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Abstract — With the proliferation of online social networking
(OSN) and mobile devices, preserving user privacy has become a
great challenge. While prior studies have directly focused on OSN
services, we call attention to the privacy leakage in mobile network
data. This concern is motivated by two factors. First, the preva-
lence of OSN usage leaves identifiable digital footprints that can
be traced back to users in the real-world. Second, the association
between users and their mobile devices makes it easier to associate
traffic to its owners. These pose a serious threat to user privacy
as they enable an adversary to attribute significant portions of data
traffic including the ones with NO identity leaks to network users’
true identities. To demonstrate its feasibility, we develop the Tes-
sellation methodology. By applying Tessellation on traffic from
a cellular service provider (CSP), we show that up to 50% of the
traffic can be attributed to the names of users. In addition to reveal-
ing the user identity, the reconstructed profile, dubbed as “mosaic,”
associates personal information such as political views, browsing
habits, and favorite apps to the users. We conclude by discussing
approaches for preventing and mitigating the alarming leakage of
sensitive user information.

Categories and Subject Descriptors
C.2.0 [Computer-communication networks]: General–security
and protection

Keywords
privacy;security;mobile network;user profile;online social network

1. INTRODUCTION
For a growing number of users, online social networking (OSN)

sites such as Facebook and Twitter have become an integral part of
their online activities. These OSN sites often function as launching
points for users to receive news updates and venture over to other
sites. In addition, many websites now have tie-ins with various
OSN sites, so that users can recommend news items or Web posts
via a simple click of Facebook’s “Like” or Twitter’s “Follow” but-
tons. With wide adoption of modern GPS-equipped mobile devices
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such as smart phones or tablets, as well as the emergence of vari-
ous mobile applications and services, information access is nearly
ubiquitous and literally at our fingertips.

With all the value and convenience it brings to our personal, so-
cial, and professional lives, this new era of mobile devices and on-
line social networking also presents a quandary to users: how to –
or is it even possible to – preserve privacy in this new era? Differ-
ing from their earlier incarnations, today’s OSNs require users to
register using their real names (at least in principle). In addition to
personal data, such as age, gender, photos, and friends, these sites
also track and record a variety of user online activities, such as
messages exchanged and content shared with others, articles read
and commented on, pictures browsed or video watched on the sites
and other affiliated sites. At the same time, when accessing OSNs
and mobile services on smart phones, users’ current physical loca-
tion may also be recorded and tracked due to the common use of
automatic updates of location-specific contents.

Privacy issues directly related to OSNs are well-known and have
been investigated by a number of recent studies [1,14,17,20,21,26]
— this is not the primary focus of our paper. This paper calls at-
tention to another important aspect of the privacy leakage problem:
namely, the potential danger to user privacy posed by a third party,
not simply by crawling data directly from OSN sites, but by gath-
ering digital footprints left by users in cyberspace. As we explain
next in more detail, the footprints can be collected by directly tap-
ping into the wire, as well as by extracting information from the
Web. Such a third party can be a hacker or a cyber criminal, a rogue
employee in a cellular service provider (CSP) or an Internet service
provider (ISP), a state agent of an authoritarian government, or any
other “big brother” entities. Government agencies may target for
surveillance or espionage. Other attackers may target to monetize
user information by launching personalized spear-phishing attacks
or spamming campaigns.

While extracting information from wireless or wireline packet
traces is well explored, the prevalence of mobile devices and OSNs
brings new possibilities that did not exist before: (i) Because such
a device is typically tied to a specific user or a small, closely re-
lated user set, it is easier to associate traffic to specific users, e.g.,
via the spatio-temporal locality of user activities. Moreover, the
prevalence of user OSN activities means that it is now plausible
to further attribute traffic to an identifier used in the real-world,
such as a user’s first and last name extracted from her OSN profile,
instead of simply using IP addresses or pseudonyms (e.g., email
addresses) as before. (ii) With the real identifiers of users, one can
paint more complete portraits of them by gleaning their network
activities from the traffic, and then combining them with the data
available on the Web, such as the users’ OSN profile pages. (iii)
Furthermore, the availability of GPS and other location informa-
tion in mobile cellular data makes it possible to tie users’ cyber
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activities to their presence in the physical world. Given the factors
above, we see that the confluence of smart phones and OSNs ren-
ders the ability to glean personal information from mobile data a far
more potent threat to user privacy than attacks on each individual
service. An important question motivates our work: Is this concern
merely hypothetical or real?

It is with this question in mind that we set out to study the privacy
leakage problem from a network. Our goal is to first quantify the
amount of privacy leakage in the online digital footprints left by
users, and then characterize to what extent a third party may gather
useful personal information from these disparate digital pieces. We
refer to this problem as constructing a mosaic of a user from her
online digital footprints, and correspondingly refer to the gathered
footprint pieces as tesserae.

To demonstrate that this is indeed feasible, we develop a novel
methodology referred to as Tessellation. Through Tessellation, we
show how user identity information such as OSN IDs and device
tracking cookies can be extracted from the traffic. Furthermore,
we describe how the remaining pieces of traffic with no identity
leakages can be attributed to the known user identities. Finally,
with the additional information gleaned from the Web (e.g., data
disclosed by the user in his/her OSN sites or by other sources),
we further corroborate and augment the “mosaic” of online user
portraits.

While Tessellation can be ran on any network, given the growth
and ubiquity of mobile devices, in this work, we choose to focus
on the privacy issues in mobile networks. From our evaluation on
data trace collected from a CSP, Tessellation can attribute 50% of
traffic to the owners with only 5% error. Optionally, the coverage
can be increased to 80%, with just a 2% increase in the error rate.
Using our methodology, we were able to create mosaics for more
than 16,000 users and classify their personal information into 59
categories including user demographics, locations, affiliations, so-
cial activities, interests, etc. Our work makes the following specific
contributions:
• We show that detailed personal information, even from traffic

with NO obvious identity leaks, can be extracted and intelli-
gently gleaned by any third party with access to the wire. More
importantly, the third party can do this without direct mappings
between network flows and their owners, and without informa-
tion from full packet payloads.

• We design the Tessellation methodology that automatically brings
together isolated pieces of mobile users’ personal information.
Using Tessellation, one can collect this information, even when
the user activities are spread over different dynamic IPs, differ-
ent devices, and over different time periods.

• We show that the combination of information reveals far greater
knowledge of users than what can be obtained individually.
Further, we quantify the amount of leaked information as a
function of the duration of the vulnerability and number of
compromised IPs, compare the information disclosure from net-
work traffic versus public OSN profiles, and present case stud-
ies on how one can learn aspects of a specific user or user group.

Vision of mosaic. Our objective is to call attention to the poten-
tial risk to user privacy due to the personal information leakage
in network data. Our work highlights the potential danger to user
privacy posed by the prevalent usage of OSNs and mobile smart de-
vices, both of which make it easier for a powerful and sophisticated
adversary to attribute data traffic to specific users in the real-world
and glean personal information about them. As illustrated by our
Tessellation methodology, such capability is facilitated, in part, by
some shortcomings of certain OSN design, as well as by the fun-
damental limitations of the current Web and Internet from a user

privacy perspective, such as cookie mechanism used by the state-
less HTTP protocol. Based on our analysis, in §5.4, we suggest
possible countermeasures to safeguard against the alarming leak-
age of private information.

2. PRIVACY LEAKAGE IN MOBILE DATA

2.1 Motivation
The popularity of OSNs has increased the amount of sensitive in-

formation leaked into the network. On any day, a user (i.e., Alice)
may get onto the Internet using different devices over time: smart
phones, tablets, or laptops. Even on a single device, her IP address
will be allocated dynamically and randomly, depending on her mo-
bility, traffic pattern, and the policies of her ISP/CSP. However,
even though the IP address may change, Alice will be accessing
the same sites. As a result, every time Alice logs on to the OSN
sites and performs a variety of online activities, she leaves “islands
of digital footprints” in the networks. Such digital footprints, once
collected, can potentially be pieced together by someone to paint a
digital “mosaic” of Alice and learn a lot about her.

