations on a route map.

For schedule extraction and arrival time prediction, per-
fect accuracy of stop extraction is not required as long as
most actual stops are represented. However, any omissions
will result in the inability to predict arrival times for that stop.
Furthermore, inaccuracies in stop locations when drawing
the map can lead to missed buses and upset users. Therefore,
our goal is to find as many of the actual stops as possible,
while minimizing the number of spurious stops reported.

This is a challenging problem, as the movement pattern
of a bus at a true bus stop is deceivingly similar to the behav-
ior at traffic signals and stop signs. Moreover, error in GPS
location introduces noise in the traces which complicates the
identification of stopping events.

An example route with raw GPS traces drawn is depicted
in Figure 5(a). Intuitively, buses spend more time at bus stops
than in other locations. An estimate of the proportion of time
spent in any location along the route is produced using ker-
nel density estimation [27], using 1x1 meter cells. Figure
5(b) shows the computed density estimate along the exam-
ple route, where the darker parts of the figure show places
with a higher density of GPS points—these are the locations
where the bus spent the most amount of time.

To extract a set of possible stop locations a minimum den-
sity threshold is applied, where any cell with a density at
or above the 80th percentile of non-zero density cells is re-
garded as a potential stop. Using standard image processing
techniques, the area of each connected group of cells is cal-
culated, and groups below a minimum area are removed as
a noise reduction step. Finally, the centroid of each remain-
ing group is regarded as a detected stop. Figure 5(c) shows
the detected stops along our example route as black disks.
Disks marked by a dashed circle indicate spurious detections,
whereas those without a circle are correct detections.



(a) Raw GPS traces from a single route. Raw traces reveal little about amount of time spent.

(b) Kernel density estimate of raw GPS points. Vehicles spend more time in the darker areas.

(c) Detected stop locations after applying threshold and computing centroid. Points surrounded by
circles are spurious stop detections, points without circles are correctly detected stops.

Figure 5. Stop candidates are distilled from raw GPS points through density estimation, applying a minimum density
threshold to identify stopping areas and computing the centroids of remaining connected components.

5.1 Stop Extraction Performance

To evaluate the performance of the stop extraction algo-
rithm, data from six different campus shuttle bus routes over
several weeks was used. We used one month of data for the
six routes to train the threshold parameter to yield the best
performance. Performance was not sensitive to small varia-
tions (±5%) in the threshold setting. The chosen cut-off of
80% aims to achieve maximal recall given acceptable preci-
sion. The performance of the algorithm was then evaluated
on a separate dataset. Figure 6 illustrates the performance of
the stop extraction algorithm in terms of precision and recall.
Weekday, weekend, and an express route were all included,
exhibiting different stopping behavior characteristics. The
precision metric captures the fraction of detected stops that
were true bus stops with respect to the total number of de-
tected stops. On the other hand, the recall metric determines
the fraction of correctly detected stops with respect to the to-
tal number of ground truth bus stops. As can be seen from
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Figure 6. Precision and recall performance of the stop ex-
traction algorithm on six routes, using an 80th percentile
cut-off.
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Figure 7. Arrival times for the first stop on a route. The
horizontal lines indicate k-means computed clusters cen-
ters at this stop for each daily trip.

the graph, the stop extraction algorithm achieved between
85% and 100% recall, with around 50% precision across five
of the six routes. The sixth route presented an unexpected
challenge which we did not yet address: here, the bus was
frequently parked for long periods of time in an area of high
GPS error. The cells around this parking location dominated
the density distribution for this route, making the 80th per-
centile a poor cut-off. Filtering out long-duration stops may
be a good solution to this problem.

