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Mobility of humans plays an important role in shaping the performance of various mobile
and location dependent networks. In this paper, we amalgamate and summarize the
parameters reported in various trace analyses, and explore the inter-dependencies among
the parameters using a layered approach. We then identify using an experimental set-up
(a) several roadblocks in generating an intended synthesis model, (b) the changes in the
mobility patterns with variation in inputs (e.g., the underlying map), and (c) the changes
in efficiency of the targeted service (here we have considered simple broadcasting) with
change in the input parameters. Interestingly, we notice that the efficiency of the service

does not necessarily depend on the mobility pattern and one needs to be extremely
careful before drawing a direct correlation between the two.
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1. Introduction

Mobility has become an integral part of a large class of networks such as loca-

tion based social networks, delay tolerant networks, mobile P2P networks. Mobility

defines the underlying dynamics of these networks, and the performance of proto-

cols on these networks is largely dependent on the mobility of the agents in it. To

faithfully reproduce the mobility of agents, research has been directed towards (a).

building mobility models that can accurately synthesize realistic settings and (b).

collection of a large number of real human movement traces which is then used to

build better and perfect models. In order to ensure seamless abstraction of model

from traces, a framework which would (a). segregate properties of a mobility trace

and independently try to demonstrate the importance of each of these in designing

a model meant for a specific task, (b). consider the properties that are missing in
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the available trace data but are required to fulfill the targeted analysis, and finally,

(c). point out a target set of properties that should be measured while constructing

new real traces in the context of a particular task, would be very helpful and crucial

as well. Such a framework can then be used to decide the most important properties

which need to be considered while developing a simple and comprehensible mobility

model to accurately mimic a set of mobility traces.

In order to achieve this, the paper summarizes from the existing methods for

mobility analysis and synthesis, and reports a large set of important properties

of human mobility patterns. Next, to understand the relationships among these

properties, a layered dependency relation (Figure 2) among the various parameters

is developed where a layer may correspond to a set of inputs (eg. map) or outputs

(eg. flight length of an agent) or task-dependent outputs (eg. coverage). As an

instance of task, we consider the simple broadcasting protocol run in delay tolerant

networks (DTNsa). We investigate the intra- and inter-layer dependencies through

a generic experimental set-up similar to [13]. We then investigate the relationship

between the change in output of the mobility patterns and the corresponding change

in performance of epidemic broadcasting protocol in DTNs.

Thus the study presented in this paper unfolds the intrinsic and cryptic depen-

dencies (that are known to exist but not clear how) among the properties of human

movement patterns. It attempts to derive insights from the recently proposed com-

plex models and increase the advantages of using them. Our major contributions in

this study are as follows.

(1) A layered dependency relation among a large set of properties of human move-

ment is developed in order to understand the relationships among them.

(2) A generic framework of mobility models is proposed to investigate the intra-

and inter-layer dependencies.

(3) Our analysis shows that the distribution of the values of a parameter belonging

to the input layer can change an intended distribution of values of another

parameter belonging to the input layer itself.

(4) The task-oriented output parameters (i.e., the coverage and the spreading rate)

are highly sensitive to some of the input properties (for example, length of the

map and area of roaming). However, the output properties (for example, flight

length and inter-contact time) are in general not much affected by the input

properties. For example, the distribution of area of roaming hardly affects the

distribution of inter-contact times, but it has a direct impact on the coverage

of broadcasting.

aA Delay Tolerant Network (DTN) [5] consists of a set of agents, each agent is capable of sending
and receiving messages from each other, moving in a particular geographic location. Unlike tra-
ditional communication network, a DTN does not assume any pre-established infrastructure for
communication among the agents in the network. A pair of agents in this network can commu-
nicate only when they are physically close enough as a result of their movement, and these local
interactions lead to eventual end-to-end delivery of messages.
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This is particularly significant as existing studies, that analyze the performance

of mobility driven applications, have considered the mobility traces (no matter

how they get produced, e.g. which model and which data set) as input and the

performance of the application as output - this layered dependency approach

unfolds the pitfall in doing so.

(5) Our analysis on the real data sets shows that the variation of coverage (a prop-

erty in task-oriented output layer) may not be explained by the variation of

inter-contact times (a property in output layer). However, it can be clearly ex-

plained by the variation of radio range (a property in input layer). Thus, our

proposed layered dependency structure and the framework can help to correlate,

easily and efficiently, the properties across different layers with the performance

of a given mobility driven application.

The rest of this paper is organized as follows. Section 2 briefly describes the exist-

ing works that have attempted to investigate the relationships among the properties.

Section 3 defines the terminologies that are used in this work. Section 4 summarizes

the properties identified through realistic trace analysis and categorizes them into

layers. Section 5 describes our proposed framework and analyzes the results of this

study. The study is concluded in Section 7.

2. Related Works

A large number of mobility models [2, 4, 9, 14] exists in the literature; however,

relatively a much less studied area comprises the investigation of the relationships

among the properties of human movement patterns. Broadly, the studies in this area

can be classified into two types depending on the type of relationships considered.

Some studies [3, 10, 18, 19] have investigated the impact of a particular parameter on

the performance of a targeted application. For example, the study in [3] has analyzed

the impact of power law distributed inter-contact times on the performance of an

opportunistic forwarding protocol, and the study in [10] has investigated the impact

of visiting a limited number of locations, selected randomly, by each individual on

the distribution of inter-contact times. Some studies [8, 15] have shown that the

procedure to measure a set of values of a particular parameter can significantly

affect the distribution of that parameter. For example, the distribution of inter-

contact times can be computed either for every individual pair of agents, or it

can be computed by aggregating the inter-contact times from all the pairs in the

network, and the resulting distributions need not be always similar [15].