Attack model. Clearly, the aforementioned danger to user
privacy depends on one’s ability to collect network data contain-
ing user “digital footprints”. A powerful and sophisticated adver-
sary may be capable of tapping into the wire, listening “in the air”
[23, 24], or gaining access to stored network traffic (e.g., archived
pcap files). The adversary can be a rogue employee in a CSP, a
state agent, or a hacker. Even though an employee inside the origin
CSP of a user can directly acquire user information through billing
databases, such records are not available for employees present in
transit Autonomous Systems (ASes). Given that network traffic, es-
pecially towards popular OSNs and e-commerce sites, is unlikely to
remain local, any transit AS with access to traffic has the potential
to launch such attacks. Government agencies have a similar obser-
vation point when they cannot directly collaborate with an origin
ISP (e.g., CIA vs. a Middle-Eastern ISP). Agencies can acquire
raw traffic data from a transit AS or even re-route traffic by launch-
ing a BGP/IP hijacking attack. Although such activities have not
been publicized, they are theoretically possible. Finally, a hacker
can perform Tessellation by gaining access to stored data collected
from any network, such as [22], without direct access to ISP-wide
traffic.

Goals of the attack. Government agencies may aim for surveil-
lance or espionage. To this end, they can de-anonymize and track
users using our proposed methodology. Other attackers may aim
to monetize user information. By leveraging the profiles and inter-
ests of users, one can spear-phish a focused group of targets. For
example, an attacker may gather information about a user, so as to
craft a personalized email to trick the user into clicking a malicious
URL. As we show next in this paper, one can collect such personal
information about a user even with partial information of layer-7
headers (as our data do not have full packet payloads). Details of
our datasets are provided in §2.3.

Assuming that an adversary has the ability to collect the CSP
data, we address the following two intertwined questions in this
paper: First, is it feasible to utilize users’ OSN activities (and user
identifiable information that may be leaked through such activities)
to extract and attribute users’ digital footprints to individual OSN
users? Second, if the answer to the first question is affirmative,
then how much and what type of information can be gleaned from
the data, assisted and corroborated by whatever public information
about the users available on the Web?

The first question essentially asks if we can associate network
traffic to individual OSN users. A naive approach to address this
question is to rely on the fact that many OSN sites incorporate the
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Naive approach Our approach
OSN ID Extraction Traffic attribution Activity analysis

Traffic coverage(%) 2.4% 49.8% 78.6%
Error(%) 0.0% 5.5% 7.5%

Table 1: Increase of traffic coverage in our approach
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Figure 1: Personal information gain in our approach

user identifiers in HTTP headers (e.g., cookies) as plain text. There-
fore, one can extract such OSN identifiers and directly assign those
flows to an OSN user. We quantify this in Table 1, where we show
that the amount of traffic attributed to OSN users by this naive ap-
proach compared to our proposed Tessellation approach. As we
see, only 2.4% of the traffic is covered by simply identifying traf-
fic with OSN IDs. Intuitively, we observe low coverage because
OSN IDs are only leaked during some authentication phase, which
comprises a relatively small fraction of the traffic.

In our Tessellation methodology, we devise a simple yet novel
analytic to automatically associate traffic with no identity leakage
to specific OSN users. As shown in the two columns titled “our
approach” in Table 1, Tessellation can attribute almost half of the
traffic to its owners with a small error of 5%. We can even raise the
coverage rate to 78.6%, at the cost of an additional 2% error.

Regarding our second question, Figure 1 shows the information
gained by crawling the public OSN profile of users (using the ex-
tracted OSN IDs) compared to the outcome of running our com-
plete Tessellation methodology. As we see, various user attributes
can be obtained from OSN profile pages, including demograph-
ics (e.g., name, gender, birthday), location (e.g., city, state), in-
terest in entertainment (e.g., favorite music, TV), etc. Unfortu-
nately, this source of information carries inherent limitations of
the OSN profiles – they are static (e.g., interests a user declared
at the time of joining the OSN) and coarse-grained (e.g., loca-
tion information only up to city level). However, with Tessella-
tion, the information gained from combining raw traffic analysis
corroborates and compliments the OSN profile information and re-
veals a wider variety of user activities (i.e., device information, so-
cial associations, e-commerce activities, etc.). Moreover, it brings
finer-grained and dynamic information, such as GPS coordinates of
users’ with timestamps, news, or shopping sites frequently visited,
as well as videos users just watched. The full breadth of informa-
tion extracted by Tessellation is the topic of a later section (§5.2).

2.2 Overview of Tessellation
Traffic attribution. Figure 2 overviews the workflow of “Traffic
Attribution” of Tessellation (§3). Given a set of Layer-7 flows on
a client IP address (marked as vertical lines in the figure), the first
step of Tessellation, OSN ID extraction, extracts traffic that leaks
OSN user IDs (marked with triangle flags). While dynamic IP as-
signment scatters a user’s mobile traffic to multiple IP addresses in
the long-run, the same IP address stays with the same mobile de-
vice for a short period until the device becomes idle for at least a
few seconds. Leveraging this feature of mobile data networks, the
second step, Session block generation, segments traffic on each IP
address into blocks of generally short durations (shown as blocks
in the second row of Figure 2). The challenge now becomes how
to associate and attribute appropriate traffic blocks to individual
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Figure 2: Example of traffic attribution in Tessellation

OSN users. In step three, Culling of traffic marker, we take advan-
tage of ubiquitous cookies and related HTTP header fields (collec-
tively referred to as traffic markers) that are used by Web services
to keep track of users and devices (marked as square flags in the
third row). Finally, in the fourth step, Traffic association, we asso-
ciate the blocks that do not have OSN IDs (but have traffic markers)
to the OSN users by connecting them through a block that has both
OSN IDs and traffic markers (darkened block shown in the bottom
of the last row). In the example, flows in the three blocks are now
attributed to a single user (OSN ID).

Mosaic construction. Once we attribute traffic to individual OSN
users, in the second stage, “Mosaic Construction”, of Tessellation
(§4), we attempt to mine and collect various kinds of user infor-
mation that might be of interest to an adversary. For this, we con-
duct user activity analysis based on the DNS names associated with
various services/sites they visit, classify them, and analyze users’
distinct Activity Fingerprints. Furthermore, aided by the service
classification, site-/service-specific information mining can be per-
formed to gather specific types of information or interests (e.g.,
GPS locations, device information, etc.). Such information gath-
ering is further augmented by crawling the Web (e.g., public pro-
files of OSN users). When combining information from all of these
sources, we show that it is indeed possible to construct a “well-
connected” content-rich user mosaic.

Figure 3 details the workflow of the proposed Tessellation. Next,
in §3 and §4 we cover the Traffic Attribution and Mosaic Construc-
tion parts, respectively.

2.3 Dataset Description
Throughout this paper, we use network packet traces collected

within the cellular data networks of two major CSPs (CSP-A, CSP-
B). The main dataset used in this paper was collected from a back-
bone router of CSP-A for three hours, from 15:30 to 18:30 UTC
in spring 2011 (referred as 3h-Dataset). The dataset contains all
traffic from a subset of areas in the North America the CSP serves.
The data contain both layer-3/4 packet headers, as well as layer-7
headers, and span over 65,000 client IPs. We also have a second
dataset collected from another backbone router of CSP-A in winter
2011, which lasts for 9 hours (the 9h-Dataset) with 340,000 client
IPs but contains primarily layer-7 HTTP headers.