While a 100% recall metric is desirable, this was not pos-
sible to achieve on our routes, as some of the official bus
stop locations are not typically used by any transit riders.
Hence, the bus stops very rarely at these locations, leaving
little evidence of it being a true bus stop. On the other hand,
it is also difficult to achieve a perfect precision metric due
to the strong similarity of bus stopping behavior at bus and
non-bus stop locations. Intersections, traffic signals, traffic
congestion, and stop signs can easily be confused with true
bus stops. We investigated several methods based on both
stop time and spatial distributions. Unfortunately, any per-
formance improvements on training data came at the cost of
over-training to specific cases. Thus, while our goal is to
create a fully automatic system, and while the system does
a great deal to whittle down the number of possible stop lo-
cations, it does to some extent fall short in the case of stop
detection. In §8, we discuss means by which these weak-
nesses can be addressed through manual intervention.
6 Schedule Extraction

Schedule extraction is the process of turning raw arrival
times at stops along a given route into a service schedule for
each stop. While the final derived schedule may be displayed
to end users, its primary purpose is to support the internal ar-
rival time prediction system (see §7). The schedule provides
a fall-back alternative for predictions far into the future, at
the beginning or end of the day, or when vehicle tracking data
is unavailable or unusable. Automating the schedule extrac-
tion process helps to reduce deployment overhead and may
in some cases be helpful if the transit agency lacks a formal
schedule. Additionally, using an extracted schedule from
GPS trace data can correct inaccuracies in the pre-existing
schedule or detect undocumented changes in behavior.

Figures 7–8 provide a graphical illustration of the chal-
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Figure 8. Arrival times at the last stop on a route. The
data is too noisy to use the same (clustering) approach
used in Figure 7.

 10

 20

 30

 40

 50

 60

 70

 0  10  20  30  40  50  60

Ti
m

e 
fro

m
 F

irs
t S

to
p 

(m
in

ut
es

)

Stop #

mean travel times from first stop

Figure 9. Per stop mean travel times from the first stop
on a route, bars show standard deviation. Travel time
variance increases with distance from the first stop.

lenges involved in deriving a static schedule from recorded
arrival time data. In Figure 7, dots mark arrival times (y axis)
at the first stop of Chicago Transit Authority route 157 in the
interval 12:30-3:30pm over a span of 100 days (no service on
weekends). Here, the underlying schedule is evident from
the horizontal bands of arrivals at approximately the same
time every day. The lines indicate the result of k-means clus-
tering [20] these raw arrival times (discussed below), pro-
ducing a high-quality schedule estimate. In contrast with the
first stop, Figure 8 shows arrival times at the last stop. Here,
while some banding is evident, a schedule is very difficult to
discern, and clearly beyond straight-forward clustering.

Figure 9 further illustrates this difference in regularity:
while travel-time uncertainty is present throughout the route,
variance gradually builds as the bus travels away from the
first stop, resulting in the disorganized arrival times shown
in Figure 8. This invariably means that any schedule at the
end of a route is going to be somewhat unreliable. For the
route shown in Figure 9 the standard deviation at the last stop
is roughly 10x greater than at the first stop.

Due to the high variance at later stops, we cannot rely on
k-means clustering alone in order to produce a good schedule
estimate for every stop along the route. Below, we define the
problem formally, and present our solution. In short, we use
k-means clustering on data from the first stop to determine its
schedule, and compute downstream schedules from a combi-



nation of the first-stop schedule and the estimated travel time
from the first stop at a given time of day.
6.1 Problem Description

The input to the schedule extraction algorithm is a
set of stops S = {s1, ...,s|S|} and a set of trips TD =

{T D
1 ,T D

2 , ...,T D
|TD|} on day D along a route, where each trip

T D
i contains a series of arrival times, one per stop along the

route T D
i = {ai

1,a
i
2, ...,a

i
|S|}. When considering only a single

trip, we simplify our notation for arrival times to as where s
is the stop.

The schedule extraction problem is given T, produce a set
of schedule times KD′

s = {ks
1,ks

2, ...,ks
|T ′D|}, where ks

i is the
i’th scheduled arrival time at stop s, and D′ is either the day
of the week, or one of the set {weekday,weekend}. For ex-
ample, Figure 7 plots ai

1 (the arrival time points) for a range
of i over all D, and k1

i (the horizontal lines) for the same
range of i.
6.2 Estimating the First-Stop Schedule

As mentioned above, we produce only the first-stop
schedule K1 from the raw arrivals T D

1 . Schedules K2...K|S|
are derived from K1 and the mean trip times for the time of
day, as described in the next subsection.