Thus, though existing studies have shown that there exists a significant amount

of dependency among the properties, even in the measurement techniques, there

has been no study to provide a complete view of inter-dependencies among the

properties of human mobility patterns. To the best of our knowledge, this is the

first study that considers a large number of properties of human movement, observed

recently from available trace data, and investigates the relationships among them

through the introduction of a generic mobility framework organized in the form of
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Fig. 1: Trace of four agents (shown by different colored paths) in a time window of length
T . A path indicated by directed arrows of one single color indicates a trace of an agent.

a layered dependency structure.

3. Terminologies and Definitions

Before we describe various concepts related to the properties of mobility behavior,

let us define some terminologies that are used in this study. Figure 1 shows a sample

trajectory of four moving agents in a time window of length T . Let the trajectory

indicated by black arrows be the trajectory of an agent u, denoted by T (u). A circle

(either having solid or dashed lines) in the trajectory indicates a traceable location

δi w.r.t. time tj .

Waypoint : The agent u can be found at a location, say δk, for more than one

consecutive time step, which is termed as a waypoint (WP) ℓ, denoted by ℓx in

T (u). Thus, the waypoints included in T (u) are ℓ1, ℓ2, ℓ4, ℓ5, ℓ17, ℓ5, ℓ7 and ℓ1.

Waiting time: The period for which u is seen at a WP ℓx is termed as waiting

time [20] (ω), e.g. ω = t4 − t3 at ℓ2.

Flight length : The geographical distance between two consecutive WPs in T (u) is

termed as flight length (ι), e.g. ι = |ℓ1 − ℓ2|.

Area of gyration and radius of gyration : The smallest circular area that en-

closes most of the WPs in T (u) and the radius of that area are termed as area of

gyration (π) [6] and radius of gyration (η) respectively.

Return time and return-time probability : The time-gap between two consecu-

tive repetitions is termed as return time (ϕ) and the probability of repetition after

that time-gap to any WP is termed as return-time probability, e.g. ϕ(ℓ1) = t21− t1.

Visit frequency and return probability : The number of times a WP ℓx is re-

peated in T (u) is termed as visit frequency (λ) and the probability of repetition is

termed as the return probability (β) [6], e g., λ(ℓ5) = 2, β(ℓ5) = 2/8.

Map : An area (rectangular area in Figure 1) that accumulates WPs of all the

agents is termed as a map M .

Hurst parameter : The Hurst parameter of a given configuration is measured in

the following way :- the site map is divided by a grid of unit squares and all the
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Table 1: Properties reported in existing studies. UC, SG, UD, PL denote Univ.

campus, social gathering, uniform distribution and power law with exponent k resp.

Hence, a row, say 1st row, denotes that the study in [20] analyzes the movement

traces in a UC and reports that P (ι) and P (ω) follow uniform distribution and

partially follow power law resp.

Ref. Site Parameter Probability Distribution

[20] UC (ι; ω) (UD; partially follow PL)

[7] UC inter-WP
and inter-place
transition

P (κx) = 1− e−(κx

a
)b , a, b are constants

and κx denotes the popularity of x, x
being either a WP or a place

[11] UC (ω) (UD) - for stationary agents

[11] UC, ν and θ de-
note speed and di-
rection of move-
ment resp.

(ν; θ; ω) (log-normal; Uniform in range [0◦, 90◦]
with peaks at 0◦ and 90◦, repeated at
every 180◦; log-normal) - for moving
agents

[11] UC start and end
time of travel

(Exponential) - for both stationary and
moving agents

[12] UC (ι; ω; τ ) (PL; PL; PL)

[3] UC, SG (τ ) (PL, 0.1 ≤ k < 1.0)

[1] Bank note sitings
in US

(ι) (PL, k = 1.59± 0.02)

[6] Phone call activ-
ity

(ι; η; λ; ϕ) (PL with Exponential cut off, k =
1.75±0.15; PL with Exponential cut off,
k = 1.65±0.15; zipf’s law; periodic peak
and decrease over time)

waypoints within each unit square are counted and normalized by the area of the

unit square. The variance of these normalized count is then measured. The size

of the unit square is progressively increased and the variance is recalculated. The

gradient at which the variance deceases with increase in the unit size is denoted by

β - Hurst parameter of the configuration is denoted as 1 - β. The study in [12] has

shown that the values of Hurst parameter (H) in human generated waypoints can

vary in the range 0.55 ≤ H ≤ 0.95 in realistic scenarios.

Place and popularity of a place: A place is a subset of WPs in a map M that

are clustered together depending upon some parameter(s), e.g. inter-WP distance,

e.g [ℓ3, ℓ4] and [ℓ2] are two places, and popularity (κ) of a place may be calculated

for each such place depending on some other parameter(s), say, number of WPs.

Inter-contact time and contact-duration : Considering multiple agents moving

in a map, the time gap between two successive contacts of a pair of agents and the

duration for which they are in contact are termed as inter-contact time (τ) and

contact-duration (σ), respectively.

A probability distribution P (p) of a parameter p may also be defined where p can

denote any one of ι, ω, η, β, κ, σ, τ .



June 18, 2014 12:10 WSPC/INSTRUCTION FILE
Mobility˙Property˙acs˙2013

6 R.R. Maiti, A. Mallya, A. Mukherjee, N. Ganguly

Table 2: Parameters (symbols and interpretations) used in this paper.

ID Symbol Parameter Distribution

TstartTend - Start and end time Constant
TrPlan α, V F Travel Plan LATP
Map M,H Map -
Flen ι Flight Length Power law

Ppause ω Pause time Power law
Tret ϕ Return time Periodic
Rgyr η Radius of gyration Power law
ICT τ Inter-contact time Power law
CD σ Contact Duration Power law

4. Summary of the Properties

While summarizing the relevant literature, it was found that various studies on trace

analyses have reported about fifteen different properties (briefly stated in Table 1).