The third hour-long dataset (Ground Truth Dataset) is collected
from the content billing system of CSP-B in the summer 2012. Dif-
fering from the first two, this dataset provides details of beginning
and ending time of users’ Remote Authentication Dial In User Ser-
vice (RADIUS) protocol [27] which associates each user with an
ID for pay-per-use billing purpose. Because of its short duration,
we only use the Ground Truth Dataset for accuracy evaluation.
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Figure 3: User mosaic construction via Tessellation

Data preprocessing. We analyze raw network traffic traces by first
grouping packets into 5-tuple TCP/UDP flows using the standard
TCP-level flow re-assembly. According to the specific protocol,
the 5-tuple flows are then further parsed into (application) sessions,
which are defined as a layer-7 interaction with one or more layer-
4 connections. For example, all HTTP requests and replies of the
same persistent TCP connections are grouped into a single HTTP
session. Similarly, TCP flows belonging to an SMTP transaction
become a single SMTP session. Likewise, UDP flows to the same
DNS access turn into a DNS session. All traces were analyzed
using the Narus Semantic Traffic Analyzer (STA) tool.
Challenges with mobile traces. Given the growth and ubiquity of
mobile devices, in this paper we focus on mobility traffic of CSPs
rather than static ISP traffic.Mobile traffic contains considerable
amount of sensitive information that is important to our analysis,
but at the same time, its mobile nature brings significant challenges.
For instance, the dynamic nature of mobile IP assignment makes it
hard to rely on IP addresses for identifying traffic owners. On mo-
bile CSP networks, a client IP address of a device can change as
frequently as once every 30 minutes, rendering current approaches
of IP-based traffic associations ineffective [3]. Also, CSP traffic has
a larger portion of encrypted flows (44% of them being HTTPS [7]
in general) than that of some ISPs (3% HTTPS [10]). This fact
highlights a significant advantage of our methodology: even with
38% of our CSP traffic encrypted, we can still attribute ∼80% of
the unencrypted traffic to the users who generated it.

3. TESSELLATION PART I: TRAFFIC
ATTRIBUTION VIA LEAKED OSN IDS

Tessellation is the process of annotating sessions in the captured
network data to particular OSN user identifiers. In this section,
we discuss the steps of Tessellation, which are depicted in Part 1
in Figure 3. The coverage analysis and accuracy evaluations of
Tessellation are covered next in this section.

3.1 OSN ID Extraction
As mentioned in §2, the fact that many OSN sites “leak” their

user identifiers allows Tessellation to attribute traffic to real users.
In our paper, we focus on two popular OSN providers, labeled as
OSN1 and OSN2, which account for over 95% of all OSN accesses
in our datasets. Because each OSN has its own specific design,
discovering which bit-/character-strings in HTTP headers are used

OSN IDs Where to find Keywords Session coverage

OSN1 ID

HTTP URL: session_key=#####-<OSN1_ID>
166441/1.3%*.osn1domain.com

HTTP cookies c_user=<OSN1_ID>;
HTTP cookies m_user=email%3a<OSN1_ID>

OSN2 ID HTTP URL: oauth_token=<OSN2_ID>-##### 119849/1.0%*.osn2domain.com
HTTP cookies m_user=email%3aOSN1_ID

24147/0.2%Email IMAP:payload USER=email@domain.com
address POP3:payload LOGIN=email@domain.com

MSN:payload MSNMSGR=email@domain.com

Table 2: OSN User Identifiers

by an OSN for uniquely identifying each user (namely, user iden-
tifiers) so as to extract them automatically, is not entirely trivial. It
requires OSN-specific parsing and analysis.

Taking OSN1 as an example, a numeric identifier can be found
in either the URI or the authentication cookie, which is used as
part of a session key. In addition to the user ID, the mobile pages
of OSN1 (m.OSN1.com) use a cookie that also leaks the email ad-
dresses of users (m_user). For the purpose of Tessellation, both the
OSN1 ID and email address are considered as the OSN user iden-
tifiers, as they both uniquely identify an OSN1 user. In the case of
OSN2, the user identifiers can be found in the authentication token,
oAuth, included in the HTTP header field during user authentica-
tion. The numeric user ID is uniquely mapped to a user-generated
OSN2 screen name (user). See the snippet below as an example
where the boldfaced line contains a user’s OSN2 ID:

1 authorization: OAuth realm=“http://api.osn2.com/1/direct_messages.json”,
2 oauth_nonce=“1964799###”, oauth_signature_method=“HMAC-SHA1”,
3 oauth_consumer_key=“w1Gybt9LP9zG46mS1***”,
4 oauth_token=“<OSN2_ID>-OQyCfMaEcpYKQV7x***”,
5 oauth_timestamp=“########”, oauth_signature=“1Qt***”

In Table 2, we summarize the formats of common OSN1 and
OSN2 user identifiers and report their locations inside the HTTP
headers. Using the 3h-Dataset, which contains 12, 495, 482 (HTTP)
sessions, we find 12,420 unique OSN1 identifiers (users), which
show up in a total of 166,441 sessions (about 1.3% of all sessions).
Similarly, there are a total of 1,952 unique OSN2 identifiers (users),
that appear in 119,849 sessions (about 1.0% of all sessions). User
identifiers of other OSN sites can be extracted in a similar fashion.
However, since the identifiers from the two main sites comprise
95% of all observed IDs, we focus on OSN1 and OSN2 for our
analysis. Apart from the user identifiers used by OSN sites, other
user identifiers such as email addresses are often leaked by various
services and protocols (e.g., unencrypted Webmail, POP, or IMAP)
and can therefore be used as user identifiers for the purpose of traf-
fic attribution. We list some examples in the bottom part of Table 2.

3.2 Session Block Generation
As we show in Table 2, OSN sites tend to leak the identifiers of

their users. Even though, the sessions containing such identifiers
cover only a small fraction (2.5% in the 3h-Dataset) of all sessions.
In this section we illustrate how we can use these few sessions as
“anchors” to further expand our coverage of traffic attribution. To
achieve this, we use the observation that CSPs commonly assign
a single IP address to a device as long as the device is actively
sending traffic. Therefore, traffic activities occurring on the same
IP address within a short period of time are likely to belong to the
same mobile device. Next, we describe how we utilize this obser-
vation to segment traffic into session blocks that likely belong to a
single user.

At first, we begin with sessions from the same source IP address,
and then group the sessions into distinct blocks of contiguous ses-
sions using the following simple heuristic: two consecutive ses-
sions belong to the same block if and only if the “idle” period (i.e.
the ending time of the previous session and the starting time of the
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next session) between them is less than δ seconds, where δ is a pa-
rameter depending on the dynamic IP assignment scheme used by
the CSP. In other words, any two blocks (on the same source IP ad-
dress) are separated from each other by an idle period longer than
δ seconds. In our study, we use δ=60 seconds, based on the anal-
ysis of the idle period distribution and confirmed by conversations
with a network operator of the service provider. After applying
this heuristic to the 3h-Dataset, the initial 12, 495, 482 sessions are
segmented into a total of 99, 234 session blocks.

Some factors complicate the problem and may cause the above
heuristic to generate blocks that do not belong to a single user. One
factor is the presence of network address translation (NAT) devices
in the data. For example, phone tethering allows additional devices
(e.g., a laptop or a tablet equipped only with WiFi) to access the
Internet via a tethered mobile device. Another factor is that more
than one user may share a phone within a short period of time.

To address these challenges, we apply the following steps. First,
we filter out the blocks behind the NATed devices by testing for the
existence of heterogenous IP TTL (time-to-live) values in a block
as described in [4]. We also filter out the blocks shared by multi-
ple users by determining the existence of two or more distinct user
identifiers of the same OSN (e.g., OSN1) from a single block. Ap-
plying these methods to the 3h-Dataset, we find 563 blocks with
conflicting TTL or OSN IDs. They account for a total of 993, 171
sessions, with an average of 1, 764 sessions per block.

3.3 Culling of Traffic Markers
While only 22,366 out of 97,117 blocks in the 3h-Dataset con-

tain OSN user identifiers, intuitively we would expect that some
of the blocks that are close in time, even though they do not con-
tain any OSN user identifiers, are likely to belong to the same OSN
user. In order to identify and attribute other session blocks (with
no OSN identifiers) that are likely to be generated by the same
OSN users, we leverage HTTP cookies and other <key-value>
strings in HTTP headers, henceforth referred to as Traffic Mark-
ers. The traffic markers are generated and used by various Web
services to bring together stateless HTTP request/reply messages
and to keep track of the webpages users visited, user devices, or
the users themselves. The challenges are that there are a huge vari-
ety of site-specific traffic markers, many of which are dynamically
generated. For instance, a cookie’s value may change as a user is
tracked across pages within a website. Ideally, we would like to
cull only those that are longer-lasting, e.g., those that are used in
tracking users or their devices.