To extract the intended first stop arrival times, we use k-
means clustering over all arrival times ai

1 in all trips Ti. We
choose our value for k to be median(|T D|), the median num-
ber of trips observed on this route per day. The choice of ini-
tial values has a significant effect on k-means performance.
After experimenting with several initialization methods from
[30], we settled on the max-min approach described in [23].
This approach initializes k seeds incrementally, choosing the
next seed from ai

s which is furthest away from the current
collection of seeds. After we compute the k-means clusters,
we have an accurate estimate of K1, as shown in Figure 7.
6.3 Deriving K2..|S| from K1 and Mean Times

For two stops i, j and trip t, we define

travel time(i, j, t) =
1
|D|∑D

at
j−at

i, (1)

the mean arrival time difference for trip t between stops i, j
over all days in D. Given the schedule for the first stop, K1,
we can then compute the schedule for a later stop s as Ks =
{ks

1...k
s
|T D′ |} where

ks
i = k1

i + travel time(1,s, i) (2)

As illustrated in Figure 9, the travel time variance increases
as the bus travels further down the route, meaning the sched-
ule will be increasingly inaccurate. Unfortunately, this is the
nature of bus travel during traffic congestion—our goal is
simply to produce the best schedule estimate.

Figure 10 illustrates an example output from the solution
described above. Here, the black lines represent the sched-
ule estimate computed from the first-stop departure schedule
and the mean travel time from the first stop. The resulting
schedule shows reasonable arrival time intervals and a good
fit with the raw data.
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Figure 10. The schedule (horizontal lines) for the last stop
based on the first stop schedule and mean travel time.
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Figure 11. Mean wait times for a selected bus route for
several training set sizes and the official CTA schedule.

6.4 Extracted Schedule Accuracy
We evaluate the extracted schedule using actual CTA bus

arrival time traces. For this evaluation, we repeatedly choose
a random bus stop and time, and use our extracted schedule
for that stop to predict when the next bus is due to arrive.
To simulate the experience of a typical bus rider, we “arrive”
at the bus stop 2 minutes before the scheduled arrival time
(building in a small margin of error—2 minutes was found
to be the best value), and then wait until the next bus actually
arrives, based on our recorded bus arrival time traces.

We refer to this as the wait time—if a passenger arrived at
the stop based on the schedule, this is how long they would
actually have been waiting for the bus to arrive. To see how
the size of our training set impacts performance, we eval-
uated schedules generated from one week, two weeks and
one month of data. For a given route, we performed this
test 5,000 times and recorded the mean wait time for each
schedule. As shown in Figure 11, the extracted schedule
actually outperforms the official CTA schedule, potentially
saving travelers an average of over 30 seconds. However,
note the absolute values on the y axis: even our most accu-
rate schedule, based on one month’s worth of data, does a
terrible job at accurately predicting arrival times. Using the
schedule for guidance, the mean time spent waiting for a bus
is over 8 minutes.



"Unknown" state

Figure 12. Route-matching Hidden Markov Model.
Transitions between routes are only possible through the
unknown state.

Given the inadequacy of static schedules in predicting bus
arrival times, real-time transit tracking and arrival time pre-
diction is clearly called for. In §7.2, we evaluate the accuracy
of a simple real-time arrival time predictor, and compare this
to using the static schedule.

7 Online Processing: Route Classification and
Arrival Time prediction

The online processing components combine the routes,
stops and schedules produced in batch processing with the
recent GPS trace of a vehicle, to (a) determine if the vehicle
is in service (and if so, on which route) and (b) estimate the
arrival time of the vehicle at subsequent stops. Below, we
describe how this is done.
7.1 Route Classification

Given a sequence of GPS points G = {g1, ...,gt−1,gt}
recorded up until time t, and a set of candidate service routes
R, our goal is to determine whether the vehicle is currently
driving route r ∈ R. Assuming a vehicle serves at most one
route in each uninterrupted drive, this can be determined by
computing, for each route r,

dist =
1
|G| ∑

i=1..|G|
dist(gi,r), (3)

where dist(gi,r) is the minimum distance between point gi
and any segment of route r. To reflect a more realistic usage
model, we need to relax these assumptions as follows:
• Vehicles may serve multiple routes in a single drive.

• Vehicles may change between in-service and out-of-
service within a single drive.

• Vehicles may occasionally detour around closed roads
or accident sites.