A property is a parameter-distribution pair where the values of the parameter are

measured from real data and a distribution is fitted to describe the characteristics

of the observed values. For example, flight length is a parameter, whereas “flight

length being power law distributed”- is a property. If the information about a set

of closely related properties can be expressed by a single representative property,

we group them together and take that single property as the group representative.

For example, a flight having length ιi (say, from a WP ℓi to another WP ℓj) in the

direction of θj that takes a time duration ιt can be represented by an ordered tuple

(ιi, θj , ιt, ωj), where ωj is the pause time at ℓj [16]. Thus, given the distance and the

time for each of the flights taken, the distribution of both speed ν and direction of

movement can easily be derived and hence, the distribution of flight length becomes

a representative of a group (P (ι), P (θ) and P (ν)) of distributions.

Existing studies have identified a set of independent input parameters, which are

used to generate mobility trace, such as the distribution of start and end time [11]

and the travel plan [13] per day of each human, and a map of WPs. Beyond these

inputs, there are a host of other parameters which are taken as input. However,

these parameters follow certain distributions. We note down the properties and

the distributions they follow from literature. The distribution of flight length P (ι)

follows either a uniform distribution [20] or a power law [12] depending on the

scenarios considered, P (ω) follows a power law [12], P (ϕ) shows a decreasing trend

with the duration of time and has periodic peaks [6] (ϕ represents a group consisting

of λ [17], β [13], κ), and P (η) follows a power law[6] (P (η) represents a group

consisting of the distribution of trace length, and agent heterogeneity).

The studies have also identified a set of protocol independent output parameters

namely inter-contact time (τ) and contact-duration (σ). The distribution of ICTs

can be computed in two ways, either the ICTs can be collected from individual

pair of agents (pairwise ICT) or they can be aggregated from all possible pairs (ag-

gregated ICTs) in the network. Studies [15] have shown that the distributions of
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Fig. 2: The layered structure of the properties of human mobility.

pairwise ICTs and aggregated ICTs need not be always similar. Though a consensus

on the distribution of both pairwise ICTs and aggregated ICTs is yet to be reached,

some studies [3] have reported that the distribution follow a power law, and some

other studies [8, 13] have shown that it follows a power law with an exponential

cut off beyond a certain threshold of ICTs. It is important to note here that this

exponential cutoff in the distribution of ICTs discards the hypothesis of infinite

message delivery delay that has been made in earlier studies (as in [3]). For the cur-

rent experimental purposes we have used aggregated ICTs; however, the framework

is suitable to adopt to pairwise ICTs.

Table 2 summarizes the properties where the ID column specifies the property

identifiers, Symbol column specifies the parameter of the properties, Distribution

column specifies the distribution of the properties that we consider in this paper.

However, note that the layered framework is not limited by such distribution, other

distributions can also fit in.

Inter-dependence Analysis: We can thus summarize that depending on the

applicability in designing a model, the properties can be categorized into four dif-

ferent sets (Figure 2): a set of input properties consisting of TstartTend, TrPlan and

Map (Layer 1), a set of output properties consisting of ICT and CD (Layer 4), and

a set of properties that can be input and/or output consisting of Flen, Ppause, Tret

and Rgyr. In this paper, Ppause and Rgyr are considered as inputs (Layer 2) and

Flen and Tret as outputs (Layer 3), but this ordering may change. An additional set

of properties (Layer 5) is added, termed as Task-Oriented Output Properties, that

specify the metrics that may be used to evaluate the performance of the targeted

task. For example, coverage and rate of message spreading can be two metrics to

investigate the performance of a broadcast protocol for DTNs.

The properties exhibited by human movement patterns apparently look to be
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inter-related and designing a model capturing even a subset of these properties is a

complex and difficult task. Hence, before designing a model, it is necessary to first

investigate the relationship among them (properties) and then understand how each

of them affects the performance of a protocol. As can be conceived, the space of such

investigation is huge, we make an attempt to do so for some of the relationships,

through a layered approach (Figure 2). From the input-output dependency logic in

designing a model, Layer 1 may influence all other layers and possibly Layer 2 may

determine the nature of the distributions of the properties in the layers below it.

A relatively non-trivial dependency in case of designing a human mobility model is

that the properties in Layer 1 and Layer 2 are dependent on each other. We shall

investigate various dependencies through extensive simulations and find correlations

among the parameters.

5. Implementation of the Layer Dependencies

To investigate the intra- and inter-layer relationships shown in the previous section,

we have designed an algorithmic setup detailed below. The algorithm considers

TstartTend, TrPlan,Map, Ppause and Rgyr as input properties and generates mobility

traces with different characteristics.

5.1. Algorithm to Generate Mobility Traces

The algorithm is divided into two sub-procedures: findWPs that finds a set of WPs

to travel through, and prepareP lan that prepares a travel plan to visit the selected

WPs. Let us assume an agent ui whose movement trajectory will be generated by the

algorithm and will look like the one indicated by the black arrows in Figure 1. The

algorithm takes a map M of WPs as input, which may be generated synthetically,

e.g., by using steps in [13], or it can be produced from a real trace. Each WP ℓi
in M is assigned a weight κi depending on its location within M , e.g., popularity

which is same as the place it belongs to.

findWPs: For each agent ui, this procedure computes three sets of WPs (Ri,

Ti and T ′

i ) and returns two of them (Ri and T ′

i ). Here Ri refers to a set of regular

WPs and T ′

i to a set of temporary WPs.