One naive way to cull traffic markers is to perform site-specific
analyses, which requires unscalable and error-prone manual in-
spection. To overcome this problem, we automate the process by
relying on the co-occurrences of OSN and other Web traffic within
those session blocks containing OSN user identifiers. First, we in-
troduce two important concepts: persistency and uniqueness.

Let U = {ui} be a set of (OSN) users discovered in the data,
where each user ui is defined by a set of OSN identifiers (e.g.,
OSN1 ID and OSN1 email address) she possesses. For simplic-
ity, we treat an OSN user and her identifiers equivalently. Let
M = {ml} be a set of potential candidate traffic markers, where
each marker ml is typically expressed in the form of <key-value>
pairs, i.e., ml � (kl, vl). We say that two (potential) markers
mh � (kh, vh) and ml � (kl, vl) are of the same type if kh =
kl but vh �= vl. Given a pair of (ui,ml), P(ui, ml) denotes
the probability that user ui and marker ml co-occur within a ses-
sion block. P(ui,ml) is empirically computed as the total dura-
tion of the blocks that contain both ui and ml divided by the to-
tal duration of all blocks containing any u ∈ U . Let P(ui) :=∑

ml∈M P(ui, ml).

Traffic marker Cate Where Keywords
domain -gory to find

admob.com Ad HTTP: X-Admob-ISUX-Admob-ISU
atdmt.com, msn.com, Ad HTTP:cookie muidbing.com
doubleclick.net Ad HTTP:cookie id
mydas.mobi Ad HTTP:cookie mac-id
google.com Sid HTTP:cookie sid
craigslist.org Uid HTTP:cookie cl_b
yahoo.com Uid HTTP:cookie c
scorecardresearch.com Tid HTTP:cookie uid
quantserve.com Tid HTTP:cookie mc
google-analytics.com Tid HTTP:cookie utmcc

Table 3: The top-10 most commonly found traffic markers

Uniqueness. Given a pair (ui,ml), where P(ui,ml) > 0, the
uniqueness of (ui,ml) (or simply, ml), denoted by Ψ(ui,ml), is
defined as Ψ(ui,ml) := 1−∑

j �=i:uj∈U P(uj ,ml).
From the above definition, if Ψ(ui,ml) = 1, candidate traf-

fic marker ml is uniquely associated with user ui. Otherwise,
the same marker has been associated with another user, signify-
ing that it is not a good traffic marker. Among all candidate traffic
markers uniquely associated with each user, many of them may be
“ephemeral” (e.g., change from one webpage to another or from
one user session to another). This leads us to define:
Persistency. Given a pair (ui,ml) (where P(ui,ml) > 0 and
Ψ(ui,ml) = 1), the persistency of (ui,ml) (or simply, ml), de-
noted by Π(ui,ml), is defined as:
Π(ui,ml) := 1−∑

h�=l:mh∈M P(ui,mh)/P(ui).

From the above definition, if Π(ui,ml) = 1 or Π(ui,ml) ≈ 1
(say, ≥ 0.9), the candidate marker co-occurs with ui almost all the
time throughout the observation period. Hence ml serves as a good
candidate traffic marker, and thus can be used to attribute other
session blocks that contain ml but not ui to user ui. In addition,
using this persistency property, we can automatically filter out most
session- or page-specific cookies whose values change from one
webpage to another or from one user session to another as their
persistency values are generally very low.

Applying our automated traffic marker culler to the 3h-Dataset,
we cull 625 types of traffic markers. Table 3 lists 10 types that are
most commonly seen in the data. Most of these markers are located
inside the cookie field of the HTTP header listed in the “Keywords”
column of the table. An exception, admob.com identifier, is found
in a specific string (‘X-Admob-ISU’) in the HTTP GET requests.
We use the total of 625 such traffic markers grouped into four cat-
egories based on the purpose they serve, i.e., advertisement (Ad),
personalized logins (Uid), tracking users (Tid), and tracking service
sessions (Sid). We see that most of them are used for tracking the
activity of users or for personalized advertising. The uniqueness
and persistency values of the top-20 traffic marker types are shown
in Figure 4. As expected, in the figure we see that the three OSN
identifiers satisfy Π = 1, Ψ = 1 by definition.

3.4 Traffic Attribution
After culling the traffic markers, we next piece together the ses-

sion blocks that are likely to only contain traffic generated by in-
dividual OSN users. Combined with the blocks annotated by the
OSN IDs, they form the building blocks based on which the user
mosaic will be pieced together (as we show later in §4.2).

Having the set of traffic markers M(ui) of user ui, traffic attri-
bution is straightforward: a block is attributed to user ui, if and
only if it contains either an OSN identifier of user ui or a traffic
marker ml ∈ M(ui).
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Tessellation Coverage Coverage per-user Accuracy on covered set
Ψsteps Session User Session (avg / 90%) Time (avg / 90%) Session User

OSN ID extraction 2.4% (297,358) 15.7% 14 / 7 11.8 / 8.3 [min] 100% 100% 1
Traffic attribution 49.8% (6,217,036) 43.2% 326 / 176 65.4 / 62.3 [min] 94.5% 99.3% 1
Activity analysis 78.6% (9,831,924) 69.0% 586 / 530 82.3 / 81.0 [min] 92.5% 96.4% 0.98

Table 4: Coverage and accuracy at each stage of the Tessellation
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Figure 4: Uniqueness Ψ and persistency Π for OSN identifiers
(grouped on the left) and top-20 markers (right)

3.5 Evaluation of Traffic Attribution
We evaluate the coverage and accuracy of traffic attribution using

the Ground Truth Dataset. As explained in §2.3, in this dataset we
have information to associate each session to a RADIUS user [28].
Figure 5 illustrates different example scenarios that may occur dur-
ing our inference. The examples show the sessions of an inferred
user (dubbed as Tessellation user) and how they compare with the
ground truth (RADIUS user). In our examples, Ri = (R1, ..., R6)
and Tj = (T1, ..., T5) denote the set of ground truth users and
inferred users, respectively. Next, we explain the examples of Fig-
ure 5 in more detail.

(a) Tessellation does not identify any sessions from R1. All these
sessions are considered as false negatives.

(b) Tessellation associates some sessions of R2 to T1 but some are
missed. This occurs when the sessions marked with “?” lack
enough evidence to be attributed to T1.

(c) Tessellation associates all of the sessions belonging to R3 to T2

(i.e., 1 : 1 match between Tessellation user and RADIUS user).
This is the ideal case.

(d) Tessellation maps the traffic from two or more users (R4 and
R5) to a single inferred user T3 (i.e., 1 : many match between
Tessellation user and RADIUS users). This is a misclassifica-
tion because Tessellation wrongfully associates sessions from
multiple users to a single real user.

(e) Tessellation infers some of R6’s sessions to belong to T4 and
some to T5 (i.e., many : 1 match between Tessellation users
and RADIUS user).

For brevity, we do not list the cases of (d) and (e) with partial
matches as they can easily be composed using the other examples.
With the above cases in mind, we evaluate the coverage and accu-
racy using the following two metrics.
Coverage (a.k.a. completeness). Session-level coverage is the
number of sessions that are given a prediction (i.e., sum of sessions
in all T s), divided by the total number of sessions. User-level cov-
erage is the number of ground truth users for whom Tessellation
identified all or a subset of their sessions divided by the total num-
ber of ground truth users. In the example in Figure 5, the only user
that has no coverage is R1.

T2

R3 R4 R5R2

T3T1

R6

T4 T5

? ?