Thus, rather than make a single decision for an entire
drive, we need to determine the status of each vehicle in an
online fashion, as new GPS points arrive. To do this, we
make use of Hidden Markov Model (HMM) map matching
[24, 32], with a map constructed from the known routes, as
illustrated in Figure 12. Here, the segments of each route are
added as separate states, creating overlapping road segments
where routes coincide, with no direct transitions between
routes. Transition and emission probabilities are left unmod-
ified, except for the introduction of a single “unknown” state,
representing out-of-service driving and detours, and serving
as a place-holder for transition between routes. Transitions
are possible from each state to the unknown state, and from
the unknown state to every other state, though the probability
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Figure 13. Classification performance of HMM-based ve-
hicle classifier, using one month of labeled data from the
UIC campus shuttles.
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tern or route classification was made.

is a small non-zero constant. The emission probability of the
unknown state is a small non-zero constant as well.

We use the Viterbi algorithm to decode the most proba-
ble sequence of states. As a consequence, once a vehicle
is classified as belonging to a given route, it will remain in
that state as long as it follows the route somewhat closely,
independent of overlaps with other routes. Once it diverges
significantly, it will either transition to the unknown state and
stay there (if it is now out of service), or transition to the un-
known state and then to another route (if it is now serving a
different route).

We evaluate our HMM-based vehicle classifier on one
month of labeled GPS trace data from the UIC campus shut-
tles. Specifically, we first split the labeled trace data into in-
dividual drives of each route. Then, for each drive we select
a random starting point and run through the trace, measuring
the distance traveled until a route classification is made. If
we travel more than seven kilometers without making a route
classification, we treat the route as “unclassified”.

Out of our six routes, two are extended versions of two
others. The existence of several different patterns belong-
ing to a common route is a regular occurrence in transit net-



works. Typically, the variation served by a given vehicle de-
pends on the time of the day, or the day of the week, which
means they can be distinguished based on time, in combina-
tion with the spatial matching discussed here. To give an ac-
curate picture of the route matching algorithm’s performance
in the face of such variations, we evaluate the accuracy of
both unique pattern determination as well as aggregate route
determination for these routes. To make the route or pattern
classification decision, we analyze the Viterbi state proba-
bilities with every new GPS point. When the most proba-
ble route/pattern is 10× greater than the next most probable
route/pattern, the algorithm makes its determination.

Figure 13 shows the overall performance of our HMM-
based vehicle classifier for route and pattern determination.
We see see that 97 and 96 percent of the time we are able to
correctly classify the route and pattern, respectively. We can
also see that 1 percent of patterns and 0 percent of routes are
incorrectly classified, while 3 percent of patterns and routes
remain unclassified after 7 kilometers of driving.

From this, we can see that the algorithm is, with high
probability, eventually able to accurately determine the route
and pattern driven. But how long does it take to make this de-
termination? Figure 14 is a CDF of the distance traveled be-
fore a decision was made. As expected, routes are classified
more quickly than patterns, as no pattern classification can be
made without taking time into account, until the patterns for
a given route diverge. In 75% of cases, 500 meters of travel
is sufficient to distinguish the route traveled. For routes with
patterns that largely overlap (as is the case here), or for routes
that overlap substantially, the distance that needs to be trav-
eled can be significantly longer. In conclusion, the perfor-
mance of route classification depends heavily on the amount
of overlap present in the transit network in question, as well
as the typical driving patterns of transit vehicles. Once a
decision is made, it will remain until the vehicle leaves the
route. Hence, the initial classification delay is incurred only
at the beginning of each shift.

7.2 Arrival Time Prediction
Arrival time prediction continuously estimates the next

arrival time of a vehicle serving route r at stop si given
a schedule estimate and (when available) the current loca-
tion(s) of vehicles currently serving the route. Typical cir-
cumstances under which the current vehicle location may be
unavailable or insufficient include:

• The first trip of the day, before any vehicle has started
serving the route.

• The first several stops of the route, when the next vehi-
cle has not yet departed the first stop.

• The last trip of the day. Here, a schedule is needed to
predict that the vehicle will subsequently be taken out
of service.