• Step 1. (Find home location) Choose a WP ℓi inM proportional to κi
c1 as home

ℓhi of ui, where κi is the weight of ℓi and c1 is a parameter (c1 = 0 indicates

random choice, c1 = 1 indicates preferential choice). For example, the WP ℓ1
indicated by orange circle in Figure 1 is chosen to be the home of ui.

• Step 2. (Find area of gyration) Pick a radius ηi of gyration from a distribution

P (η) which is an input that can take any form. Assume a circular area of

gyration πi having radius ηi such that ℓhi is located on the boundary of πi. Let

Ti denote the set of all the WPs including ℓhi which are located within πi. For

example, in Figure 1, πi is the largest circular area indicated by the dotted line

that includes the WPs Ti = {ℓ1, ℓ2, ℓ3, ℓ4, ℓ5, ℓ17, ℓ7, ℓ15, ℓ6, ℓ9}.
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• Step 3. (Compute Ri set) Put ℓ
h
i in Ri. For eachWP in Ti, compute the distance

from it to ℓhi . If the difference between this distance and ηi is below a threshold

then put this WP in Ri. The number of WPs in Ri is an input parameter. Note

that the area may not have suitable WPs to fill the Ri set. In that case, the

value of πi is suitably tuned (increased or decreased; this may actually disturb

the intended distribution of η) and the Ti set is recomputed, and this step starts

over again. In Figure 1, ℓ1 and ℓ5 are in Ri when size of this set is 2.

• Step 4. (Compute T ′

i set) Randomly select a subset T ′

i of WPs of the set Ti−Ri.

The number of WPs in T ′

i , say VF, is an input parameter. Assuming the size

of T ′

i as 4, T ′

i contains ℓ2, ℓ4, ℓ17 and ℓ7 for the agent ui in Figure 1.

preparePlan: For each agent ui, given two sets of WPs (Ri and T ′

i ), this pro-

cedure prepares a plan to visit through all the WPs in Ri and T ′

i starting from and

ending at ℓhi . Let Trip denote such a plan that takes a period T (= 24 hours, every

time step correspond to 0.1 hour) of time to complete. Essentially, this procedure

creates an ordered set of WPs in Ri ∪ T ′

i to indicate the WP to be visited next in

this present trip.

• Step 1 (Assign waiting times at WPs) The time period T is divided into two

fractions tr and tt (< tr). The waiting times at WPs in Ri and in T ′

i are sampled

from two distributions (may be same), that are considered as inputs. In our case,

the distributions in case of Ri and T ′

i are considered as normal distribution in

range [0.1,tr] and a power law in range [0.1,tt] respectively. Thus, in Figure 1,

the waiting times at ℓ1 and ℓ5 (resp. at ℓ2, ℓ4, ℓ17 and ℓ7) are assigned from a

normal distribution (resp. from a power law distribution).

• Step 2 (Select next WP) Let ℓp be the present WP in the current trip. The

next WP ℓx is selected from a set Ui of WPs, where Ui is a subset of Ri ∪ T ′

i

which are not yet visited in this trip. Note that, initially, the number of WPs

in the set Ui is same as in Ri ∪ T ′

i , and it is decreased by one every time an

unvisited WP is visited in this trip. The WP ℓx is chosen with a probability

P (d) ∼ d−α (similar to that in [13]), where 0.0 ≤ α ≤ 5.0 is an input and d is

the Euclidean distance between the present and the next WP. In Figure 1, a

sample order of visit to the WPs in Ri ∪ T ′

i is indicated by black arrows.

Such a trip is created for every T period of time, say day, where the WPs in Ri (say,

regular WPs) remain fixed, but the WPs in T ′

i (say, temporary WPs) are chosen

randomly from (Ti −Ri) before starting the trip each day.

5.2. Simulation Setup

We have designed a simulator following the steps stated in subsection 5.1 to generate

the mobility traces. In this paper, we consider a squared 2D geometric space as a

simulation area (i.e., a map), and a WP inside the map be a (x, y) co-ordinate

in the geometric space and hence, the length of a flight is the Euclidean distance
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between two successive co-ordinates in a trajectory. A large set of maps is generated

following the steps in [13] by considering different values of Hurst parameter (H)

with different map area.

In this paper, a map having squared area with side length L = 2400m

is generated for each value of H = 0.55, 0.65, 0.75, 0.85, 0.95, and a map with

L = 1000m, 2400m, 8500m, 15000m for a fixed H (= 0.75) with 700, 3300, 4000,

10500 WPs respectively, i.e., the map area is varied from a typical social gathering

to a big university campus [12]. The transmission range of each individual agent and

the range with which places inside a map are created (by transitively connecting

the WPs) are kept the same and fixed to 100m.

The number of regular WPs Ri for any agent ui is kept as 2 in the simulations

performed for generating all the results in this paper to denote a home and a work

place for ui. The radius of gyration (η) for every ui is sampled from different distri-

butions to generate results in different sections of this paper, the exact distribution

is mentioned in the respective sections. It either follows a uniform distribution

(three specific ranges are considered in this case 10 ≤ η ≤ 100, 10 ≤ η ≤ 500 and

10 ≤ η ≤ 1000 denoted as U(100), U(500) and U(1000) respectively) or a power law

(in this case, the range of η is considered as 10 ≤ η ≤ L/2, denoted as PL(Half)).

In a different setup, we have taken the area of gyration to be the entire simulation

space, denoted as U(Full).

Recall that a trip is a journey that, starting from home, travel through all other

WPs in Ri∪T ′

i , and return back to home. Visiting the WPs in Ri∪T ′

i is done using

the travel plan TrPlan where the probability to visit a WP ℓx after the current

WP ℓc is proportional to dist(ℓc,ℓx)
−k, where dist(ℓc,ℓx) is the Euclidean distance

between ℓc and ℓx, and k is a constant (an input parameter). In each simulation run,

100 agents are considered and all the agents start moving at time step 1 and move

for 7200 time steps (correspond to 30 days when a single time step corresponds to

0.1 hour). Unless stated otherwise, P (η) follows PL(Half), and a map having area

24002m2 with H = 0.75 is considered, and the results shown are an average over

100 simulation runs.