Legend

Session R RADIUS user (Ground truth) T Tessellation user (Inference)

(a) (b) (c) (d)

R1

(e)

Figure 5: Five cases of scenarios occurring in the accuracy and
coverage measurement of Tessellation

The results of our coverage evaluation are summarized in Ta-
ble 4. The “coverage” column of the first two rows of Table 4
summarize the session and user coverage of Tessellation. A discus-
sion on the third row (Activity analysis) will follow in §4.1. At the
beginning of Tessellation, we only identify the sessions with OSN
IDs and the coverage is low at 2.4% out of 12,495,482 sessions.
User coverage is higher at 15.7% out of 22,862 users. This shows
that a large number of users falls into case (b) rather than (c) (see
Figure 5). By using the Traffic Attribution step we get a twenty-
fold improvement in session coverage. We see this in the second
row of Table 4, where the session coverage increases to 49.8%, and
user coverage increases to 43.2%. This is a significant improve-
ment because now we can associate half of the traffic (49.8%) with
the users who generated it.

To measure how much of users’ activities we capture, we include
per-user coverage statistics in Table 4. Specifically, we report the
average over all users and the bottom 90th percentile user ordered
by their number of sessions. At first, we see that just 14 sessions are
associated with each user on average. These sessions last for a total
duration of 11.8 minutes. With the traffic attribution, an average of
326 sessions is attributed to a user, lasting a total of 65.4 minutes.
For the bottom 90% of users, we also see a similar improvement;
average session coverage increases from 7 to 176 and time coverage
increases from 8.3 to 62.3 minutes. The results indicate that we can
now view hour-long activities of users without interruptions.

Accuracy on Covered set (AoC). Session-level AoC is the number
of correctly identified sessions (i.e., sum of sessions in T1, T2, T4,
T5), divided by the total number of predicted sessions (i.e., sum
of sessions in all Tis where i = 1 · · · 5). User-level AoC is the
number of correctly identified users (i.e., R2, R3, and R6), divided
by the total number of predicted users (i.e., T1, ..., T5).

The “accuracy” columns of Table 4 show the AoC of each stage
of Tessellation. At the OSN ID extraction stage, both the session
AoC and user AoC are 100% because the sessions being extracted
are only the ones with user identifiers. At the traffic attribution
stage, the session AoC and the user AoC slightly decrease to 94.5%
and 99.3%, respectively. The drop in the accuracy is due to the in-
stability of traffic markers with persistency Ψ < 1. Breaking down
the accurately inferred sessions into cases in Figure 5, 88.7% of
them fall into (b) or (c). The remaining 10.6% of them fall into (e)
indicating that not all of the users’ blocks could be entirely culled
into a single identity. Even if the mosaic of some users is incom-
plete, as we show next, the collected information allows the cre-
ation of detailed profiles with a number of practical applications.
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Service class Keywords Service provider
Banking bank wellsfargo, morganstanley

Blog blog, buzz huffingtonpost, boingboing
Book book barnesandnoble, half.com
Chat talk, chat, messenger skype, mtalk.google, aim

Dating personals, harmony, match plentyoffish, date
E-commerce warehouse, market, buy amazon, ebay, blockbuster

Education .edu, college, education medexch.med.unc.edu
Email smtp, imap, pop, exchange google, hotmail, yahoo

File hosting upload, download, ftp megaupload, dropbox
Gaming game, casino zynga, farmville, xbox

Map maps, virtualearth maps.google, wikimapia
Music music, radio, playlist pandora, itunes, zune
News news msnbc, ew, cnn
P2P tracker, torrent, mininova No specific domain

Picture picture, photo flickr, picasa.google
Search search google, bing, yahoo
Social social OSN1, OSN2, ning
Sports sports espn, bleacherreport
Travel travel, hotel, flight expedia, kayak, southwest
Video video netflix, youtube

Weather weather, forecast No specific domain

Table 5: Samples of service classes and providers

4. TESSELLATION PART II: CONSTRUC-
TION OF USER MOSAIC

In this part of Tessellation, we create profiles of users by extract-
ing key information from their sessions. The steps in this section
correspond to the last two blocks of Figure 3.

4.1 User Activity Analysis & Fingerprinting
We start by analyzing and classifying online activities that users

are engaged in, e.g., websites they frequently visit. For this, we uti-
lize the DNS names associated with various services, which often
provide a good indication of the category of activities that a user is
engaged in. For instance, mail.yahoo.com indicates that a user
is checking her email; www.youtube.com indicates that she is
likely to be browsing and watching videos online. By correlating
the DNS query traffic, we are able to map the destination IP ad-
dresses in the dataset to their corresponding DNS names. After
obtaining the DNS names, we further associate each DNS name
to a service class and a service provider. We adopt a similar key-
word matching scheme used in [12] to classify DNS names into 21
different service classes.

In the 3h-Dataset, we extract 54, 426 distinct domains and clas-
sify them into 21 distinct classes of services. In Table 5, we report
an illustrative summary of the service classes, keyword samples
used to classify DNS names into each service class, and service
provider samples of each class. Classifying the DNS names into
[service class, service provider] pairs reveals not only the types
of activities a user is engaged in, but also the preferred service
providers. Furthermore, it also enables us to study whether some
users have distinct fingerprints in their activities that can be used
for further traffic attribution, as we discuss below.

We are interested in obtaining a subset of services (e.g., the most
frequently accessed services) used by a user that can “fingerprint”
the user with high confidence. In other words, these services rep-
resent a distinct activity pattern that distinguishes the user from all
other users. For each user ui ∈ U , let sji be the combination of a
service class and a service provider identified from ui’s traffic by
our DNS name classification (each sji is a [service class, service
provider] pair). Let S(ui) be the list of distinct sji s associated with
the traffic generated by the user, such that S(ui) := {sji}. Be-
cause S(ui) contains all the sji including the ones user ui visited
only once during our observation, considering the entire S(ui) may
introduce inconsistency in determining user ui’s activity pattern.

To consider the most representative activities of ui, we use the
top k most frequently accessed services, Fi ⊆ S(ui), where its
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length |Fi| = k. We refer to Fi as the activity fingerprint of user
ui. Figure 6 shows the cumulative distribution of the user activity
fingerprint lengths for all users in the 3h-Dataset. As expected, the
number of users with an activity fingerprint length greater or equal
to k diminishes as k increases. For example, about 60% of the
users have an activity fingerprint of length longer than 3; whereas
only about 20% of the users have an activity fingerprint of length
longer than 8. Clearly, the longer an activity fingerprint, the more
likely it will be uniquely associated with a user.
Uniqueness. Let Sk := {uj ∈ U ||S(uj)| ≥ k} and Fk

i :=
{uj( �= ui) ∈ U |S(uj) ⊇ Fi}. In other words, Sk is the set of
users whose activity fingerprint length is at least k, and Fk

i is the
set of users (other than ui) whose activity fingerprint contains Fi

as a subset. Analogous to Ψ in §3.3, we define the uniqueness of
Fi as follows: Ψ(Fi) := 1− |Fk

i |/|Sk|. The closer Ψ(Fi) is to 1,
the more distinct Fi is as an activity fingerprint of user ui.

Using the 3h-Dataset, Figure 7 plots Ψ(Fi) with Fi := S(ui)
for users whose activity fingerprint length k ranges from 4 to 8.
For each k, the x-axis represents the Fis, ordered in decreasing
value of Ψ(Fi) (the y-axis). To allow comparison across different
ks, the scale of x-axis is normalized by the total number of Fis so
that its range is [0,1]. We see that as k increases, overall Ψ(Fi) gets
to closer to 1, which is expected. If we read Figure 7 together with
Figure 6, we can see a clear tradeoff: with a larger k, the distinct-
ness of an activity fingerprint Ψ(Fi) increases. On the other hand,
the utility of a longer activity fingerprint decreases with k, as fewer
users have an activity fingerprint with length ≥ k. (Furthermore,
it requires a longer observation period to “fingerprint” a user’s ac-
tivity pattern and/or to attribute an unknown traffic block.) From
the figures, we see that a good choice for k is 5, which guarantees
a reasonable 40% user coverage while ensuring that 85% of such
fingerprints have Ψ ≥ 0.98. Hence, using such an activity finger-
print, the probability that we erroneously attribute the activities of
one user to another is at most 2%. Additional criteria may be used
to reduce such fingerprinting or attribution errors, for example, by
imposing certain closeness in time constraints.