We assume that every vehicle serving the route is
equipped with a working in-vehicle device, and is reporting
its location periodically. If no vehicle is present on the route
preceding si, we estimate the arrival time based on the next
departure from the first stop s1 according to the extracted
schedule, plus travel time(s1,si, t), computed as described
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Figure 15. CDF of wait times for 5,000 real time arrival
predictions vs. the CTA schedule.

in §6. Conversely, if a vehicle is present, then the time un-
til the its arrival time at si is estimated based on the mean
pairwise travel time between its current location and si, com-
puted as

γ travel time(sprev+1,si, t)+
(1− γ)travel time(sprev,sprev+1, t),

(4)

where sprev is the most recent stop served, γ is the fraction of
the distance between sprev,sprev+1 already traversed, and t is
the current trip.

To evaluate the performance of our arrival time predictor,
we perform the same experiment described for the extracted
schedule. However, instead of consulting the schedule, we
use the arrival time predictor, based on the location of the
next bus that will arrive at the stop. Figure 15 clearly illus-
trates the benefit of incorporating real-time tracking when
predicting bus arrival times. Wait times are significantly re-
duced by the use of real time data, bringing the median wait
down from over 8 minutes to just 1 minute.

The reason behind this dramatic improvement can be seen
in Figure 9. The route used for this evaluation has a mean
service interval of approximately 15 minutes. Without real-
time tracking, each vehicle spends the majority of its time in
the latter parts of the route, where variance is high. With real-
time tracking and a 15 minute service interval however, the
bus is on average 7.5 minutes away from the stop in question.
Assuming the travel time variance is loosely a function of
travel time, it is easy to see from Figure 9 that the expected
variance (at 7.5 minutes out) is very small. Hence, no matter
where the bus is when we consult the predictor, we are likely
to get an accurate prediction.

8 From Paper Product to Production System
In this section, we briefly discuss additional steps required

to take the proposed system from its current form to produc-
tion use. We also briefly mention additional features that
may be incorporated to further improve the rider experience.

The system described thus far takes no manual input:
routes, stop locations, schedules, vehicle classification and
arrival time predictions are all based purely on unlabeled
GPS traces. As we have shown, our system is able to (with
the exception of stop locations and occasional slow vehicle



classifications) produce results similar to or better than data
entered by hand.

However, EasyTracker cannot produce the kind of transit
tracking system users have come to expect without a bit of
manual input. In addition to spurious stop locations, and the
occasional slow route classification, the system lacks several
kinds of annotations, such as stop and route labels, that tran-
sit riders would typically expect to see.

From a technical point of view, the stop extraction algo-
rithm tends to produce spurious stop locations at a number of
traffic lights and stop signs, and the vehicle classification al-
gorithm is sometimes unable to distinguish between similar
routes. These errors need to be corrected, either by additional
sensor modalities, or by human intervention.

Below, we discuss two optional system components: an
administrative web interface and a driver interface, that pro-
vide means of integrating a small amount of manual input
into the system to significantly improve the user experience.

8.1 Optional Management Interface
We propose to complement the automatic system with an

optional web-based management interface. The purpose of
this interface is to allow a dispatcher (or other office per-
sonnel) to enter additional, static annotations to the system
which cannot be automatically derived from GPS traces:

• Route labels, such as “Lakeshore Drive” or “Route 9A”.

• Stop labels, such as “City Hall, or “Roosevelt/Halsted”.
Reasonable stop labels can be synthesized from a road
map, but these may not correspond to the labels on stop
signs or in paper schedules.

• Accessibility information, such as “Elevator available”
or “Has bike rack”.

Through the management interface, the transit operator is
presented with the tools to correct mistakes, add route and
stop labels, and other relevant annotations. In addition, the
management interface may allow an operator that is aware of
impending route or schedule changes to proactively “reset”
selected routes, to avoid inertia in the acquisition of updated
routes and schedules.

8.2 Optional Driver Interface
In addition to the static annotations that may be entered

through the administrative web interface, drivers may op-
tionally be trained to provide additional information through
an interface on the in-vehicle device. Figure 16(b) illustrates
an envisioned driver interface. Here, the driver may manu-
ally override the automatic route classification in case of a
misclassification. Other data that the driver may be asked to
provide includes passenger occupancy, availability of seats,
room for wheelchairs/strollers, and bike rack occupancy.