5.3. Input to Input Dependency

In the first set of experiments, we investigate the dependencies among the properties

in Layer 1 (TstartTend, TrPlan, and Map) and Layer 2 (Rgyr and Ppause), which

are considered as inputs (Figure 2). While TstartTend, TrPlan, Map are independent

of each other, they can potentially affect Rgyr and Ppause. Figure 3A shows the

deviation of the value of radius of gyration η computed from trace vis-a-vis the

intended input value. As H decreases, points move away from the y = x line,

signifying that it becomes more difficult to get something close to the intended

input. Figure 3B shows the deviation in pause time only for temporary WPs (green

line) from intended input distribution, as the number of regular WPs is taken to be

fixed. Recall Step 1 in the procedure prepareP lan() that a given period T (= 24
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Fig. 3: Dependency among the properties in Layer1 (i.e. Input Properties). (A). Deviation
of η for various H , (B). deviation of P (ω) for various H , and (C). correlation among the
values that are intended and that are obtained for η with different H (inset of Subplot (C)
- with different map sizes).

hours) is divided into two parts tt and tr, and tt is distributed (following a power

law) among the WPs in T ′

i . Because, the number of WPs in T ′

i increases with H for

a fixed area of gyration, the probability of having a higher pause time reduces with

higher H . Thus, obtaining the intended input distribution from synthetic traces

becomes difficult due to input-input dependency.

Figure 3C and the inset measure the correlation between η computed from trace

and η drawn from the theoretical distribution P (η) for varying H and map sizes

respectively. While the correlation increases with H for a fixed size map, it is hardly

affected by the change in map size. This indicates that the distribution of WPs

in the context of movement is more important than the size of the map in

order to achieve the intended input. Hence, one should take special care to choose

a set of input parameters while attempting to design a location specific human

mobility model.

Important to note that some of the input-input dependencies shown in Figure

3 can sometimes depend on the implementation of the proposed algorithm. The

number of WPs in the set T ′

i for an agent ui may change depending on a particular

map, thus affecting the dependencies in Figure 3A and 3B. However, the order in

which every agent is assigned its radius of gyration, or the order in which the waiting

times are assigned at the WPs (i.e., whether the waiting times at the WPs in Ri is

assigned before assigning the waiting times at the WPs in T ′

i ) do not affect any of

the observed dependencies.

5.4. Input to Output Dependency

Key Results - We have considered five input parameters (Hurst H , visit fraction

VF, the distribution of area of gyration P (η), map size and number of temporary

WPs) as representative measures for analyzing the input to output dependency.

Figure 4 shows (A) complementary cumulative distribution function (CCDF) of

the flight length, (B) probability distribution of return time, (C) CCDF of contact

duration, (D) CCDF of inter-contact time, for different (I) Hurst values, (II) number

of temporary WPs (VF ), and (III) distribution of area of gyration (P (η)). The
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results show that the CCDF of each of (ι), (σ), and (τ) follows power law (visually

evident in a log-log plot) with a truncation. These cut-offs are partially the artifacts

of fixed WPs and length of the map and fixed duration of movement each day. Also,

as expected, P (ϕ) decreases with increased time-gap and has periodic peaks. Thus,

we show that the experimental set-up can faithfully reproduce important aspects

of human mobility patterns and can be used to generate traces similar to human

movement. In the following, we investigate the impact of these input parameters

on the distribution of flight length, return time, contact duration and inter-contact

time (Figure 4); the insights can be summarized as follows.

• Effect on flight length (Flen): The distributions of Flen follow a power law with

a cutoff in all the cases, the cutoff threshold varies in different cases

(1) Probability of having higher flights (e.g. larger than 100m) increases with

higher H - Figure 4(I)A. Cutoff threshold in this case is 1000m.

(2) Large number of temporary WPs (i.e. higher VF ) in the trajectory forces

Flen to be shorter - Figure 4(II)A. For example, probability of having Flen

as 200m with VF = 0% (i.e., the waypoints only in Ri are visited, and no

waypoint in T ′

i is visited) is higher than that with VF = 100%.

(3) The exponent of the power law distribution of Flens does not get affected

by η, only the exponential cut-off shifts to a higher value as η increases

(the cutoff shifts from 75m with U(100) to 2250m with U(Full)) - Figure

4(III)A.

• Effect on return time (Tret): The distributions of return times have periodic

peaks in general that decreases as the return time increases

(1) Tret is not sensitive to H - Figure 4(I)B.

(2) Probabilities to return after 12h and 24h to a place are higher with higher

VF - Figure 4(II)B.

(3) Tret is not affected by the area of gyration - Figure 4(III)B.

• Effect on contact duration (CD): The distributions of CDs follow power law

with a cutoff in all the cases, but both the cutoff threshold and the range of

CDs for the distributions vary with the input parameters

(1) Number of contacts with longer duration increases with H - Figure 4(I)C.

Cutoff threshold in this case is 80 time steps (i.e. 8 hours).

(2) Having longer contacts (e.g. more than 7 hours) is highly probable with

VF=0, it decreases with higher VF - Figure 4(II)C.

(3) Probability of having longer contact decreases as the area of gyration be-

comes larger - Figure 4(III)C. CDs with more than 10 time steps (i.e. 1

hour) can be hardly found with U(Full), whereas contacts with 500 time

steps can be seen with U(100). Hence, though the distribution of CDs fol-

low power law in both the cases, the distributions differ in the range of

values observed for CDs.
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Fig. 4: Variations of (A) complementary cumulative distribution function (CCDF) of
flight length ι, (B) distribution P (ϕ) of return time ϕ, (C) CCDF of contact duration σ

(D) CCDF of inter-contact time τ with various (I) Hurst H shown in the 1st row, (II)
number of temporary WPs (|T ′

i |) VF shown in the 2nd row, and (III) distribution of area

of gyration shown in the 3rd row.