Revisiting Table 4, the last row shows the coverage and accu-
racy after considering additional session blocks (with neither OSN
identifiers nor traffic markers) attributed to users using their activity
fingerprints. By setting k = 5 which yields Ψ = 0.98, we see that
the session coverage increases by 28.8%, from 49.8% in “Traffic
attribution” to 78.6% in “Activity analysis.” The user coverage in-
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Tessera Sub-classes
Demo- Name Email addresses Screen name Birthday Phone number Gender Web page Profile picture

graphics (12420/78.7%) (5336/33.8%) (1696/10.8%) (665/4.2%) (138/0.9%) (9159/58.1%) (389/2.5%) (11758/74.5%)

Location Current residence Prior residence Coordinates Zip code Time Zone City, state
(4882/30.9%) (4472/28.3%) (618/3.9%) (618/3.9%) (1090/6.9%) (1083/6.9%)

Affiliation Employer Current employer Prior employer
(308/2.0%) (2920/18.5%) (682/4.3%)

Education Current school Prior school High school College Visit to .edu
(1395/8.8%) (2257/14.3%) (4387/27.8%) (2291/14.5%) (153/1.0%)

Social OSN1 friends In relation with Email exchanges Chat OSN2 followers Info. obtained from
Association (6476/41.1%) (339/2.1%) (38/0.2%) (7163/45.4%) (1696/10.8%) public OSN profiles.

Social OSN Dating Blog Info. obtained by activity
Activity (10492/66.5%) (372/2.4%) (946/6.0%) analysis on data trace.
News Search Search Queries News Map Weather Info. obtained from both data

Information (4456/28.2%) (1256/8.0%) (2045/13.0%) (1954/12.4%) (1351/8.6%) trace and public OSN profiles.
Content File hosting P2P applications

Exchange (2835/18.0%) (295/1.9%)
Enter- Game Travel Favorite team Sports

tainment (1661/10.5%) (237/1.5%) (1376/8.7%) (310/2.0%)
Art & Music Music genre Video Book Picture Religious views Political views

Culture (5298/33.6%) (533/3.4%) (5276/33.4%) (2722/17.3%) (770/4.0%) (351/2.2%) (280/1.8%)

E-commerce Shopping Shopping categories Shopping queries Banking
(3745/23.7%) (451/2.8%) (44/0.2%) (1121/7.1%)

Device & Device name OS types App info Is hotspot Traffic info Session info Timing info
Traffic (15775/100%) (15775/100%) (15775/100%) (1037/6.5%) (15775/100%) (15775/100%) (15775/100%)

Table 6: Tesserae and sub-classes of Mosaic with number of users annotated
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Figure 8: Mosaic of an exemplary user Alice

creases by 25.8% to 69.0%. An average of 586 sessions get labeled
with a user, and on average those sessions last for 82.3 minutes.
Session accuracy decreases by 2% as mentioned earlier and user
accuracy drops by 2.9% to 96.4%.

4.2 Tessellating the User Mosaic by Gleaning
Information from Various Sources

Here we describe the last step of the Tessellation methodology
(see Figure 3). In summary, to build the user mosaic, we glean in-
formation from the following two sources: (i) user activity analysis
as described earlier, which reveals not only the types of activities
a user engages in, but also how much time she typically spends
on each activity; and (ii) publicly available pieces of information
about the user that can be crawled from the Web (e.g., those volun-
tarily disclosed in her public OSN profiles). For the remaining of
this section, we describe this step using an example user from our
datasets, which we refer to as “Alice.”

Figure 8 shows a visual representation of the mosaic for Alice.
We broadly classify the personal information gleaned from the data
into twelve classes (tesserae), each of which contains a correspond-
ing set of sub-classes described in Table 6. The hue of the tesserae
indicates the amount of sub-class information gleaned. The darker
the color, the more information we learn about the user. In the
following, we present examples of the personal information that is
gleaned from the network traffic, as well as the information crawled
from the Web. For privacy concerns, we redact details that we deem
sensitive (e.g., OSN1/OSN2 IDs, physical addresses). For Alice,
both her OSN1 and OSN2 IDs are leaked, which allows us to com-
pare information across different OSNs and manually validate the
created profile. In fact, we observed that her OSN1 and OSN2 ID’s
co-occur in multiple session blocks. In addition, by comparing her

OSN1 and OSN2 public profiles, we find that the names, as well as
key demographic information, match.

In general, the “publicly available” information extracted from
crawling the OSN sites or searching the Web is at a coarser gran-
ularity and more static, as compared to the information collected
from network traffic. For example, a user may disclose in her
public OSN profile her city and state of residence, affiliation, ed-
ucation history, and her interests. But, typically, she will not dis-
close her precise home or work address, where she is right now,
whom she has just messaged, what songs she listened in the past
hour, and other pieces of information that are dynamic in nature.
In the case of Alice, by crawling her OSN1 page http://www.
osn1domain.com/profile.php?id=<OSN1_ID>,we find
her first and last name, the city where she lives in (City X, State
Y) and where she comes from (City Z, State Y), her favorite TV
shows (Sex and the city, etc.), and music artists (Bob Marley, etc.).
By querying the OSN2 API with her OSN2_ID, we obtain her OSN2
screen name and time zone (GMT −5 : 00, Eastern time). In her
profile, she does not disclose anything about her education back-
ground and searching the Web does not provide additional infor-
mation either. This is why the “Education” tile in Figure 8 has the
lightest color (white).

On the other hand, extracting information from the digital foot-
prints left by Alice in the network reveals a lot more about her.
From her activity analysis, we find that Alice spent 72% of her time
(1.93 hrs out of 2.66 hrs) in shopping goods in three different e-
commerce sites (craigslist, amazon, ebay). In the majority
of her remaining time (0.6 hrs), she moved back and forth between
osn1domain.com and an OSN1 game app. In the mean time,
her computer updated its OS from windowsupdate.com and
virus signature from symantecliveupdate.com in the back-
ground. Aided by the user activity analysis and classification, we
have also developed tools to mine and extract specific types of in-
formation. In the following, we provide some examples of such
information.

Location information. We identify various location-based ser-
vices (e.g., map search, weather) that periodically transmit the de-
vices’ location information to servers. We then extract the users’
coordinates in the from of longitude/latitude, and zip codes, along
with precise timing information. For example, using Alice’s cook-
ies from weather.com, we match keywords such as lat&lng
and extract her coordinate information over time. The extracted
GPS locations are within the 10 mile perimeter of City X, State Y,
confirming her residence as listed in her OSN1 profile. Moreover,
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as many automatically updating weather apps do, her GPS infor-
mation is logged every 30 minutes, allowing us to build a trajectory
of her whereabouts. For the first 1.5 hours (8:30-10:00am) of our
trace, she stayed near a highway interchange. The next coordinate
logs a shopping mall one exit south on the highway. Then after
30 minutes, her GPS indicates she returned to the first place she
was located (which we believe is her residence). As shown in this
case, a time-lapse analysis on the coordinates enables us to infer
the residence and work place of a user.

Social associations within and outside OSNs. The digital foot-
prints left by an OSN user can also reveal her social associations
and interactions not only within an OSN (despite such informa-
tion may not be disclosed in the public profile), but also outside
of the OSN. An instance of social association within an OSN is a
cyber-gift exchange: an HTML link to a game app’s micro-credit
transaction in OSN1 sent by a friend of Alice is shown as below:
<div onclick = "...InterstitialOverlay(’mystery
gift’, <friend ID>, <friend name>)">

Social associations outside OSNs may be discovered from things
like users’ email exchanges or instant messages (IMs). For exam-
ple, most instant messaging services transmit users’ email or nick-
names, as well as conversations in plain text as seen in the following
IRC snippet:
NICK:BOBxxx, USER:CHUCKxxx <IP 1> <IP 2> <Message>.

Device information. By parsing HTTP header fields, such as the
User Agent, we obtain information about the device a person
uses to access the Internet. The device information includes device
names (e.g., Thunderc, iPad, VM670/8), OS types (e.g., Android
2.2, iPhone OS 4.2.1, Windows 7 x64), Web browsers (e.g., Mobile
Safari), and some of the apps installed on the devices (e.g., Pan-
dora, eHarmony, Twitter, iTunes). In the case of Alice, she owns a
computer with Windows XP and a smart phone with Android 2.2.1.