To further improve the passenger experience, the smart-
phone may be connected to the vehicle speaker system to
provide voice prompts to passengers, notifying them of the
next stop. Finally, the smartphone interface may be used as
a means for central dispatch to communicate with the driver
in the form of text prompts when the vehicle is not moving.

8.3 Current Prototype System
Parts of EasyTracker are currently in use on the UIC cam-

pus shuttle system. Figure 16(a) is a screenshot of the web
interface we provide to campus shuttle riders today. In the
current prototype, vehicles are auto-classified as belonging
to a red, blue, purple or yellow route using the algorithm in
§7.1 and arrival times are predicted using the method in §7.2.
Routes, stop locations and schedules from §4–6 were manu-
ally corrected to remove any mistakes, and the colored route
map was drawn by hand.

9 Related Work
While transit tracking is already a popular service offered

by commercial providers, EasyTracker is to our knowledge
the first system that automates the entire process, from raw
GPS traces to a complete transit tracking and arrival predic-
tion system.

In [31, 10], a system for cooperative transit tracking is
described. Here, it is assumed that the routes and schedules
are known, but that the transit agency is not willing to install
tracking devices. Instead, users cooperatively track transit
vehicles through software that automatically reports their lo-
cation when they are riding a bus or train. Extracting routes
and stops through crowdsourcing, in addition to cooperative
transit tracking, is an interesting direction, but outside the
scope of this paper. TransitGenie [7], developed by the au-
thors, is a transit navigation service for smartphones, which
computes route recommendations based on real-time transit
information, as opposed to static schedules. TransitGenie is
complementary to the transit tracking system described here,
in that it makes use of tracking information produced by ser-
vices like EasyTracker to offer travel advice.

9.1 Map inference from GPS traces
A large body of work exists concerning the problem of

inferring road maps from GPS traces, and the methods used
can be broken into three general categories: (a) k-means
[18, 26, 35, 8], which builds the road map using a series of
cluster seeds connected using the raw trace data, (b) trace
merging [25, 12], which incrementally merges together trace
data that is similar in location and bearing into a road map,
and (c) kernel density estimation [15, 13, 28], which first
computes a kernel density estimate of the raw GPS data, and
then uses image-processing techniques to extract the road
map. In this paper, we build upon road maps extracted using
[15] to automatically extract accurate transit route shapes.

Many of these and related papers take a more fine-grained
approach to map inference than we used here. For our
purposes a map with bi-directional edges for roads, and t-
junctions for intersections was sufficient. However, many
authors [18, 26, 19, 14] focus considerable attention on iden-
tifying individual lanes, and re-constructing complex inter-
section geometry. While simple transit route maps do not
necessarily require the modeling of such road features, if
there were a need for them, techniques do exist in the lit-
erature for extracting and generating such details.



(a) Screen shot of current EasyTracker prototype, currently in production use on the
UIC shuttle bus system.

(b) Envisioned driver interface for
optional manual input and com-
munication with dispatch.

Figure 16. User interface of our existing prototype system, and an envisioned smartphone driver interface.

9.2 Arrival Time Prediction
In 7.2 we present a very simple arrival time prediction

system that relies on the schedule and mean trip times com-
puted in 6.3. While this technique produces favorable re-
sults, more sophisticated bus arrival time prediction methods
can be found in [11, 33] and [29].

9.3 Other Related Work
Classical non-parametric density estimation is explained

in more detail in [17]. [19] considers the problem of detect-
ing road intersections from GPS data where a shape descrip-
tor is used to represent the distribution of GPS traces around
a point. Related work on surface street traffic monitoring is
described in [37].

10 Conclusion
We have presented EasyTracker, an automatic system for

low-cost, real-time transit tracking, mapping and arrival time
prediction. Based on our experience with building a campus
shuttle tracking system for our University, we have found out
(the hard way) how labor intensive the collection of this data
can be. To address this problem, we have demonstrated how
high-value data such as routes, stops, and transit schedules,
can be computed automatically from simple GPS traces. Our
system produces high-fidelity route maps, extracts transit
stop locations, and constructs transit schedules that consis-
tently out-perform the official schedules produced by the
Chicago Transit Authority. Last but not least, EasyTracker
provides accurate transit tracking and real-time arrival time
predictions, all without manual intervention.
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