• Effect on inter-contact time (ICT ): The distributions of ICTs follow power law

with a cutoff (at 60 time steps) which in general remain insensitive to the input

parameters

(1) ICTs are not affected much by H - Figure 4(I)D.

(2) Probability to have larger ICTs decreases with higher VF - Figure 4(II)D.

(3) ICT is insensitive to area of gyration - Figure 4(III)D.

Reasons for these observations can be described by (i) H that makes the WPs to be

more clustered or scattered, (ii) η that defines the number of WPs for an agent, and

(iii) fixed duration for every trip that makes an agent to routinely visit the WPs.

Impact of some other parameters - We have investigated the impact of

other parameters such as the simulation area and the parameter α used in pre-

parePlan() method on the output properties (data not produced). None of these

parameters have any significant impact on P (ι), P (ϕ), P (σ) and P (τ). This is pri-

marily due to the distribution of the radius of gyration which is the same in both

of these cases. This possibly indicates that any message spreading dynamics may

remain same, but we shall see in next section that this is not true - the simulation

area has a high impact on task oriented outputs.



June 18, 2014 12:10 WSPC/INSTRUCTION FILE
Mobility˙Property˙acs˙2013

14 R.R. Maiti, A. Mallya, A. Mukherjee, N. Ganguly

0.55 0.65 0.75 0.85 0.95
20

40

60

80

(A1): Coverage(χ) vs. H
Hurst(H)

C
ov

er
ag

e(
χ)

 

 

Mean
SD

20 40 60 80 100
0

500

1000

1500

A2: Time vs. Fraction Infected
Fraction Infected (%)

T
im

e

 

 
H=0.55
H=0.65
H=0.75
H=0.85
H=0.95

1000 2400 8500 15000
0

20
40
60
80

100

B1: Coverage(χ) vs. Frame Length
Frame Length (L)

C
ov

er
ag

e(
χ)

 

 

Mean
SD

20 40 60 80 100
0

500

1000

1500

B2: Time vs. Fraction Infected
Fraction Infection (%)

T
im

e
 

 

L=1000
L=2400
L=8500
L=15000

0 20 40 100
20

40

60

80

C1: Coverage(χ) vs. Visit Fraction
Visit Fraction (%)

C
ov

er
ag

e(
χ)

 

 

Mean
SD

0 20 40 60 80 100

500

1000

C2: Time vs. Fraction Infected
Fraction Infected (%)

T
im

e

 

 
VF=0
VF=20
VF=40
VF=100

U(100) U(500) U(1000) U(Full) PL(Half)
0

20
40
60
80

100

D1: Coverage(χ) vs. π
Area of Gyration(π)

C
ov

er
ag

e(
χ)

 

 

Mean
SD

20 40 60 80 100
0

250

500

750

1000

D2: Time vs. Fraction Infected
Fraction Infected (%)

T
im

e

 

 

U(100)
U(500)
U(1000)
U(Full)
PL(Half)

Fig. 5: Variation of the coverage and message spreading rate of epidemic broadcasting with
Hurst value in (A1) and (A2) respectively, with map size in (B1) and (B2) respectively,
with the number of WPs visited per day (VF) in (C1) and (C2) respectively, and with
area of gyration (π) in (D1) and (D2) respectively.

6. Correlating Task-Oriented Output Properties

Mobility patterns are primarily synthesized to test the performance of protocols

which run upon such patterns. Hence an additional layer which represents the per-

formance metrics of the protocol need to be an integral part of the mobility frame-

work - we call this layer task-oriented output layer. In this section, we investigate the

relationships of input and output properties with task-oriented output properties.

This analysis helps to identify an important set of input and output properties that

can potentially affect a particular task in hand, e.g., coverage and spreading rate

during broadcasting.

6.1. Input to Task-Oriented Output Dependency

To understand the relation between Layer 1 and Layer 5, we have considered the

simple epidemic broadcasting as a test case. The impact of H (Figures A1 and A2),
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map size (L) (Figures B1 and B2), the number of WPs visited per day (V F ) (Fig-

ures C1 and C2), and area of gyration (Figures D1 and D2) on the performance

of epidemic broadcasting are shown in Figure 5 (a randomly selected agent is the

source of a message, two metrics are considered coverage (χ), a measure of what

percentage of the agents can receive the message, and message spreading rate, a

measure of the time that is required to spread the message to a certain percent-

age of agents). The results show that the coverage increases with H, but the

spreading rate is almost same until about 80% of agents are reached. This hap-

pens primarily due to the clustered nature of the WPs; intra-cluster spreading is

much faster than inter-cluster spreading. The coverage steadily decreases with

increased area, mainly because of fixed area of gyration which is very small com-

pared to the size of the map. As a result, the message stays only in the locality of

the source.

Importantly, the message spreading is much faster when the agents try

to visit more WPs per day. Note that we kept the area of gyration fixed for

all the agents in these cases. Even with this restriction, as the agents try to visit

every WP in the area following LATP, the message is propagated like a wave from

the agents’ location and quickly spreads across that place and eventually, in the

whole area. Finally, the results show that the coverage increase with average

area of gyration. However, there is a limit beyond which performance begins to

fall. As we see that U(Full) is performing worse than U(1000) as the agents cover

too much hardly coming in contact with other agents. The distribution of area of

gyration plays a direct role in spreading rate. In case of PL(Half), since there are

a lot of agents with small area of gyration, the broadcast takes time to pick up. It

picks up only when it meets an agent with larger area of gyration by chance. So,

although the coverage is comparable between U(1000) and PL(Half), the

spreading rate differs by an order of magnitude.