Mining other static and dynamic information. To obtain certain
information of interests, we can further perform in-depth analysis
of specific services or sites by parsing their HTTP headers. For
example, from the music service provider pandora.com, we can
extract musical genres that Alice likes. From her activities at e-
commerce sites such as ebay.com and craigslist.org, Alice’s
shopping interests can be extracted based on the categories of goods
she peruses and keywords she uses to search such goods. During
the nearly 2 hours she spent on the 3 e-commerce sites, Alice per-
formed four queries, visited 88 product pages, and browsed 229
item images.

5. QUANTIFYING PRIVACY LEAKAGE
In this section, we apply Tessellation to the cellular network

datasets and quantify user privacy leakage. First, we measure the
amount of privacy leakage as we vary the duration of observation
and the number of IP addresses being analyzed (§5.1). Then, we
study the leaked information by comparing the amounts and types
of information disclosed on OSN profiles vs. those from network
traffic (§5.2). We also demonstrate unique discoveries that can be
made by associating OSN profiles with data extracted from the traf-
fic (§5.3). We conclude by discussing ways to prevent the leakage
of private information (§5.4).

5.1 Quantitative Analysis of Privacy Leakage
Running Tessellation on the 3h-Dataset, we extract significant

information about each user. In Table 6, for specific types of infor-
mation, such as the name and the political views, we list the number
and percentage of users that we manage to get information about.
Each row represents an information class and individual cells rep-
resent the sub-classes. The information for each class/subclass is
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obtained via a combination of activity analysis, site-specific min-
ing and crawling the OSN public profiles of the users as discussed
in §4. From the table, we see that the Tessellation tool provides a
wealth of information about the users.

Privacy leakage as a function of breach duration and compro-
mised IPs. We quantify the amount of privacy leakage as we vary
the duration of observation periods and the number of IP addresses
being captured. Because the longevity of data is being tested, we
use 9h-Dataset for these tests. The 3h-Dataset exhibited similar
results as the 9h one; due to space limitation, they are omitted. Fig-
ure 9 shows the cumulative number of user identifiers leaked as the
breach duration increases from 1 to 9 hours. Due to the sub-linear
increase of leaked IDs over time, we see that around half of all user
identifiers in the entire 9h-Dataset are leaked in the first three hours,
and more than 80% of the identifiers are leaked before half (4.5
hours) of the total breach duration. The trend is most prominent
with OSN1 IDs; similar observations apply to OSN2 IDs and email
addresses as well. Hence, if only 1/3 or 1/2 of the total duration of
9h-Dataset were collected, an adversary may still be able to glean
information about 50% or 80% of the users. Figure 10 shows how
varying the number of IP addresses captured in the data affects the
number of user identifiers leaked in the data. Out of 340,000 client
IP addresses from 9h-Dataset, we randomly select 25%, 50%, 75%
of the addresses and calculate the number of leaked user identifiers
from them. Again, with somewhat limited data, an adversary may
still be able to glean information for a significant number of users.

5.2 Comparison of Information Disclosed on
OSNs vs. Leaked in the Network Data

Information disclosed by users in their OSN profiles. Most OSN
sites provide privacy control “knobs” that allow a user to control
what information is publicly disclosed (i.e., in her “public” pro-
file), what is only disclosed to “friends,” and so forth. By crawl-
ing the public (OSN1 and OSN2) profiles of the OSN users in the
3h-Dataset, we extract 25 personal attributes listed by these two
OSNs. In Figure 11(a), we plot the percentage of users who have
disclosed some information for each of these attributes. We see that
all users have disclosed their names, and more than 80% have dis-
closed their gender. A plurality (more than 40%) of them have also
disclosed coarse-grained information about their locations (“cur-
rent_residence”), their online friends, personal interests (“video”,
“music”, or “sports_interest”), and schools attended (“high_school”
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(a) Shopping by provider

a

MS Z

(b) Music by provider (c) Shopping by category (d) Music by genre

Figure 12: Examples of detailed information disclosed by activity attributes and domain-specific mining
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Figure 11: OSN attributes users disclose

or “college”). On the other hand, very few have disclosed any
information regarding their phone numbers, email addresses, per-
sonal websites, or their workplaces (“current_affiliation”). As ex-
plained in [13], the differential treatment by users to various types
of personal information (personal attributes asked by the OSNs)
can be attributed to users’ concerns with sensitivity and identifia-
bility. Less identifiable personal attributes, such as gender or inter-
ests in music, are generally deemed less sensitive by OSN users;
further, they can help attract potential friends with shared interests
or connect with old acquaintances (e.g., high school classmates).
On the other hand, highly sensitive and/or identifiable information
such as emails, phone numbers, and work places are usually kept
hidden to avoid being misused.

Figure 11(b) shows the number of attributes each person dis-
closes. The average number of personal attributes disclosed is 5.3.
About 20% of users disclose some information on 12 or more per-
sonal attributes, and a very small percentage have disclosed all 25
attributes. Further in-depth analysis shows that none of the users
who disclose 5 or fewer attributes reveal their phone numbers or
email addresses. In contrast, the 138 users (0.87%) who put their
phone numbers in their public profiles disclose an average of 14.4
attributes, a three-fold increase compared to the average among all
users. The high correlation between the disclosure of phone num-
bers and other attributes leads us to suspect that a portion of the 138
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users may have made a mistake with the privacy “knobs”, showcas-
ing the need for a better user-controlled privacy management [2,9].

Information gleaned from the network data. Having analyzed
the publicly disclosed profiles, we now analyze and quantify what
additional information can be gleaned from the network trace, as
well as the granularity and category of the leaked information. For
each major tessera of information (the row class) listed in Table 6,
we count the number of users who either (i) disclose information
in public profiles (cells shaded in light gray), (ii) have additional
information leaked and mined in network data (cells in gray), or
(iii) have both public profiles and leaked network data available
(cells in dark gray). Figure 13 illustrates the proportion of personal
information by each of the three sources. As previewed in Fig-
ure 1, while the information disclosed in the public profiles covers
many classes (e.g., demographics, location, education, and affilia-
tion), it is generally coarse-grained (and thus less identifiable and
less sensitive) and static (and thus less timely). In contrast, the in-
formation leaked on to the network is finer-grained and/or dynamic
which closely reflects users’ cyber and real-world activities and in-
terests. The availability of overlapping information in both public
profile and leaked network data helps to confirm our findings when
comparing one side with the other.

As two illustrative case-studies, we provide an in-depth analysis
of online shopping and music preferences as gleaned from running
Tessellation. Using the 3h-Dataset, we first compute the amount of
time the users spent on various e-commerce sites (resp., online mu-
sic sites); for each service provider, we then tally the total amount
of time that users spent on each site. Figure 12(a) and (b) show
the major shopping service providers and music service providers,
respectively. In both cases, a few service providers dominate each
market (the top three services take up more than 75%), despite hav-
ing a large number of services existing and competing with each
(16% of the services account for less than 1% of the total time the
user spent). Although here we use the duration of stay as the metric
to compare various service providers, similar results are obtained
when using frequency of visits, traffic volume, and so forth.
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Device Traffic (in average session count / device)
type Web Multimedia Control P2P VoIP Email Chat Total

Mobile 37.94 1.30 15.00 0.01 0.02 0.54 0.21 55.02
Stationary 334.65 216.72 271.57 10.48 0.28 0.16 0.10 833.96

Table 7: Traffic patterns on mobile vs. stationary devices

In Figure 12(c) and (d), we provide a detailed breakdown of
shopping categories and music genres. The shopping categories
are extracted from HTTP GET messages of craigslist.org,
where we decode its three-lettered category code (e.g., AOS: auto-
motive, BKS: books, ELE: electronics). In the case of music gen-
res, we extract HTTP GET messages from pandora.com and ex-
tract nominal values from key-value pair genre=<value>. Here
again we use the shopping categories/music genres simply as exam-
ples to illustrate the more specific information that may be gleaned
from the network data. Similar analyses can be conducted on the
queries sent to search engines, categories of videos and books being
viewed, and so forth.