6.2. Analyzing Real Mobility Traces

Four data sets on human mobility traces [12] (collected using 19, 33, 40, and 90

agents in a Statefair in North Carolina, NC State University (NCSU) campus, Dis-

ney World (Oralndo) in Florida, and KAIST campus in South Korea respectively

that covers an area of roughly 10002m2, 24002m2, 85002m2, and 150002m2 respec-

tively) are considered to investigate the dependencies between (i) input properties

and output properties, and (ii) input properties and task-oriented output properties.

6.2.1. Dependencies between Input Properties and Output Properties

Using the four data sets, we analyze the impact of the radio range (an input param-

eter) on the flight length Flen and the inter-contact times ICT (both are output

properties). Note that in this case the only input parameter that can be varied is

the radio range, and hence we make two choices. We compute the average of the

flight lengths (Flen) and measure the average of the radius of gyrations Rgyr in all
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Fig. 6: Variation of the distribution of flight lengths measured from four sites indicated
by four different colors in the figure.

the data sets; and the average of the ICTs (ICT ) obtained by varying the radio

range from 10m to 100m in each of the data sets. Note that flight lengths and area

of gyration are insensitive to the variation of radio range, therefore for a given data

set, a single average flight length and area of gyration is a good representative. Note

that the distribution of flight length usually follows a power law, as reported in [12];

here we observe the same in the Figure 6 for the four data sets. Results of Flen and

ICT on all four data sets are reported in Table 3 along with respective Rgyr.

• Average flight length is found to be highest in KAIST data set, while it is

smallest in Statefair data set.

• The average flight length in KAIST data set is higher than that in NCSU and

Orlando data sets, even though the average radius of gyration in KAIST data set

is smaller than that in NCSU and Orlando data sets. This is partly because of

higher Hurst value in KAIST data set, compared to that in NCSU and Orlando

data sets. Also in KAIST the waypoints have to cover a large area (80002 m2).

Such an observation is also exposed by our framework (shown in Figure 4IA).

• The relation of ICT with radio range has two phases - in the first phase when

the radio range is too low to cover even a single cluster of waypoints, then

increasing radio range decreases ICT (see the KAIST-ICT row (first three

columns)). However, after certain enhancement, all the points in a single cluster

fall within the purview of the radio range of an agent, so only points outside

the clusters are connected through the antennae. Hence ICT value increases

((see the KAIST-ICT row (last three columns)). Subsequent increase in radio

range again registers slow decline of ICT (Statefair-ICT (last three columns)).

Note that the distribution of inter-contact times follows a power law (as reported

in [12]). Here, we report in Figure 7, the cumulative distribution of ICTs as we

observe in the four data sets for various radio ranges.

• In Statefair data set, the probability of having smaller ICTs (less than 50 time

steps) is higher when the radio range in tuned to a lower value (less than 40m).



June 18, 2014 12:10 WSPC/INSTRUCTION FILE
Mobility˙Property˙acs˙2013

Understanding the Correlation of the Properties of Human Movement Patterns 17

Table 3: Results on real mobility traces. The values H of Hurst parameter (as measured
in [12]), the average of flight lengths Flen, the average of radius of gyrations Rgyr, the
average of inter-contact times ICT , and the maximum coverage are reported for the four
data sets considered for a set of radio ranges. Note that the distributions of Flen, and ICT

both follow power law.

Statefair

Hurst (H) 0.75

Rgyr 205

Area - 10002 m2 Flen 14

Radio Range 10 20 30 40 50 60 70 80 90 100

ICT 32 56 64 58 58 55 57 58 54 51

Coverage (%) 100 100 100 100 100 100 100 100 100 100

Orlando

Hurst (H) 0.76

Rgyr 1236

Area - 24002 m2 Flen 26

Radio Range 10 20 30 40 50 60 70 80 90 100

ICT 40 55 56 59 58 58 55 55 53 54

Coverage (%) 49 72 75 75 86 86 88 89 89 90

KAIST

Hurst (H) 0.82

Rgyr 806

Area - 85002 m2 Flen 30

Radio Range 10 20 30 40 50 60 70 80 90 100

ICT 24 21 21 22 23 24 25 27 30 32

Coverage (%) 99 100 100 100 100 100 100 100 100 100

NCSU

Hurst (H) 0.66

Rgyr 1060

Area - 150002 m2 Flen 26

Radio Range 10 20 30 40 50 60 70 80 90 100

ICT 18 23 26 31 37 41 48 51 60 60

Coverage (%) 84 98.5 98.5 100 100 100 100 100 100 100

A similar observation is noticed in Orlando data set.

• In NCSU data set, the distribution of ICTs varies significantly compared to

that in the other data sets. In this case, the probability of having smaller ICTs

is higher using a smaller radio range. Such an affect may be a combined affect
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Fig. 7: The distribution of ICTs observed in four sites (Orlando, NCSU, Statefair, and
KAIST) are shown in four subplots, using various radio ranges from 10m to 100m indicated
by different colored curves in every subplot.

of the larger average radius of gyration and smaller Hurst value in NCSU data

set.

6.2.2. Dependencies between Input Properties and Task-Oriented Output

Properties

Once again the only tunable parameter with respect to these trace data sets is the

radio range. We vary the radio range from 10m to 100m to analyze its impact on

the coverage and report the results in Table 3.

• In KAIST data set, the coverage reaches 100% using a smaller radio range

(=20m), which is mainly due to higher Hurst value (H = 0.82). Such a result

is also revealed by our framework (see Figure 5A1).

• In Statefair data set (H = 0.75), the coverage of 100% can be achieved with

10m radio range.

• The coverage does not reach 100% even if radio range is tuned to 100m in the

Orlando data set. Note that H = 0.76 in Orlando data set which is similar

to Statefair data set. A possible reason for this is the fact that the radius of

gyration is much higher in Orlando dataset (this observation is in lines with the

results shown in Figure 5E1).

• Finally, in the NCSU data set, a higher radio range (= 40m) is required to
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Table 4: Correlation between properties

Parameters Correlation

Hurst - Flight Length 0.995
Visit Fraction - Flight Length -0.906

Hurst - Coverage 0.933
Visit Fraction - Spreading Rate 0.933

Flight Length - Coverage -0.571
Flight Length - Spreading Rate -0.188

achieve a higher coverage compared to that (= 20m) in KAIST data set. This

is partially due to a lower Hurst value (H = 0.66) in NCSU data set and the

larger area which needs to be covered.

6.3. Output to Task-oriented Output Dependency

Another important aspect is to identify whether the mobility synthesis output

(Layer 3 & 4) can be used to predict the quality of service (Layer 5). In this

study we point out some caveats in exploiting such relations. Understanding this

dependency through simulation is difficult as they both lie in output layers and

therefore we perform correlation analysis for the same.

Table 4 shows some representative correlations, correlations of Hurst - Flight

Length (0.995, Layer 1 - Layer 3) and Hurst - Coverage (0.933, Layer 1 - Layer 5)

are both strongly positive. These are in agreement with Figure 4A and Figure 5A1

respectively. However, the correlation of Flight Length - Coverage (-0.57, Layer 3

- Layer 5) is negative, when it is computed by varying all the input parameters,

H , L, α, and V F . Within a fixed area, an agent can increase its mean flight length

(ι) by visiting the farthest point next; however, it might not meet any new agent

in the long run as its area of gyration (π) is fixed. Thus, in such a case, it is π

that affects the coverage, rather than ι. In our work, we have presently not varied

the radius of gyration (η) directly, however, other inputs such as Hurst value which

affect η are seen to affect ι and coverage to a large extent. A similar case is observed

for changes in (a) flight length and (b) spreading rate with respect to visit fraction

(V F ). Finally, our analysis indicates that extreme care needs to be taken to establish

such indirect relations and they need to be investigated on a case-by-case basis

While analyzing the correlation between the output properties and the task-

oriented output properties, we have noticed that even though the coverage increases

from 72% to 90% when the radio range (an input parameter) is increased from 20m

to 100m, the average inter-contact time remains almost similar in Orlando data

set (Table 3). Note that, in the other data sets, the coverage reaches 100% for a

very low radio range, and hence no effect of ICT on the coverage can be anyway

observed. Interesting to note here is that average inter-contact time (which is an

output property belonging to Layer 4 in Figure 2) does not help us to understand

the change in the coverage (which is a task-oriented output property belonging to
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Layer 5) since, at least in the Orlando data set, we do not find any change in

ICT whereas the coverage keeps changing with the increasing radio range. This

essentially indicates that one has to look at the properties beyond Layer 4 in order

to derive a proper dependency relationship with the properties in Layer 5. Thus,

the layered structure proposed in this paper can potentially act as an important

tool to unfold the complex interplay among the properties of human movement.

7. Conclusions

One of the major roadblocks in designing services for mobility assisted networks

is the poor understanding of how mobility affects/can be leveraged to build better

services. The primary contribution of this work is the development of a full-fledged

framework to encapsulate the necessary characteristics of mobility models thus al-

lowing for a rigorous analysis of the input-output dependencies. Some of the key

insights on the inter-relationships among the properties of mobility patterns re-

vealed by our analysis are as follows.

(1) An intended distribution of radius of gyrations or pause times that are input

properties may significantly get changed by the characteristics of Hurst param-

eter which is another input property, even though these input properties may

apparently look independent of each other.

(2) Hurst parameter may highly effect the distribution of contact duration which is

an output property, but it may not effect the distribution of inter-contact times

which is another output property.

(3) The number of waypoints visited per trip, and the distribution of radius of

gyrations, both of which are input properties, can potentially affect all the

output properties, i.e., the distributions of flight lengths, return times, contact

durations, and inter-contact times.

(4) While Hurst parameter and the number of waypoints visited per trip hardly

affect the coverage and the spreading rate of information dissemination which

are the task-oriented output properties, the size of the map and the distribution

of area of gyrations can have a strong impact on both the task-oriented output

properties.

(5) Though both Hurst and flight length, and Hurst and coverage are positively

correlated, flight length and coverage are negatively correlated.

One important message of the paper is that change in behavior of mobility may not

always equally affect the overall task that we wish to perform. Hence, for each indi-

vidual class of tasks, we need to identify the influential set of parameters/properties.

Our future thrust would be to fill up this service vs. parameter matrix with respect

to advanced services like routing and load balancing.

While a number of interesting insights are noticeable from the analysis presented

in this paper, our study has some certain limitations. First, the dependencies ex-

posed by our study may not be observed in various available real world mobility
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traces because the traces are either collected for a short duration or limited in num-

ber of agents considered given the resolution of the location to which the agents

are exposed. Second, an answer to the problem that we consider in this study may

not be found from an existing mobility model because a mobility model, in general,

assumes only a few properties (two to three) in order to enhance its usability and

simplicity - however, the main issue lies in choosing them in a principled fashion.

Importantly, the results of our analysis suggest that a more systematic real world

trace collection of human movement is required in order to shed light on the im-

portance of an observed property that may potentially lead to the design of a new

mobility model. This would allow the use of realistic mobility models in various

application scenarios where toy models (like random walk) are grossly unsuitable.
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