Through the experiments in this section, we show that the in-
formation disclosed by users on their public profiles and the infor-
mation that is leaked and gleaned from the network data are often
complementary and corroborative. When combined, they produce
a richer mosaic of users, thereby posing a more severe threat to user
privacy.

5.3 Other Usages of Tessellation: Examples
To demonstrate utilities of Tessellation other than quantifying

privacy leakage, we introduce a few experiments that reveal deeper
knowledge on users by associating different user attributes (Tesserae)
together.

Traffic breakdown among devices and apps. One straightfor-
ward application of Tessellation is cellular data traffic analysis. For
instance, using Tessellation we can sample and separate traffic gen-
erated by various mobile devices such as smart phones/tablets run-
ning Google Android, Apple iOS, and traditional “stationary” de-
vices such as 3G/4G-equipped laptops/netbooks running Microsoft
Windows OSes. In addition, Tessellation can provide application
traffic breakdown and statistics for each type of device. Hence,
this analysis is done by associating “OS types” and “Traffic info”
sub-classes from the Device tessera together.

Not surprisingly, the cellular network is dominated by mobile de-
vices. However, we also found a significant number of 3G-equipped
stationary devices, as they are used by many businesses. Table 7
shows the traffic volume breakdown between mobile vs. stationary
devices, in terms of the average number of sessions generated by
each device among popular applications. We observe that, while
there are relatively few of them, the stationary devices generate
far more traffic per device, which is in agreement with the finding
in [6]. The dominant applications on both categories of devices are
Web based. Perhaps more interestingly, we see significantly more
P2P (mostly Bittorrent) and Game/Video (mostly UDP-based) traf-
fic from “stationary” devices, whereas there is considerably more
Email (IMAP, POP3, SMTP) and Chat (XMPP, SIP, MSN, Ya-
hooIM) traffic from mobile devices. One possible reason for the
dominance of mobile devices in email and chat traffic can be the
periodic background updates and push services persistently run-
ning in smart phones and tablets.

Age demographics of app usage. Looking at users who disclose
their age on the OSNs as samples, Tessellation can provide insight
into how users of different age groups use a variety of apps. Fig-
ure 14 shows the usage statistics for five popular categories of apps
running on all devices among age groups of 19-29, 30-39, 40-49,
and 50+. For each app category, we count how many sessions
in that category are generated by each user within an age group,
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and we compute the average number of sessions per user for each
group. To compare the usage statistics across different app cate-
gories, the average session statistics per age group is normalized
by the sum of all four groups and shown on the y-axis. As ex-
pected, we see that P2P and Chat applications are more common
among young users. Moreover, VoIP and Game/Video apps are fa-
vored by the two younger groups, 19-29 and 30-39, and rarely used
by the oldest age group, 50+. On the other hand, Web apps exhibit
a relatively even distribution among all four age groups, suggesting
that the Web is equally popular among all age groups.

As shown in the above examples, Mosaic can give deeper knowl-
edge on the target users when different sources of information are
put together. This is what makes the network-wide attacks to be far
more threatening than security breaches on each individual service.

5.4 Preventing User Privacy Leakage
Here, we provide a brief discussion on the challenges in protect-

ing user privacy, followed by approaches for preventing and miti-
gating the leakage of sensitive information.

From our study, we see that a key enabling element of privacy
leakage is the identifiable information (e.g., OSN IDs) leaked by
OSNs and other services. Better Web design can alleviate the prob-
lem. However, due to the distributed and stateless nature of the
Web, problems like cross-site scripting and the use of cookies may
continue to cause problems. While growing number of services use
encryption (i.e., HTTPS/TSL), our study shows that an adversary
can still attribute a significant portion of user traffic. For example,
even for a service that fully operates over HTTPS, user IDs still
leak from its third party mobile app.Provided that our method of
traffic association relies heavily on leaked OSN IDs, use of authen-
tication schemes that grant temporary access tokens to apps and
browsers [5, 25], can prevent user credentials from being used as
seeds for identity discovery. However, even without any OSN IDs,
we can reconstruct a significant amount of information by using
traffic markers (third-party tracking cookies), as shown in Table 4.

Although global adoption of end-to-end network traffic encryp-
tion could prevent the leakage, we envision that it is not likely
to happen in the near future. Incremental adoption of encryption
can alleviate the leakage problem and reduce the attack surface if
it is implemented in the right way. We list some specific advice
on preventing the leakage as following: (1) The usage of unique
user/device identifiers should be carefully limited, and those iden-
tifiers should be strongly encrypted whenever it is necessary to
transfer them in network traffic. (2) Tracking cookies and HTTP
session identifiers, which are commonly used in today’s Web ser-
vices, should be encrypted or frequently updated. (3) The public
profiles of OSN users should have certain attributes to be carefully
obfuscated so it is hard for someone to link them together with the
information in network traffic. (4) A service provider, such as an
OSN, should have mechanisms to enforce third parties involved in
the service, such as individual app developers, to obey its privacy
guidelines.
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6. RELATED WORK
Leakage of personal information. The leakage of personal infor-
mation through online activities has attracted significant attention
over the last years. Krishnamurthy et al. presented a range of stud-
ies [13, 15, 16, 18] that highlight how “personally identifiable in-
formation” (PII), such as email address, age, zipcode, and gender,
is leaked via HTTP headers, URIs, and cookies. Working on pri-
vacy control, Persona [2] and NOYB [9] are online social networks
that put users in control of their own social and privacy informa-
tion. Fang et al. [8] presented a template for the design of a privacy
wizard, which removes the burden of specifying security settings
from the end users. Aggregating personal information across dif-
ferent services of same kind, HostTracker [30] employed a number
of application level IDs in tracking hosts in email networks. Irani
et al. [11] quantified leakage of personal information by combining
different aspects of user footprints from multiple OSNs. All the
above studies highlight the possibility of an entity collecting per-
sonal information from a single Web service or a group of similar
Web services such as OSNs. Our work differs from them in that it
operates on a network trace to attribute user sessions and construct a
well-connected content-rich user mosaic by systematically combin-
ing isolated pieces of information across vastly different services,
and without requiring explicit collaboration among them.

Data de-anonymization. Narayanan et al. [21] formulated iden-
tity discovery (or identity de-anonymization) into a sub-graph iso-
morphism in social graphs. Further on de-anonymization, Mud-
hakar et al. [19] provided a way to discover identities of mobile
users by associating the users encounters in the physical world
with their social graphs in the cyber space. In other words, all
the above papers try to de-anonymize traces that were intention-
ally anonymized previously. This is a very different problem from
the one we address here, because we focus on attributing network
sessions to user identities extracted from traffic data.

User activity profiling. A group of studies attempted to profile
users based on browsing habits and the types of applications used.
Using data from a CSP, Keralapura et al. [12] showed that there
exist distinct behavior patterns among mobile users. Trestian et
al. [29] characterized the relationship between user application in-
terests and their mobility properties. On a large scale, there have
been studies characterizing mobile traffic and user interactive be-
haviors on embedded applications with smart phones [31]. While
these studies focus on the potential of using the distinctive behavior
of users as a way of identifying them, they do not propose actual
methodology. In our work, we step forward by analyzing the dis-
tinction among different users’ activity patterns and leveraging it to
associate network traffic with known users’ identities.

7. CONCLUSION
In this paper, we study the privacy leakage problem in mobile

network data. We bring forth two key insights. First, the preva-
lence in the use of OSNs leaves identifiable digital footprints in the
network. Second, the indiscriminate use of tracking techniques by
mobile apps and services makes traffic attribution easier. The com-
bination of these factors allows an adversary to attribute significant
portions of traffic with NO explicit leaks of the users’ true iden-
tities. To demonstrate the feasibility of the threat, we developed
Tessellation. Using the network data from a CSP, we showed that
up to 50% of the traffic can be attributed to users with high confi-
dence. Further, we illustrated how various types of information can
be gleaned about the user by painting a content-rich digital mosaic,
and we demonstrated utility of this information to extract collective
trends.
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